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Abstract. In this paper, we deal with the problem of cost allocation among multiple retailers in an inventory

system with transportation quantity discount under the widely-used carbon tax regulation. We first develop

an inventory model with transportation discount under the carbon tax policy, and determine the optimal

order quantity per order such that the total cost is minimized in the case of individual and joint ordering.

We show that the total cost for the group of retailers can be reduced by placing joint orders while the total

carbon emissions may increase. Then, we provide a sufficient condition which indicates that when the costs

and carbon emissions associated with each order initiated are relatively high, enterprises can achieve dual

objectives (both carbon emission reduction and cost reduction) through joint ordering. To allocate the total

cost among the retailers, we introduce an inventory game and show that this game is concave. Based on

this, we propose a cost allocation rule, which belongs to the core of the game.

Keywords: Supply chain management, inventory systems, carbon tax, transportation discount, cooperative

games

1. Introduction

In recent years, the study of cooperative behav-

ior in supply chain management has attracted

increasing awareness from scholars. Joint in-

ventory management is a typical mode of hor-

izontal cooperation in supply chain manage-

ment, which refers to the situation where sev-

eral agents facing individual inventory issues

decide to cooperate by placing joint orders to

reduce the associated costs.

Cooperative game theory has been demon-

strated to be a powerful tool to solve the co-

operation problem in inventory management

(Fiestras-Janeiro et al. 2011a). The fundamen-

tal research on inventory cooperative games

was introduced by Meca et al. (2004). Un-

der the underlying economic order quantity

(EOQ) model, they studied a class of inven-

tory games that arise from situations in which

a group of firms decide to cooperate by plac-

ing joint orders. And then a great deal of re-

searchers extended Meca et al. (2004) ’s work to

different situations by considering reality fac-

tors such as delay in payments (Krichen et al.

2011, Li et al. 2014), product shortages (Guardi-

ola et al. 2009), quantity discount on purchase

(Krichen et al. 2011, Li et al. 2021), stochastic

demand (Chen and Zhang 2009), carbon emis-

sions (Feng et al. 2021, Zeng et al. 2022), private

information ( Zeng et al. 2024) and exemptable

ordering costs (Fiestras-Janeiro et al. 2024).
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In addition to the aforementioned factors,

the cost of transportation is another impor-

tant factor that scholars are concerned about.

Buffa (1988) concluded through empirical anal-

ysis that cooperative transportation can effec-

tively reduce the total transportation cost. In

many studies in the field of inventory man-

agement, transportation costs are only consid-

ered by including them in the fixed cost of or-

dering. Recently, several works on inventory

systems treat transportation cost as an inde-

pendent component, and present different per-

spectives on the calculation of the transporta-

tion cost for cooperative retailers. For instance,

Dror and Hartman (2007) and Fiestras-Janeiro

et al. (2011b 2013) described the transporta-

tion costs of cooperative coalitions by consid-

ering different geographic locations of retail-

ers. Saavedra-Nieves (2020) used a more gen-

eral function to characterize the transporta-

tion cost per order from the supplier. How-

ever, the existing literature ignores an impor-

tant factor that the quantity of transportation

may affect the cost of transportation. Nol-

let and Beaulieu (2005) pointed out that by

combining purchases and pooling transporta-

tion resources, multiple companies can com-

bine smaller shipments to increase the quantity

of shipments and thus reduce transportation

cost. In many practical situations, quantity dis-

counts depending on the number of unit loads

delivered may occur due to economies of scale

(Shinn et al. 1996). Transportation quantity

discount is a common marketing strategy that

has been extensively studied in supply chain

network design (Tsao and Lu 2012), and multi-

modal freight transportation (K P and Panicker

2020). Indeed, the provision of quantity-based

transportation discount gives strong incentives

for retailers to cooperate due to the potential

cost savings in transportation, which is worth

investigating in inventory systems.

A lot of energy will be consumed in the

process of transportation, storage and order-

ing of products, which inevitably leads to a

lot of carbon emissions. At the same time,

with the growing serious problem of climate

change caused by greenhouse gas emissions

such as carbon dioxide, the government has to

implement various carbon emission regulatory

policies (e.g., carbon tax, carbon cap, carbon

cap-and-trade, carbon offset, etc.) on enter-

prises to limit carbon dioxide emissions. In

this context, the inventory management strate-

gies and operations of enterprises are not only

aimed at enhancing economic benefits, but also

need to consider environmental performance

such as reducing carbon emissions for sustain-

able economic development. In the literature,

a growing number of studies have incorpo-

rated carbon emission regulations into inven-

tory management decisions. Some scholars

have discussed how operational decisions are

determined under carbon regulation policies.

Benjaafar et al. (2012) are the first to introduce

the carbon emissions into the field of supply

chain management, and investigated how en-

terprises adjust operational decisions to reduce

costs and mitigate carbon emissions. Chen et

al. (2013) studied the optimal order quantity by

considering the EOQ model under four differ-

ent carbon constraint policies (including strict

carbon cap, carbon tax, carbon cap-and-offset,

and carbon cap-and-price), and showed that it

is possible to reduce the carbon emission level

by adjusting the order quantity. Dye and Yang
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(2015) examined the impact of carbon emis-

sions on the retailer’s trade credit and replen-

ishment strategies under carbon cap-and-trade

and carbon offset policies. Khan et al. (2023)

investigated the livestock farming firm’s opti-

mal prepayment installment, pricing and re-

plenishment decisions for a growing item un-

der cap-and-price, cap-and-trade and carbon

tax regulations. San-José et al. (2024) identi-

fied the optimal inventory policy that maxi-

mizes the benefit per unit of time for deterio-

rating items in the context of carbon tax pol-

icy, in which carbon emissions originate from

the transportation, storage and deterioration

of products. Other scholars have found that

financial schemes may have an impact on car-

bon emissions. For instance, Aljazzar et al.

(2018) showed that delayed payments can im-

prove both environmental and economic per-

formance by considering a two-level coordi-

nated supply chain. Shi et al. (2020 2023) stud-

ied the influence of different payments on the

optimal ordering cycle of perishable products

under carbon tax and cap-and-trade regula-

tions, and discussed the most effective pay-

ment in curbing carbon emissions. More re-

cently, it has been shown in several studies that

cooperation between multiple firms may not

only lead to cost savings but also reduce the

level of carbon emissions. Feng et al. (2021)

showed that under a carbon cap-and-trade pol-

icy, joint replenishment among multiple retail-

ers can increase their total profits and reduce

their total carbon emissions. Halat et al. (2021)

studied multi-level supply chains considering

different decision structures under carbon tax

policies. They found that supply chain mem-

bers could reduce their costs and carbon emis-

sions through cooperation.

Energy consumption in transportation has

been shown to be one of the major sources

of carbon emissions (Li et al. 2019, Jia et al.

2021, Bai et al. 2023). However, existing studies

of cooperative inventory systems with trans-

portation processes have not explored the ef-

fect of carbon emissions. Our research is inter-

ested in exploring how joint ordering affects

the total cost and carbon emissions of retail-

ers when retailers face both transportation dis-

count preferential policy and widely used car-

bon tax penalty policy1, under what conditions

cooperation can achieve the dual objectives of

reducing cost and carbon emissions, and how

the joint cost should be distributed among re-

tailers to incentivize them to cooperate in or-

dering.

To do that, we consider a supply chain con-

sisting of a single product, one supplier, one

transporter, and multiple retailers. Retailers

order products from the supplier to meet de-

terministic market demand and transport them

through the transporter, and the economic ac-

tivity of retailers is regulated by the govern-

ment’s carbon tax policy. In addition, the trans-

porter offers retailers shipping discounts to in-

centivize them to increase the volume of sin-

gle shipments. To save on costs, the retailers

may cooperate by coordinating their orders as

a larger one. We first develop an inventory

model where each retailer receives a shipping

discount from the transporter, and all retailers

are penalized by the government’s carbon tax

policy for their carbon emissions. We deter-

mine the optimal order quantity per order for

the retailer in the case of individual and joint

ordering, respectively. By comparing before
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and after joint ordering, we show that joint or-

dering can reduce the total cost for the group

of retailers while the total carbon emissions

may increase. Then, we provide a sufficient

condition which indicates that when the costs

and carbon emissions associated with each or-

der initiated are relatively high, enterprises can

achieve dual objectives (both carbon emission

reduction and cost reduction) through joint or-

dering. Then, to allocate the total cost from

joint ordering among multiple retailers, we in-

troduce an inventory game and show that this

kind of game is concave. Based on this, we pro-

pose a cost allocation rule belongs to the core

of the game.

The rest of this paper is organized as fol-

lows. Section 2 concentrates on some prelim-

inaries on cooperative game theory. Section

3 introduces the inventory model with trans-

portation discount under carbon tax policy. In

Section 4, we present the inventory game with

transportation discount under carbon tax pol-

icy and propose an allocation rule which be-

longs to the core. Section 5 provides conclu-

sions.

2. Preliminaries on Cooperative Game
Theory

A cooperative game with transferable utility (a

cost TU-game) is a pair (N, C), where N is a fi-

nite set of players and C : 2N −→ R is the char-

acteristic function of the game with C(∅) � 0.

A nonempty subset S of N is called a coali-

tion whose cardinality is denoted by s. For

any S ⊆ N , C(S) represents the minimum total

cost that players in S need to pay when they

cooperate.

A payoff is an n-dimensional vector x ∈ RN

that assigns a payoff xi to each player i ∈ N . We

denote the total amount allocated to coalition

S ⊆ N as x(S), where x(S) �
∑

i∈S xi . The

core is one of the most fundamental concepts

in TU-games, which is defined by

Core(N, C) �
{

x ∈ RN :
∑
i∈N

xi � C(N),

∑
i∈S

xi ≤ C(S), ∀S ⊆ N

}

It is well known that the core of concave

games is always nonempty. A cost TU-game

(N, C) is called concave if and only if

C(S ∪ {i}) − C(S) ≥ C(T ∪ {i}) − C(T)

for all S, T ∈ 2N , i ∈ N such that S ⊆ T ⊆
N\{i}.

If the cost game (N, C) is concave, then no

coalition has an incentive to split off from the

grand coalition and form subcoalitions.

3. Inventory Model with Transporta-
tion Discount under Carbon Tax
Policy

Suppose there is a supply chain consisting of

one supplier, one transporter and n retailers in

the market, and denote the set of n retailers

by N � {1, 2, · · · , n}. All retailers are located

in the same region, and they order identical

products from the supplier to meet determinis-

tic market demand and transport the products

through the transporter. To satisfy the demand

of consumers, retailers usually order a certain

amount of goods in advance and store them in

their warehouses.

In the ordering process, four kinds of costs

incurs, i.e., (i) the ordering fixed cost; (ii) the
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inventory holding cost; (iii) the transportation

cost; (iv) the carbon tax. The ordering fixed

cost a per order is only related to the number

of orders rather than the order quantity. The

inventory holding cost includes product main-

tenance, warehouse leasing and maintenance,

equipment depreciation, lighting and other ex-

penses. In this paper, we assume that the hold-

ing cost per unit product per unit time h is iden-

tical for all retailers. The transportation cost

is associated with the quantity of shipments

for a single order. In the model, we consider

a situation where the transporter offers quan-

tity discounts on the transportation to retailers.

Under the quantity discount contract, retail-

ers can enjoy a lower transportation cost when

the transportation quantity exceeds a certain

threshold. Specifically, let Q0 be the threshold,

when the quantity is greater than Q0, the trans-

porter offers a discount for the excess part.2 In

other words, when the transported quantity is

not greater than Q0, the price of the unit prod-

uct is c0, which is the starting price related to

the transportation distance. We assume in our

model that all retailers are located in the same

region and therefore they have the same trans-

portation starting price c0. When the quantity

is greater than Q0, the price of the exceeding

part is αc0 per unit and the rest part is still c0,

where α is transportation discount rate satisfy-

ing 0 < α < 1. In addition, α is exogenous and

thus the same for all retailers. Then, given that

the quantity of retailer i needs to transport is

qi , the average price per unit of product that

the retailer i has to pay can be expressed as

c(qi) �
⎧⎪⎪⎨⎪⎪⎩

c0 , if qi ≤ Q0

c0Q0+αc0(qi−Q0)
qi

, if qi > Q0

(1)

and the total transportation cost paid by re-

tailer i for each order of the product is qi · c(qi).
Energy consumption during product or-

dering, storage and transportation results in

a large amount of carbon emissions. For each

retailer i, let â, ĥ and ê denote the amount of

carbon emissions associated with each order

initiated, each unit held in inventory per unit

time, and each unit transported, respectively.

In addition, the retailers are subject to the reg-

ulation of the carbon tax policy. The carbon

tax policy is essentially a financial penalty in

which the government directly charges com-

panies for their emissions without setting a

cap. Following Shi et al. (2020) and Zeng et

al. (2022), we assume that retailers are charged

a fixed dollar amount β for every ton of emis-

sions by the local government under the carbon

tax regulation.

Next, we present the optimal order poli-

cies and the corresponding minimum costs per

year for retailers in the case of individual or-

dering and joint ordering.

3.1 Optimal Order Policy for an Individual
Retailer

When acting independently, retailer i’s objec-

tive is to determine the optimal order quantity

q∗i to minimize his total cost. To determine q∗i ,
we develop a total annual cost model for the re-

tailer who orders individually. For any retailer

i ∈ N , the total annual cost Ci(qi) involves the

ordering fixed cost a · di
qi

, inventory holding cost
hqi
2 , transportation cost c

(
qi
)

di and carbon tax

βXi , which is given by

Ci(qi) � a · di

qi
+

hqi

2
+ c

(
qi
)

di + βXi (2)
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where β denotes the tax rate, i.e., the penalty

of per unit carbon emitted, and Xi denotes the

total carbon emission of retailer i, which is

Xi � â · di

qi
+

ĥqi

2
+ êdi (3)

Combining Eq. (1)-(3), we obtain the fol-

lowing total annual cost as a function of qi ,

Ci(qi) �
⎧⎪⎪⎨⎪⎪⎩

Ci1(qi), if qi ≤ Q0

Ci2(qi), if qi > Q0

(4)

where

Ci1(qi) �(a + βâ) · di

qi
+
(h + βĥ)qi

2

+ (c0 + β ê)di

(5)

and

Ci2(qi) �[a + βâ + c0Q0(1 − α)] · di

qi

+
(h + βĥ)qi

2
+ (αc0 + β ê)di

(6)

Subtract Eq. (6) from Eq. (5), we obtain

Ci1(qi) − Ci2(qi) � c0di(1 − α)(1 − Q0

qi
) (7)

It is easy to check from Eq. (7) that Ci(qi)
is continuous at qi � Q0, and if qi ≤ Q0, then

Ci1(qi) ≤ Ci2(qi), otherwise, Ci1(qi) > Ci2(qi).
To find the optimal order quantity per order

q∗i for retailer i, taking the first-order deriva-

tives of Ci1(qi) and Ci2(qi) with respect to qi ,

we obtain

dCi1(qi)
dqi

� −(a + βâ) · di

q2
i

+
(h + βĥ)

2
(8)

and

dCi2(qi)
dqi

� − [a + βâ + c0Q0(1 − α)] · di

q2
i

+
(h + βĥ)

2

(9)

Taking the second-order derivatives of Eq.

(8) and Eq. (9) with respect to qi , we get

d2Ci1(qi)
dq2

i

� (a + βâ) · 2di

q3
i

> 0

and

d2Ci2(qi)
dq2

i

� [a + βâ + c0Q0(1 − α)] · 2di

q3
i

> 0

Setting Eq. (8) and Eq. (9) to zero, we obtain

the optimal solution q∗i1 of Ci1(qi), which is

q∗i1 �

√
2(a + βâ)di

h + βĥ

and the optimal solution q∗i2 of Ci2(qi), which

is

q∗i2 �

√
2[a + βâ + c0Q0(1 − α)]di

h + βĥ

It can be easily verified that

q∗i1 < q∗i2

In the following, we determine the optimal

order quantity q∗i that minimizes the total an-

nual cost Ci(qi) in Eq. (4), and we obtain the

corresponding minimum annual cost and an-

nual carbon emissions for retailer i.

Theorem 1 For each retailer i that orders indepen-
dently, there exists a unique discriminant Δ∗ such
that the following statements hold, where

Δ∗ �
2(h + βĥ)

(√
a + βâ + c0Q0(1 − α) −

√
a + βâ

)2

[(1 − α)c0]2

1) if di ≤ Δ∗, the optimal order quantity per
order for retailer i is

q∗i �
√

2(a + βâ)di

h + βĥ

the corresponding minimum annual cost is

Ci(q∗i ) �
√

2(a + βâ)(h + βĥ)di + (c0 + β ê)di



Iniya et al.: Cost Allocation for Inventory Problem with Transportation Discount under Carbon Tax Policy 7

and the amount of carbon emissions generated
by retailer i is

Xi(q∗i ) �â

√
(h + βĥ)di
2(a + βâ) + ĥ

√
(a + βâ)di

2(h + βĥ) + êdi

2) if di > Δ∗, the optimal order quantity per
order for retailer i is

q∗i �
√

2[a + βâ + c0Q0(1 − α)]di

h + βĥ

the corresponding minimum annual cost is

Ci(q∗i ) �
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)di

+ (αc0 + β ê)di

and the amount of carbon emissions generated
by retailer i is

Xi(q∗i ) �â

√
(h + βĥ)di

2[a + βâ + c0Q0(1 − α)]

+ ĥ

√
[a + βâ + c0Q0(1 − α)]di

2(h + βĥ) + êdi

Proof. To find the global minimum solution of

the function Ci(qi) in Eq. (4), we discuss the

following three cases, i.e., (i) q∗i1 < q∗i2 ≤ Q0;

(ii) Q0 < q∗i1 < q∗i2; (iii) q∗i1 ≤ Q0 < q∗i2.

Case (i) q∗i1 < q∗i2 ≤ Q0.

By Eq. (7), it holds that

Ci1(q∗i2) ≤ Ci2(q∗i2)

Since q∗i1 is the minimum point of Ci1(qi),
we obtain

Ci1(q∗i1) < Ci1(q∗i2)

Therefore,

min Ci(qi) � Ci1(q∗i1)

That is, the optimal order quantity per or-

der for retailer i is q∗i1, the corresponding min-

imum annual cost is

Ci1(q∗i1) �
√

2(a + βâ)(h + βĥ)di + (c0 + β ê)di

(10)

and the amount of carbon emissions generated

by retailer i is

Xi1(q∗i1) � â

√
(h + βĥ)di

2(a + βâ) + ĥ

√
(a + βâ)di

2(h + βĥ) + êdi

(11)

Case (ii) Q0 < q∗i1 < q∗i2.

By Eq. (7), it holds that

Ci2(q∗i1) < Ci1(q∗i1)

Since q∗i2 is the minimum point of Ci2(qi),
we obtain

Ci2(q∗i2) < Ci2(q∗i1)

Therefore,

min Ci(qi) � Ci2(q∗i2)

That is, in Case (ii), the optimal order quan-

tity per order for retailer i is q∗i2, the corre-

sponding minimum annual cost is

Ci2(q∗i2) �
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)di

+ (αc0 + β ê)di

(12)

and the amount of carbon emissions generated

by retailer i is

Xi2(q∗i2) �â

√
(h + βĥ)di

2[a + βâ + c0Q0(1 − α)]

+ ĥ

√
[a + βâ + c0Q0(1 − α)]di

2(h + βĥ) + êdi

(13)

Case (iii) q∗i1 ≤ Q0 < q∗i2.
In this case, we need to compare Ci1(q∗i1)

and Ci2(q∗i2). To this end, let F � Ci2(q∗i2) −
Ci1(q∗i1), and we obtain that

F �

√
2(h + βĥ)di

(√
a + βâ + c0Q0(1 − α)

−√
a + βâ

)
− (1 − α)c0di

(14)
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Taking the first-order and second-order

derivatives of F with respect to di , we get

dF
ddi

�

√
h + βĥ

2

(√
a + βâ + c0Q0(1 − α)

−√
a + βâ

)
d
− 1

2

i − (1 − α)c0

and

d2F
dd2

i

� −
√

2(h + βĥ)
4

(√
a + βâ + c0Q0(1 − α)

−√
a + βâ

)
d
− 3

2

i < 0

Thus, dF
ddi

is strictly monotonically decreas-

ing in di . Note that the condition of q∗i1 ≤
Q0 < q∗i2 is equivalent to Δ1 < di ≤ Δ2, where

Δ1 �
(h+βĥ)Q2

0

2[a+βâ+c0Q0(1−α)] and Δ2 �
(h+βĥ)Q2

0

2(a+βâ) . It can

be easily verified that

dF
ddi

|di�Δ1
�

1

Q0

(
a + βâ

−
√
(a + βâ)[a + βâ + c0Q0(1 − α)]

)
<0

Hence, dF
ddi
< 0 always holds. In other

words, F is also decreasing in di ∈ (Δ1 ,Δ2].
Furthermore, it is easy to check that

F (Δ1) �Δ1

Q0

(
2(a + βâ) + c0Q0(1 − α)

− 2

√
(a + βâ)[a + βâ + c0Q0(1 − α)]

)
>0

(15)

and

F (Δ2) � − Δ2

Q0

(
2(a + βâ) + c0Q0(1 − α)

− 2

√
(a + βâ)[a + βâ + c0Q0(1 − α)]

)
<0

(16)

where the inequalities (15), (16) follow from

the fact that

[2(a + βâ) + c0Q0(1 − α)]2

− 4(a + βâ)[a + βâ + c0Q0(1 − α)]
�[(a + βâ) + a + βâ + c0Q0(1 − α)]2

− 4(a + βâ)[a + βâ + c0Q0(1 − α)]
�[c0Q0(1 − α)]2

>0

Therefore, there must exist a unique point

Δ∗ that satisfies F(Δ∗) � 0, where

Δ∗ �
2(h + βĥ)

(√
a + βâ + c0Q0(1 − α) −

√
a + βâ

)2

[(1 − α)c0]2
From the above discussion, we obtain the

conclusion that if Δ1 < di ≤ Δ∗, then Ci1(q∗i1) ≤
Ci2(q∗i2), the optimal order quantity per order

for retailer i is q∗i1, the corresponding minimum

annual cost is Ci1(q∗i1) as shown in Eq. (10), and

the amount of carbon emissions generated by

retailer i is Xi1(q∗i1) as shown in Eq. (11); if

Δ∗ < di ≤ Δ2, then Ci1(q∗i1) > Ci2(q∗i2), the

optimal order quantity per order for retailer i

is q∗i2, the corresponding minimum annual cost

is Ci2(q∗i2) as shown in Eq. (12), and the amount

of carbon emissions generated by retailer i is

Xi2(q∗i2) as shown in Eq. (13).

Notice that the condition of Case (i) is

equivalent to di ≤ Δ1, and the condition of

Case (ii) is equivalent to di > Δ2. Combining

Case (i)-(iii), we obtain that

1) if di ≤ Δ∗, then the optimal order quan-

tity per order for retailer i is q∗i1, the

corresponding minimum annual cost is

Ci1(q∗i1) �

√
2(a + βâ)(h + βĥ)di + (c0 +

β ê)di , and the amount of carbon emis-

sions generated by retailer i is Xi1(q∗i1) �
â

√
(h+βĥ)di
2(a+βâ) + ĥ

√
(a+βâ)di

2(h+βĥ) + êdi ;
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2) if di > Δ∗, then the optimal or-

der quantity per order for retailer

i is q∗i2, the corresponding min-

imum annual cost is Ci2(q∗i2) �√
2[a + βâ + c0Q0(1 − α)](h + βĥ)di +

(αc0 + β ê)di , and the amount of car-

bon emissions generated by retailer

i is Xi2(q∗i2) � â

√
(h+βĥ)di

2[a+βâ+c0Q0(1−α)] +

ĥ
√

[a+βâ+c0Q0(1−α)]di

2(h+βĥ) + êdi .

�

It can be seen from the expression of the dis-

criminant Δ∗ that the smaller the threshold Q0,

the smaller the discriminant Δ∗. This indicates

that the retailer is more likely to choose q∗i2 as

the optimal order quantity per order to benefit

from the transportation discount when the dis-

count offered by the transporter is more avail-

able. However, an increase in carbon tax rate

β will increase the discriminant Δ∗. In other

words, when the carbon tax penalty imposed

by the government is more severe, retailers are

more willing to forfeit discounts and choose

q∗i1 as the optimal order quantity per order to

avoid higher carbon tax penalties.

3.2 Optimal Order Policy for a Coalition
under Joint Ordering

When the set of retailers S ⊆ N decide to order

jointly, they will determine the common order-

ing cycle length and the total order quantity

qS at each period to minimize their total cost.

For convenience, we use dS to denote the total

demand of coalition S, where dS �
∑

i∈S di .

The goal of coalition S is to minimize their

total annual cost, which also involves the fol-

lowing four parts:

1) The ordering fixed cost of placing joint

orders which equals to a · dS
qS

;

2) The inventory holding cost which equals

to
hqS
2 ;

3) The transportation cost which equals to

c(qS)dS;

4) The carbon tax which equals to βXS,

where XS � â · dS
qS

+
ĥqS
2 + êdS is the total

annual carbon emissions of the coalition

S.

Hence, the total annual cost for coalition S

is given by

CS(qS) �

⎧⎪⎪⎨⎪⎪⎩
CS1(qS), if qS ≤ Q0

CS2(qS), if qS > Q0

(17)

where

CS1(qS) �(a + βâ) · dS

qS
+
(h + βĥ)qS

2

+ (c0 + β ê)dS

and

CS2(qS) �[a + βâ + c0Q0(1 − α)] · dS

qS

+
(h + βĥ)qS

2
+ (αc0 + β ê)dS

Next, we determine the optimal order

quantity q∗S that minimizes the total annual

cost CS(qS) in Eq. (17) and the correspond-

ing minimum annual cost and annual carbon

emissions for coalition S.

Theorem 2 Given the set of retailers S ⊆ N that
order jointly,

1) if dS ≤ Δ∗, the optimal order quantity per
order for coalition S is

q∗S �

√
2(a + βâ)dS

h + βĥ
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the corresponding minimum annual cost is

CS(q∗S) �
√

2(a + βâ)(h + βĥ)dS

+ (c0 + β ê)dS

and the amount of carbon emissions generated
by coalition S is

XS(q∗S) �â

√
(h + βĥ)dS
2(a + βâ) + ĥ

√
(a + βâ)dS

2(h + βĥ)
+ êdS

2) if dS > Δ∗, the optimal order quantity per
order for coalition S is

q∗S �

√
2[a + βâ + c0Q0(1 − α)]dS

h + βĥ

the corresponding minimum annual cost is

CS(q∗S) �
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)dS

+ (αc0 + β ê)dS

and the amount of carbon emissions generated
by coalition S is

XS(q∗S) �â

√
(h + βĥ)dS

2[a + βâ + c0Q0(1 − α)]

+ ĥ

√
[a + βâ + c0Q0(1 − α)]dS

2(h + βĥ)
+ êdS

The proof of Theorem 2 is similar to the

proof of Theorem 1, and hence we omit it here.

The next theorem indicates that joint order-

ing reduces the total annual cost for retailers.

Theorem 3 Joint ordering between multiple retail-
ers results in a reduction in the total annual cost,
that is, CS(q∗S) ≤

∑
i∈S Ci(q∗i ).

Proof. We first divide S into S1 and S2 accord-

ing to whether retailers in the coalition S can

enjoy transportation discounts when ordering

individually. Specifically, we define

S1 � {i |di ≤ Δ∗ , i ∈ S}

and

S2 � {i |di > Δ
∗ , i ∈ S}

where S � S1 ∪ S2, and S1 ∩ S2 � ∅.
According to Theorem 1, for all i ∈ S1, we

have

Ci(q∗i ) �
√

2(a + βâ)(h + βĥ)di + (c0 + β ê)di

(18)

and for all i ∈ S2, we obtain

Ci(q∗i ) �
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)di

+ (αc0 + β ê)di

(19)

The proof proceeds by considering the fol-

lowing two cases, i.e., (i)S2 � ∅ and (ii)S2 � ∅.

Case (i) S2 � ∅.

For all i ∈ S, we obtain di ≤ Δ∗. Then, we

divided this situation into two cases.

Subcase 1. dS ≤ Δ∗.
According to Theorem 1 and Theorem 2, for

all i ∈ S we have

Ci(q∗i ) �
√

2(a + βâ)(h + βĥ)di + (c0 + β ê)di

(20)

and

CS(q∗S) �
√

2(a + βâ)(h + βĥ)dS + (c0 + β ê)dS

(21)

By Eq. (20) and Eq. (21), it is easy to obtain

that CS(q∗S) ≤
∑

i∈S Ci(q∗i ).
Subcase 2. dS > Δ∗.
According to Theorem 2, we obtain

CS(q∗S) �
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)dS

+ (αc0 + β ê)dS

≤
√

2(a + βâ)(h + βĥ)dS + (c0 + β ê)dS

≤
∑
i∈S

√
2(a + βâ)(h + βĥ)di

+ (c0 + β ê)dS

�

∑
i∈S

Ci(q∗i )
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Case (ii) S2 � ∅.

Since S2 � ∅, there exists at least one re-

tailer i such that di > Δ∗, and thus dS > Δ∗.
According to Theorem 2, we obtain

CS(q∗S) �
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)dS

+ (αc0 + β ê)dS

and

CS2(q∗S2
) �

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS2

+ (αc0 + β ê)dS2

(22)

We discuss this situation in the following

two cases.

Subcase 1. dS1 ≤ Δ∗.
According to Theorem 2, we obtain

CS1(q∗S1
) �

√
2(a + βâ)(h + βĥ)dS1 + (c0 + β ê)dS1

(23)

It holds that

CS(q∗S) − CS2
(q∗S2

) − CS1
(q∗S1

)

�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)

(√
dS −

√
dS2

)
−
√

2(a + βâ)(h + βĥ)dS1
− (1 − α)c0dS1

≤
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)
(√

dS1
+ Δ∗

−√Δ∗
)
−
√

2(a + βâ)(h + βĥ)
(√

dS1
+ Δ∗

−√Δ∗
)
− (1 − α)c0dS1

�

√
2(h + βĥ)(dS1

+ Δ∗)
(√

a + βâ + c0Q0(1 − α)

−√a + βâ
)

−
√

2(h + βĥ)Δ∗
(√

a + βâ + c0Q0(1 − α)

−√a + βâ
)
+ (1 − α)c0Δ

∗ − (1 − α)c0(dS1
+ Δ∗)

�

√
2(h + βĥ)(dS1

+ Δ∗)
(√

a + βâ + c0Q0(1 − α)

−√a + βâ
)
− (1 − α)c0(dS1

+ Δ∗)
− (1 − α)c0(dS1

+ Δ∗)
<0

(24)

The last equality holds because F in Eq. (14)

satisfies F(Δ∗) � 0, and the last inequality holds

since F is decreasing in di .

By Eq. (18) and Eq. (23), we have

CS1(q∗S1
) ≤

∑
i∈S1

Ci(q∗i ) (25)

By Eq. (19) and Eq. (22), we have

CS2(q∗S2
) ≤

∑
i∈S2

Ci(q∗i ) (26)

By Eq. (24), Eq. (25) and Eq. (26), it can be

easily verified that

CS(q∗S) ≤ CS1(q∗S1
) + CS2(q∗S2

)
≤
∑
i∈S1

Ci(q∗i ) +
∑
i∈S2

Ci(q∗i )

�

∑
i∈S

Ci(q∗i )

Subcase 2. dS1 > Δ
∗.

According to Theorem 2, we obtain

CS1(q∗S1
)

�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS1

+ (αc0 + β ê)dS1

It holds that

CS(q∗S)
�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS

+ (αc0 + β ê)dS

≤
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)dS1

+

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS2

+ (αc0 + β ê)dS

�CS1(q∗S1
) + CS2(q∗S2

)
(27)

By Eq. (25), Eq. (26) and Eq. (27), we obtain

CS(q∗S) ≤ CS1(q∗S1
) + CS2(q∗S2

)
≤
∑
i∈S1

Ci(q∗i ) +
∑
i∈S2

Ci(q∗i )

�

∑
i∈S

Ci(q∗i )
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To sum up, CS(q∗S) ≤
∑

i∈S Ci(q∗i ) holds. �

In the following, we are interested in in-

vestigating whether joint ordering reduces the

total amount of carbon emissions generated by

retailers. Unfortunately, the answer is nega-

tive, as shown by the example below.

Example 1 Consider a supply chain consisting
of one supplier, one transporter, and two retailers
N � {1, 2} who are located in the same region.
The two retailers order the same product from the
supplier and transport it through the transporter.
The transporter provides a half-price discount for
products transported in excess of 1,000 units. In
addition, retailers are required to pay carbon taxes to
the government for the carbon emissions generated
during replenishment activities. The parameters
for this example are listed in Table 1.

Table 1 The Parameter Settings for Example 1

a â h ĥ c0 Q0 α β ê d1 d2

10 1 1 0.5 2 1000 0.5 2 1 3200 3500

By Theorem 1, it is easy to calculate the discrim-
inant Δ∗ � 3214.4, the amount of carbon emissions
generated by retailer 1 is X1(q∗1) � 3265.3, and the
amount of carbon emissions generated by retailer 2

is X2(q∗2) � 3972.4. By Theorem 2, we calculate
the amount of carbon emissions generated by coali-
tion N is 7353.6. Hence, XN (q∗N ) � 7353.6 >

X1(q∗1) + X2(q∗2) � 7237.7. This shows that joint
ordering between retailers 1 and 2 increases the total
amount of carbon emissions.

From this example, we observe that joint

ordering between multiple retailers does not

necessarily decrease the total amount of car-

bon emissions, but it still reduces the total

cost. However, enterprises with a focus on

low-carbon practices also aim for cooperation

to reduce carbon emissions, thus achieving the

effect of killing two birds with one stone. The

following theorem provides a sufficient condi-

tion under which joint ordering reduces carbon

emissions.

Theorem 4 Joint ordering between multiple retail-
ers leads to a reduction in the total amount of carbon
emissions if

√
1 +

c0Q0(1 − α)
a + βâ

≤
∑

i∈S
√

di√
dS

, s > 1 (28)

Proof. We divide S into S1 � {i |di ≤ Δ∗ , i ∈ S}
and S2 � {i |di > Δ∗ , i ∈ S}, where S � S1 ∪ S2,

and S1 ∩ S2 � ∅. According to Theorem 1 and

Theorem 2, we obtain

∑
i∈S1

Xi(q∗i ) �
∑
i∈S1

â

√
(h + βĥ)di

2(a + βâ)

+

∑
i∈S1

ĥ

√
(a + βâ)di

2(h + βĥ) + êdS1

(29)

and

∑
i∈S2

Xi(q∗i ) �
∑
i∈S2

â

√
(h + βĥ)di

2[a + βâ + c0Q0(1 − α)]

+

∑
i∈S2

ĥ

√
[a + βâ + c0Q0(1 − α)]di

2(h + βĥ)
+ êdS2

(30)

The proof proceeds by considering the fol-

lowing two cases, i.e., (i)dS ≤ Δ∗ and (ii)dS >

Δ∗.

Case (i) dS ≤ Δ∗.
If dS ≤ Δ∗, then for any i ∈ S satisfies di ≤

Δ∗. By Theorem 2, we have

XS(q∗S) � â

√
(h + βĥ)dS

2(a + βâ) + ĥ

√
(a + βâ)dS

2(h + βĥ) + êdS
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Hence, we have

∑
i∈S

Xi(q∗i )

�

∑
i∈S

â

√
(h + βĥ)di
2(a + βâ) +

∑
i∈S

ĥ

√
(a + βâ)di

2(h + βĥ) + êdS

≥â

√
(h + βĥ)dS
2(a + βâ) + ĥ

√
(a + βâ)dS

2(h + βĥ) + êdS

�XS(q∗S)

Case (ii) dS > Δ∗.

According to Theorem 2, we have

XS(q∗S) �â

√
(h + βĥ)dS

2[a + βâ + c0Q0(1 − α)]

+ ĥ

√
[a + βâ + c0Q0(1 − α)]dS

2(h + βĥ) + êdS

(31)

By Eq. (29), (30) and (31), we obtain

XS(q∗S) −
∑
i∈S1

Xi(q∗i ) −
∑
i∈S2

Xi(q∗i )

�â

√
(h + βĥ)dS

2[a + βâ + c0Q0(1 − α)]

+ ĥ

√
[a + βâ + c0Q0(1 − α)]dS

2(h + βĥ) + êdS

−
( ∑

i∈S1

â

√
(h + βĥ)di
2(a + βâ) +

∑
i∈S1

ĥ

√
(a + βâ)di

2(h + βĥ) + êdS1

)

−
( ∑

i∈S2

â

√
(h + βĥ)di

2[a + βâ + c0Q0(1 − α)]

+

∑
i∈S2

ĥ

√
[a + βâ + c0Q0(1 − α)]di

2(h + βĥ) + êdS2

)

�â

√
(h + βĥ)

2

( √
dS −∑

i∈S2

√
di√

a + βâ + c0Q0(1 − α)

−
∑

i∈S1

√
di√(a + βâ)

)

+
ĥ√

2(h + βĥ)

(√
[a + βâ + c0Q0(1 − α)]dS

−
√

a + βâ + c0Q0(1 − α)(
∑
i∈S2

√
di)

−√
a + βâ(

∑
i∈S1

√
di)

)

≤â

√
(h + βĥ)

2[a + βâ + c0Q0(1 − α)]
(√

dS −
∑
i∈S

√
di

)

+
ĥ√

2(h + βĥ)

(√
[a + βâ + c0Q0(1 − α)]dS

−√
a + βâ(

∑
i∈S

√
di)

)

If the following inequality holds

√
[a + βâ + c0Q0(1 − α)]dS ≤

√
a + βâ(

∑
i∈S

√
di)

i.e.,
√

1 +
c0Q0(1−α)

a+βâ ≤
∑

i∈S
√

di√
dS

, then XS(q∗S) −∑
i∈S1

Xi(q∗i ) −
∑

i∈S2
Xi(q∗i ) ≤ 0. �

Indeed, Eq. (28) provides a sufficient con-

dition for joint ordering to reduce the total car-

bon emissions. It can be seen that the condition

in Eq. (28) always holds when the transporter

does not offer the transport discount (α � 1). In

other words, the presence of discounts poten-

tially increases total carbon emissions for re-

tailers. Another finding is that when the costs

and carbon emissions associated with each ini-

tiated order are relatively high, enterprises can

more easily achieve the dual goals of reduc-

ing both costs and carbon emissions through

cooperation. Moreover, the presence of trans-

portation discounts makes this condition even

more stringent.

From our previous analysis, we know that it

is beneficial for retailers to cooperate by placing

joint orders. As a result, a new problem natu-

rally arises: how to share the total cost among

retailers? We discuss this problem within the

framework of cooperative game theory in the

next section.
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4. The Inventory Game with Trans-
portation Discount under Carbon
Tax Policy

In this section, we introduce a new set of cost

TU-games that correspond to the inventory

problem with transportation discount under

carbon tax policy. We denote the inventory

game corresponding to the situation described

above by a pair (N, C), where N � {1, 2, · · · , n}
is the finite set of all retailers and C : 2N −→ R
is the characteristic function of the game with

C(∅) � 0. For every coalition S ⊆ N , C(S) is

interpreted as the minimal cost per year of co-

operating retailers in S. For any S ⊆ N , it holds

that

C(S) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2(a + βâ)(h + βĥ)dS + (c0 + β ê)dS ,

if dS ≤ Δ∗√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS

+(αc0 + β ê)dS , if dS > Δ
∗

(32)

Concavity is one of the most important

properties of cooperative games. If the inven-

tory game with transportation discount under

carbon tax policy is concave, then this game

has a nonempty core. We prove this result in

the following proposition.

Proposition 1 The inventory game with trans-
portation discount under carbon tax policy (N, C)
is a concave game.

The proof of Proposition 1 is given in Ap-

pendix A.

Proposition 1 shows that the corresponding

game has a nonempty core. Constructing an al-

location in the core is one of the main concerns

of cooperative game theory. In the following,

we propose an allocation rule to share the total

annual cost in the grand coalition and prove

that the rule belongs to the core.

Based on the proportion of each retailer’s

demand in the total demand of coalition N , we

propose a cost allocation rule ϕ which defined

as

ϕi(C) � di
dN

C(N)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

di√
dN

√
2(a + βâ)(h + βĥ) + (c0 + β ê)di ,

if dN ≤ Δ∗
di√
dN

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)

+(αc0 + β ê)di , if dN > Δ
∗

Theorem 5 The cost allocation rule ϕ lies in the
core of the inventory game with transportation dis-
count under carbon tax policy (N, C).

Proof. The proof simply involves checking

whether
∑

i∈S ϕi(C) ≤ C(S) holds for all S ⊆ N .

If dN ≤ Δ∗, then dS ≤ Δ∗ holds for any

S ⊆ N . It is easily verified that

∑
i∈S

ϕi(C)

�
dS√
dN

√
2(a + βâ)(h + βĥ) + (c0 + β ê)dS

≤ dS√
dS

√
2(a + βâ)(h + βĥ) + (c0 + β ê)dS

�

√
2(a + βâ)(h + βĥ)dS + (c0 + β ê)dS

�C(S)

If dN > Δ∗, then there exists the following

two cases, i.e., (i)dS > Δ∗; (ii)dS ≤ Δ∗.
Case (i) dS > Δ∗.

In this case, we obtain
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∑
i∈S

ϕi(C)

�
dS√
dN

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)

+ (αc0 + β ê)dS

≤ dS√
dS

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)

+ (αc0 + β ê)dS

�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS

+ (αc0 + β ê)dS

�C(S)

Case (ii) dS ≤ Δ∗.
In this case, it holds that∑

i∈S

ϕi(C)

�
dS√
dN

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)

+ (αc0 + β ê)dS

≤ dS√
dN

√
2(a + βâ)(h + βĥ) + (c0 + β ê)dS

≤ dS√
dS

√
2(a + βâ)(h + βĥ) + (c0 + β ê)dS

�

√
2(a + βâ)(h + βĥ)dS + (c0 + β ê)dS

�C(S)

Therefore, for all S ⊆ N , it holds that∑
i∈S
ϕi ≤ C(S), which completes the proof. �

Next, we use an example to show how

the allocation rule shares the total annual cost

when multiple retailers cooperate.

Example 2 Consider a supply chain consisting of
one supplier, one transporter, and three retailers
N � {1, 2, 3} who are located in the same region.
The three retailers order the same product from the
supplier and transport it through the transporter.
The transporter provides a half-price discount for

products transported in excess of 1,000 units. In
addition, retailers are required to pay carbon tax to
the government for the carbon emissions generated
during replenishment activities. The parameter set-
tings are given in Table 2.

Table 2 The Parameter Settings for Example 2

a â h ĥ c0 Q0 α β ê d1 d2 d3

1000 100 1 0.5 2 1000 0.5 2 1 1000 2000 3000

By Theorem 1, it is easy to calculate the dis-
criminant Δ∗ � 601.5. Then, we determine dS, i.e.,
the total demand for coalition S, and the results are
shown in Table 3.

Table 3 The dS

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

dS 1000 2000 3000 3000 4000 5000 6000

For all S ⊆ N with s > 1, it can be checked that
the condition in Eq. (28) holds. Thus, coopera-
tion among any two or more players in the grand
coalition N leads to lower costs and lower carbon
emissions. By Eq. (32), we calculate C(S) for all
S ⊆ N, S � ∅. We describe the inventory game
with transportation discount under carbon tax pol-
icy (N, C) in Table 4.

Table 4 Characteristic Values in Example 2

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

C(S) 5966.5 10195.2 14138.1 14138.1 17933.0 21633.2 25266.4

It is easy to check that ϕ � (4211.1, 8422.1,

12633.2). For all i ∈ N , it holds that ϕi < C({i}),
and ϕ1 + ϕ2 � 12633.2 < C({1, 2}) � 14138.1,
ϕ1 + ϕ3 � 16844.3 < C({1, 3}) � 17933.0, ϕ2 +

ϕ3 � 21055.3 < C(2, 3) � 21633.2, ϕ1 + ϕ2 +

ϕ3 � 25266.4 � C(N). Thus, ϕ belongs to the
core of the game (N, C).

5. Conclusion

In this paper, we mainly study the cost alloca-

tion problem of inventory system with trans-
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portation discount under carbon tax policy.

We first model the inventory system with trans-

portation discount under carbon tax policy,

and then identify the optimal order quantity

for the individual ordering retailer (see The-

orem 1) and the joint ordering coalition (see

Theorem 2), respectively. The results show

that placing joint orders can reduce the total

cost for retailers (see Theorem 3) but may in-

crease total carbon emissions (see Example 1).

The sufficient condition provided in Theorem 4

indicates that when the costs and carbon emis-

sions associated with each order initiated are

relatively high, enterprises can achieve dual

objectives (both carbon emission reduction and

cost reduction) through joint ordering. Then,

we introduce an inventory game with trans-

portation discount under carbon tax policy and

verify that this game is concave (see Proposi-

tion 1). Finally, we propose a cost allocation

rule based on the proportion of each retailer’s

demand in the total demand of the coalition,

and show that this rule lies in the core of the

game (see Theorem 5).

We acknowledge that the model presented

in this paper is only a simplified model of a

complex real-world problem. For future re-

search, this work can be extended in several

directions. First, this study considers the ef-

fect of the quantity of products transported on

the cost of transportation. In addition to the

quantity transported, the distance transported

also affects the cost of transportation (Fiestras-

Janeiro et al. 2011b 2013). Researchers could

further consider the comprehensive impact of

the quantity and distance of the transported

products on the transportation cost. Second,

the carbon tax price is an exogenous given pa-

rameter considered in this paper as in many

studies (Shi et al. 2020, Zeng et al. 2022). How-

ever, carbon tax rates are not constant in real

economic markets (Heutel 2012, Annicchiarico

and Di Dio 2015, Chan 2020). It is interest-

ing to explore the pricing problem of the tax

charged by the government on each unit of car-

bon emissions. Finally, this paper considers a

special incremental quantity discount scheme

with one threshold. Although this particular

discount structure is often observed in real-

world settings, the general incremental quan-

tity discount scheme with wide application in

supply chain management is of more practical

interest (Taleizadeh et al. 2015, Tamjidzad et

al. 2017). A challenging question for future re-

search is to extend our research to the general

incremental quantity discount scheme 3.

Appendix A

Proof of Proposition 1. We only need to show

for all i ∈ N and all S ⊆ T ⊆ N\{i}, it holds

that

C(S ∪ {i}) − C(S) ≥ C(T ∪ {i}) − C(T)

The proof proceeds by considering the fol-

lowing three cases, i.e., (i) dS∪{i} > dS > Δ∗; (ii)

dS∪{i} > Δ∗ ≥ dS; (iii) Δ∗ ≥ dS∪{i} > dS.

Case (i) dS∪{i} > dS > Δ∗.

In this case, dT∪{i} > dT > Δ∗. According to

Eq. (32), we obtain

C(S ∪ {i}) − C(S)

�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)(

√
dS∪{i} −

√
dS)

+ (αc0 + β ê)di
(A.1)
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and

C(T ∪ {i}) − C(T)

�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)(

√
dT∪{i} −

√
dT )

+ (αc0 + β ê)di
(A.2)

Since
√

x is a concave function, it holds that

C(S ∪ {i}) − C(S) ≥ C(T ∪ {i}) − C(T).

Case (ii) dS∪{i} > Δ∗ ≥ dS.

According to Eq. (32), we obtain

C(S ∪ {i}) − C(S)
�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dS∪{i}

−
√

2(a + βâ)(h + βĥ)dS + c0(αdS∪{i} − dS)
+ β êdi

≥
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)(
√

dS∪{i} −
√

dS)
+ (αc0 + β ê)di

(A.3)

Next, we divide this situation into the fol-

lowing two cases.

Subcase 1. dT∪{i} > dT > Δ∗

By Eq. (A.1) to (A.3), we obtain

C(S ∪ {i}) − C(S)

≥
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)(
√

dS∪{i} −
√

dS)
+ (αc0 + β ê)di

≥C(T ∪ {i}) − C(T)

Subcase 2. dT∪{i} > Δ∗ ≥ dT

According to Eq. (32), we obtain

C(T ∪ {i}) − C(T)
�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dT∪{i}

−
√

2(a + βâ)(h + βĥ)dT + c0(αdT∪{i} − dT )
+ β êdi

(A.4)

By Eq. (A.3) and Eq. (A.4), we get

C(S ∪ {i}) − C(S) − [C(T ∪ {i}) − C(T)]

� −
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)
(√

dT∪{i}

−
√

dS∪{i}
)
+

√
2(a + βâ)(h + βĥ)(

√
dT −

√
dS)

+ (1 − α)c0dT\S

≥ −
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)(
√

dT\S + Δ∗

− √Δ∗) +
√

2(a + βâ)(h + βĥ)
(√

dT\S + Δ∗

− √Δ∗
)
+ (1 − α)c0dT\S

� −
√

2(h + βĥ)(dT\S + Δ∗)
(√

a + βâ + c0Q0(1 − α)

−√
a + βâ

)
+

√
2(h + βĥ)Δ∗

(√
a + βâ + c0Q0(1 − α)

−√
a + βâ

)
− (1 − α)c0Δ

∗
+ (1 − α)c0(dT\S + Δ∗)

� −
√

2(h + βĥ)(dT\S + Δ∗)
(√

a + βâ + c0Q0(1 − α)

−√
a + βâ

)
+ (1 − α)c0(dT\S + Δ∗)

≥0

The last equality holds because F in Eq. (14)

satisfies F(Δ∗) � 0, and the last inequality holds

since −F is increasing in di .

Case (iii) Δ∗ ≥ dS∪{i} > dS.

According to Eq. (32), we obtain

C(S ∪ {i}) − C(S)

�

√
2(a + βâ)(h + βĥ)(

√
dS∪{i} −

√
dS)

+ (c0 + β ê)di

(A.5)

We further discuss this situation by analyz-

ing the following three cases.

Subcase 1. dT∪{i} > dT > Δ∗

By subtracting Eq. (A.5) to Eq. (A.2), we
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obtain

C(S ∪ {i}) − C(S) − [
C(T ∪ {i}) − C(T)]

�

√
2(a + βâ)(h + βĥ)(√dS∪{i} −

√
dS

)
−
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)(√dT∪{i}

−
√

dT
)
+ (1 − α)c0di

≥
√

2(a + βâ)(h + βĥ)(√di + Δ∗ −
√
Δ∗

)
−
√

2[a + βâ + c0Q0(1 − α)](h + βĥ)(√di + Δ∗

− √Δ∗) + (1 − α)c0di

� −
√

2(h + βĥ)(di + Δ∗)
(√

a + βâ + c0Q0(1 − α)

−√
a + βâ

)
+

√
2(h + βĥ)Δ∗

(√
a + βâ + c0Q0(1 − α)

−√
a + βâ

)
− (1 − α)c0Δ

∗
+ (1 − α)c0(di + Δ

∗)

� −
√

2(h + βĥ)(di + Δ∗)
(√

a + βâ + c0Q0(1 − α)

−√
a + βâ

)
+ (1 − α)c0(di + Δ

∗)

≥0

Subcase 2. dT∪{i} > Δ∗ ≥ dT

According to Eq. (32), we obtain

C(T ∪ {i}) − C(T)
�

√
2[a + βâ + c0Q0(1 − α)](h + βĥ)dT∪{i}

+ (αc0 + β ê)dT∪{i}

−
(√

2(a + βâ)(h + βĥ)dT + (c0 + β ê)dT

)
≤
√

2(a + βâ)(h + βĥ)dT∪{i} + (c0 + β ê)dT∪{i}

−
(√

2(a + βâ)(h + βĥ)dT + (c0 + β ê)dT

)
�

√
2(a + βâ)(h + βĥ)(

√
dT∪{i} −

√
dT )

+ (c0 + β ê)di

≤
√

2(a + βâ)(h + βĥ)(
√

dS∪{i} −
√

dS)
+ (c0 + β ê)di

�C(S ∪ {i}) − C(S)
Subcase 3. Δ∗ ≥ dT∪{i} > dT

According to Eq. (32), we obtain

C(T ∪ {i}) − C(T)

�

√
2(a + βâ)(h + βĥ)(

√
dT∪{i} −

√
dT )

+ (c0 + β ê)di

≤
√

2(a + βâ)(h + βĥ)(
√

dS∪{i} −
√

dS)
+ (c0 + β ê)di

�C(S ∪ {i}) − C(S)
Therefore, the inventory game with trans-

portation discount under carbon tax policy

(N, C) is a concave game. �
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Endnotes
1 Among various carbon emission regulations, the carbon

tax policy is the most widely used policy, which has been

implemented in many countries (e.g., Norway, Sweden,

etc.) (Stavins 2019).

2 This type of discount is used in the context of inventory

problems when considering purchase cost (Li et al. 2021).

3 We thank one of the reviewers for suggesting the general

incremental quantity discount scheme to us.
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