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Abstract. Accurate and reasonable prediction of industrial electricity consumption is of great significance

for promoting regional green transformation and optimizing the energy structure. However, the regional

power system is complicated and uncertain, affected by multiple factors including climate, population and

economy. This paper incorporates structure expansion, parameter optimization and rolling mechanism into

a system forecasting framework, and designs a novel rolling and fractional-ordered grey system model to

forecast the industrial electricity consumption, improving the accuracy of the traditional grey models. The

optimal fractional order is obtained by using the particle swarm optimization algorithm, which enhances

the model adaptability. Then, the proposed model is employed to forecast and analyze the changing trend of

industrial electricity consumption in Fujian province. Experimental results show that industrial electricity

consumption in Fujian will maintain an upward growth and it is expected to 186.312 billion kWh in 2026.

Compared with other seven benchmark prediction models, the proposed grey system model performs best

in terms of both simulation and prediction performance metrics, providing scientific reference for regional

energy planning and electricity market operation.

Keywords: Electricity consumption, grey system theory, prediction model, fractional order

1. Introduction

1.1 Background

Electricity is a secure, high-quality, clean en-

ergy source, has permeated all sectors of na-

tional economy and stands as a pivotal en-

ergy pillar for China’s economic development.

Presently, China has attained the distinction

of being the world’s largest energy producer

and consumer. As an efficient and conve-

nient secondary energy, electricity plays a sig-

nificant role in optimizing the energy struc-

ture, fostering industrial development and en-

suring the stability of people’s lives (Zhang

et al. 2017). Numerous studies have eluci-

dated a long-term, intimate interplay between

electricity consumption and regional economic

growth, mutually reinforcing one other (Xu et

al. 2022). Particularly within the industrial

sector, electricity consumption serves as the

"barometer" and "weathervane" for the harmo-

nious development of national economy.

China’s economy is undergoing a transition

from rapid growth to high-quality develop-

ment, which requires further optimization of

the industrial structure and the power market.
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However, some provinces suffer from frequent

power rationing and imbalances in electricity

supply and demand due to regional disparities

in China’s development. Accurate prediction

of industrial electricity consumption (IEC) is

crucial for monitoring the energy market and

facilitating industrial restructuring (Tang et al.

2019). This paper aims to build a scientific and

reasonable IEC prediction model, which is also

a hot academic topic in various fields.

In addition, we select the Fujian province

as the case study to assess the effectiveness of

prediction models. Fujian province was cho-

sen as the case study for several reasons. First,

Fujian province is one of the fastest-growing

provinces in China, with an average annual

GDP growth rate of 8.4% from 2010 to 2020

and a GDP of 5.31 trillion yuan in 2022, rank-

ing seventh among all provinces. Second,

Fujian province is also a pioneer in develop-

ing the digital economy and promoting indus-

trial transformation and upgrading. Fujian

province has a high proportion of industrial

electricity consumption, accounting for 75.8%

of the total electricity consumption in 2021,

which reflects its strong industrial develop-

ment. Third, Fujian province has experienced

frequent power rationing and imbalances in

electricity supply and demand since Septem-

ber 2021, which poses a great challenge for

its economic and social development. During

peak demand periods, inadequate electricity

supply can result in blackouts or brownouts,

causing disruptions in various industries such

as manufacturing, healthcare, and informa-

tion technology. These disruptions can lead to

significant financial losses for businesses, re-

duced productivity, and even jeopardize pub-

lic safety.

Consequently, accurate prediction and real-

time monitoring of electricity consumption

become indispensable for aligning electricity

supply with industry demand. By developing

robust forecasting models, policymakers, en-

ergy planners, and businesses can anticipate

future electricity needs, optimize resource al-

location, and ensure a stable and efficient en-

ergy market. This, in turn, fosters industrial

growth, attracts investments, and enhances

overall economic development. This paper

will propose a novel grey system model for

predicting and analyzing industrial electricity

consumption in Fujian province, based on its

current situation. The paper aims to offer some

insights for the advancement of the intelligent

power grid and the augmentation of sustain-

able energy structure in Fujian.

1.2 Literature Review

Numerous studies have demonstrated that in-

dustrial electricity consumption is affected by

many complicated factors, encompassing re-

gional economic development level, urban

size, industrial activities and policy interven-

tion (Yu et al. 2019). Consequently, the en-

tire power system exhibits the characteristics of

complexity and uncertainty, posing significant

challenges in electricity consumption predic-

tion. In recent years, scholars have conducted

extensive investigations into forecasting ap-

proaches for electricity consumption. These

methods can be categorized into four main

groups, traditional statistical models, machine

learning techniques, grey prediction models

and hybrid approaches.

Statistical models offer specific advan-
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tages in analyzing the long-term develop-

ment trends of the electricity consumption,

and can effectively capture the potential time

series changes based on extensive historical

data. Some commonly used statistical models

include Auto-Regressive Integrated Moving-

Average (ARIMA) (Jamil 2020), exponential

smoothing (Deng et al. 2021) and regression

analysis models (Frondel et al. 2019, Cui et

al. 2021, Tang et al. 2021). In general, these

models are adept at identifying patterns and

relationships within the data, enabling them

to provide valuable insights into the long-term

trends of electricity consumption. However,

statistical models often require a substantial

amount of observation data to ensure high

accuracy and robustness in their predictions.

When the power system is subject to numer-

ous interference factors, the prediction accu-

racy may be compromised due to the increase

in feature dimensions.

With the rapid development of big data

in recent years, machine learning techniques

have garnered a lot of interest from academics.

The nonlinear relationship between electricity

consumption data and its numerous influenc-

ing factors can be captured by various intelli-

gent algorithms (He et al. 2019, Gul et al. 2021,

Pappas et al. 2010, Albuquerque et al. 2022).

Jiang et al. (2020) designed a novel compos-

ite electricity demand forecasting framework

based support vector machine (SVM) to iden-

tify and measure any seasonal relationship that

exists in electricity demand data. Laurinec and

Lucka (2019) proposed a new interpretable

approach for multiple data streams clustering

used for the improvement of forecasting accu-

racy of electricity consumption. It is widely

known that sufficient historical information is

helpful for researchers to mine and explore the

operation rules of a system. Therefore, statisti-

cal models and machine learning methods can

get satisfactory results when modeling object

is a system with numerous sample data or ob-

vious distribution. However, they cannot per-

form well when facing limited historical data.

The grey prediction model, initially pro-

posed by Professor Deng, represents a crucial

research topic within the realm of grey system

theory. Grey model demonstrates remarkable

explanatory power when it comes to predict-

ing uncertain systems with limited data and

incomplete information. Consequently, it has

fount extensive applications in various fields,

including energy (Zhou et al. 2021), agricul-

ture (Ou 2012), economy (Ding et al. 2020),

environment (Zeng et al. 2021) and industrial

engineering (Zhou et al. 2022a).

In order to leverage the strengths of dif-

ferent techniques, some scholars have devel-

oped hybrid predictive models that integrate

the advantages of multiple approaches (Hu

2017, Wang and Jiang 2019). For instance,

Liu et al. (2016) proposed a combined forecast

framework with grey forecasting method and

neural network back propagation model. The

results showed that forecasting accuracy on en-

ergy consumption is greater than grey models

separately. Xu et al. (2015) proposed a GM-

autoregressive moving average model based

on the Hodrick-Prescott (HP) filter method to

forecast energy consumption.

From aforementioned studies, we found

that grey prediction models demonstrated su-

perior performance in modeling uncertain sys-

tems with limited data and incomplete infor-
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mation compared to alternative methods. The

power energy system, known for its large and

complex nature, possesses typical grey char-

acteristics characterized by non-linear data

changing patterns. Therefore, the construc-

tion of a grey model with enhanced prediction

performance and the continuous improvement

of grey system theory have become common

scientific challenges. Existing studies have pri-

marily focused on four main aspects, including

model structure expansion, parameter opti-

mization, incorporation of rolling mechanism

and combined prediction models. The im-

provements for predicting energy system can

be summarized in Table 1.

The refinement of these grey prediction

models has been achieved through distinct av-

enues, encompassing enhancements in model

structure, parameter solving, prediction mech-

anisms, and the amalgamation of advantages.

These advancements have significantly ele-

vated the prediction accuracy, thereby high-

lighting the adaptability of grey system mod-

els. Nevertheless, traditional grey univari-

ate prediction models such as GM(1,1) and

DGM(1,1), are increasingly challenged in their

ability to address the complexities of engineer-

ing applications, such as nonlinear growth pat-

terns and unbalanced information. Hence,

scholars must prioritize the integration and

unification of various improvement method-

ologies in their research endeavors. The elec-

tricity system is an intricate grey system, sub-

ject to the influences of diverse factors such

as population structure, regional economic de-

velopment stage, and electricity prices. It ex-

hibits distinct ’grey’ characteristics, rendering

the grey system theory particularly suitable for

electricity system analysis. However, the cur-

rent research on electricity consumption pre-

diction lacks a unified framework to enhance

prediction performance. Most grey mod-

els have primarily focused on specific facets,

such as parameter optimization, representing

mere extensions of the traditional GM(1,1) ap-

proach. Yet, achieving heightened accuracy

necessitates the integration of systematic con-

cepts and global optimization into the con-

struction of a well-founded grey system model.

In reality, there exists no conflict between struc-

ture expansion, parameter optimization, and

rolling mechanisms, as they encompass vari-

ous aspects of grey modeling.

In this study, we will propose a novel

grey forecasting modeling framework that in-

tegrates structure expansion, fractional-order,

and rolling mechanism to enhance the accu-

racy of the grey model. By combining these

different aspects of grey modeling, we aim

to improve the accuracy and reliability of the

prediction results. The developed model is

called the Rolling and Fractional-ordered Grey

Model, abbreviated as RFGM(1,r). ‘1’ and ‘r’

denote the univariate prediction model and

r-order accumulating generation operator, re-

spectively.

This paper presents novelties in two as-

pects. First, in response to the limitations of

the basic grey model, we have developed a

novel grey modeling approach that incorpo-

rates three key elements: model structure ex-

pansion, parameter optimization, and rolling

mechanism. By considering these compo-

nents, our proposed approach offers an im-

proved and more comprehensive solution for

electricity consumption forecasting. Second,
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Table 1 Summary of Research about Optimized Grey Prediction Models

Modelling

Aspects

Model Name Interpretation Application

Scope

Structure

Expansion

FPGM(1,1,tα) (Liu et al. 2020),

UFNGBM (1,1) (Pu et al. 2021),

FAGMO(1,1,k) (Wu et al. 2019),

NGM(1,1,k) (Cui et al. 2013),

DGM(1,1,α) (Javed and Cudjoe 2022),

CCRGM(1,1) (Luo et al. 2020)

Nonlinear grey

Bernoulli models and

polynomial models

The grey system

with nonlinear

trend

N_Verhulst (Zeng et al. 2020a),

FD-Verhulst (Zhou et al. 2022),

GMTGP (Zeng et al. 2020)

Structure improve-

ment of traditional

grey Verhulst model

The grey system

with a saturated

S-shape

AWBO-DGGM(1,1) (Chen et al. 2021),

SGM(1,1) (Wang et al. 2018),

SIOGM (Zhou et al. 2022b)

Consider the sea-

sonal fluctuations in

the grey modeling

process

The grey system

with seasonal pat-

terns

GMC(1,N) (Wu et al. 2018),

DBGM(1,N) (Zeng and Li 2018),

GMP(1,1,N) (Luo and Wei 2017)

Consider some fac-

tors affecting electric-

ity consumption in

grey models

The grey system

with multi-

variables

Parameter

Optimiza-

tion

FGM(q,1) (Mao et al. 2016),

WGM(1,1) (Wu et al. 2016),

CFGOM(1,1) (Xie et al. 2020),

SFOGM(1,1) Zhu et al. (2020)

Fractional grey pre-

diction models and

its extensions

Accumulating

generation opera-

tor optimization

IRGM(1,1) (Xu et al. 2017),

GM(1,1)-x(1)(n) (Dang et al. 2004),

OICGM(1,1) (Xiong et al. 2014)

Grey prediction mod-

els based on im-

proved initial value

Initial value con-

dition optimiza-

tion

MDBGM(1,N) (Zeng et al. 2020b),

DBGM(1,N) (Zeng and Li 2018),

FOC_GM(1,N) (Huang et al. 2021)

Grey prediction mod-

els based on im-

proved background

value coefficient

Background-

value optimiza-

tion

Rolling

Mecha-

nism

GRPM(1,1) (Zhou et al. 2021),

NOGM(1,1) (Ding et al. 2018)

Rolling mechanism in

grey modeling

Grey system with

new information

priority

Rolling-ALO-GM(1,1) (Zhao and Guo

2016),

RGPMM(λ,1,1) (Sun et al. 2022)

Integration of rolling

mechanism and other

techniques

Hybrid models

with new infor-

mation priority
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Combined

Model

NNGM(1,1) (Hu 2017),

GNF-IO model (Liu et al. 2016)

Integration of grey

system model and

machine learning

method

Grey forecasting

and big data tech-

nique

NMGM-ARIMA (Wang and Jiang

2019), GM-ARMA (Xu et al. 2015)

Integration of grey

system model and

statistical method

Grey forecasting

and statistical

model

integrated contribution. One of the key contri-

butions of our research is the integration of var-

ious techniques to enhance the prediction per-

formance of the grey model for industrial elec-

tricity consumption, specifically for the context

of Fujian province. By expanding the model

structure, we capture the complex dynamics

and non-linear patterns inherent in the elec-

tricity consumption data. Through parameter

optimization, we determine the optimal frac-

tional accumulating generation operator, en-

suring the model adaptability. The incorpora-

tion of the rolling mechanism allows the model

to dynamically incorporate new information as

it becomes available.

The reminder of this paper is arranged as

follows. A novel grey prediction model with

fractional order and rolling mechanism is pro-

posed in Section 2. Parameters estimation and

recursive time response function of model are

provided in this section. The modeling condi-

tions and error checking method for the pro-

posed model are discussed in Section 3. Sec-

tion 4 employs the model in Fujian’s indus-

trial electricity consumption. Seven bench-

mark models are to test the superiority of the

proposed approach. Further discussion and

policy suggestions are presented in Section 5.

Conclusions are summarized in Section 6.

2. Methodology

In this section, we present a novel grey sys-

tem modeling approach, namely the rolling

and fractional-ordered grey model, denoted

as RFGM(1,r), which is designed for accurate

forecasting of electricity consumption. The

model incorporates a discrete time response

function derived through recursive derivation,

allowing for efficient capturing of the underly-

ing dynamics. To optimize the performance of

the model, we employ the particle swarm op-

timization algorithm to search for the optimal

fractional-order parameter.

2.1 Basic Form of Grey System Model

Definition 1 Assume that X(0) �(
x(0)(1), x(0)(2), · · · , x(0)(n)) is an origi-

nal electricity consumption sequence, where
x(0)(k) ≥ 0 for k � 1, 2, · · · , n. D is an
operator acting on X(0), and X(1) � X(0)D �(
x(0)(1)d , x(0)(2)d , · · · , x(0)(n)d)

where

x(0)(k)d �

k∑
g�1

Γ
(
k + r − g

)
Γ

(
k − g + 1

)
Γ

(
g
) x(0) (

g
)

k � 1, 2, · · · , n; r ∈ R+ (1)

Then D is denoted as the r-order accumu-
lating generation operator of the sequence X(0)

abbreviated as r-AGO. The new sequence ob-
tained by r-AGO is called the fractional-order ac-
cumulating generation sequence, that is X(r) �(
x(r)(1), x(r)(2), · · · , x(r)(n)) .
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In particular, when r � 1, the above mentioned
grey data process is the traditional first-order accu-
mulating generation,that is x(r)(k) � ∑k

g�1 x(0)(g),
for k � 1, 2, · · · , k.

In the grey modeling process, the introduce

of r-AGO plays a crucial role in reducing the

randomness and noise information of the raw

data. Unlike the traditional 1-AGO that only

considers the fixed first-order accumulation, r-

AGO offers greater flexibility by allowing for

fractional-order accumulations.

Based on r-AGO sequence X(0) ,the following
new sequence Z(r) can be obtained, that is Z(r) �(
z(r)(2), z(r)(3), · · · , z(r)(n)) . where

z(r)(k) � 0.5x
[
x(r)(k) + x(r) (k − 1

) ]
(2)

Then z(r) is called the mean nearest neighbor
sequence of X(r) .

The process of returning to the original sequence
from r-AGO sequence is called r-IAGO(r-order In-
verse AGO), which is the inverse process of r-AGO.
It satisfies the following requirements:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
x(r) (k

)(−r)
�

k−1∑
g�0

Γ (r + 1)
Γ

(
g + 1

)
Γ

(
r − g + 1

) · x(r)
(
k − g

)
x(r)(1) � x(0)(1)

Definition 2 Assume that X(r) , Z(r) are given by
Definition 1, then

x(r) (k) − x(r) (k − 1) + r1z(1) (k)
�

1

2
(2k − 1) r2 + r3 (3)

is referred to as the basic form of Rolling and
Fractional-ordered Grey Model with one variable
and r-order accumulating generation operator, ab-
breviated as RFGM(1,r).

A notable distinction between the pro-

posed model, RFGM(1,r), and the traditional

GM(1,1) model is evident in Equation (3). It

encompasses three undetermined parameters

r1 , r2 , r3. In addition, 0.5(2k − 1)r2 + r3 is the

grey action quantity (or grey information cov-

erage), which can represent all grey informa-

tion in a system. It is linearly related to the time

point k. Traditional GM(1,1) considers the grey

action quantity as a constant r2, thereby over-

looking the dynamic nature of the system’s

evolution over time.

2.2 Parameters Estimation

Theorem 1 Assume that X(r) , Z(r) are given in
Definition 1,if p̂ � (r1 , r2 , r3)T is the estimated
parameter matrix of RFGM(1,r), and

M �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5 ·
[
x(r) (2)

+ x(r) (1) ]
3
2 1

−0.5 ·
[
x(r) (3)

+ x(r) (2) ]
5
2 1

...
...

...

−0.5 ·
[
x(r) (n)

+ x(r) (n − 1
) ]

2n−1
2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(r) (2) − x(r) (1)
x(r) (3) − x(r) (2)

...

x(r) (n) − x(r) (n − 1
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then it satisfies

p̂ �

(
r1 , r2 , r3

)T
�

(
MT M

)−1

MT N (4)

Proof is provided in Appendix.

2.3 The Recursive Time Response Func-
tion

Theorem 2 Assume thatX(r) , Z(r)are given in
Definition 2, and p̂ � (r1 , r2 , r3)r is the parameter
vector of the RFGM(1,r) model, we set the initial
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value of the model as x̂(0)(1) � x(0)(1), then the re-
cursive time response function of RFGM(1,r) can
be deduced as

x̂(r) (t) � αt−1x(0) (1) +
t−2∑
g�0

[ (
t − g

)
β + γ

]
αg

(5)

In the above Equation, α �
1−0.5r1

1+0.5r1
, β �

r2

1+0.5r1
, γ �

r3−0.5r2

1+0.5r1
. The detailed proof is provided

in Appendix.

2.4 Determination of the Optimal Frac-
tional Order

In the recursive time response function of

RFGM(1,r), the accumulating generation order

r is predetermined. The traditional grey model

assumes a fixed order of r � 1, which will limit

its effectiveness in capturing the dynamics of

the system. To address this question, the op-

timal order of the RFGM(1,r) model is deter-

mined by minimizing the error, as described in

reference (Zhou et al. 2022b).The optimization

condition involves solving the following opti-

mization problem to obtain the optimal frac-

tional order parameters.

min f (r) �
n∑

k�2

[
x(r) (k) − x̂(r) (k)

x(r) (k)

]2

(6)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(r)
(
k
)
� αt−1x(0)

(
1
) − ∑t−2

g�0

[ (
t − g

)
β + γ

]
α

α �
1−0.5r1
1+0.5r1

, β � r2
1+0.5r1

, γ �
r3−0.5r2
1+0.5r1

(r1 , r2 , r3)ᵀ � (MᵀM)−1 MᵀN

r ∈ R+

Equation (6) represents a complex nonlin-

ear problem that is challenging to solve using

classical ordinary least square methods. To

address this, an intelligent optimization algo-

rithm, particle swarm optimization (PSO) is

employed to search for the optimal fractional

order of RFGM(1,r). PSO is a group iterative

method inspired by the collective behavior of a

flock of birds flying in space.. Each particle can

be seen as a flying bird constantly searching for

the best foraging location. And each particle

has two essential attributes, position and ve-

locity. PSO is widely used in engineering ap-

plications owing to its structural interpretabil-

ity, and ease of implementation (Zhou et al.

2022b, Zhu et al. 2020). By leveraging PSO, the

optimal fractional order for RFGM(1,r) can be

determined effectively.

The procedures of searching the optimal

fractional order by PSO are as follows.

Step 1: Initialize the random populations

as well as the position, velocity of each particle.

Step 2: Calculate the fitness value of each

particle. The fitness function is obtained based

on Equation (6).

Step 3: Find the local extreme f besti and

global extreme gbesti of each particle i. Par-

ticularly,the f besti represents the best objec-

tive function value achieved by the particle i

within the entire swarm at a particular itera-

tion. It serves as a measure of the best solution

found by any individual particle in the search

process. The gbesti stands for global best and

represents the best position and corresponding

objective function value achieved by the i par-

ticle in the entire swarm throughout the entire

optimization process.

Step 4: Update the velocity and position of

the particle by using the following formula:

vi � w × vi + c1 × rand1

(
f besti − xi

)
+ c2 × rand2

(
gbesti − xi

)
(7)

xi � vi + xi (8)

Where c1 and c2 the individual learning factor
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and the social learning factor, respectively and

usually are set to 2. rand and rand2 are two

random number between 0 and 1.

Step 5: End loop until maximum iterations

or converged fitness value.

3. Modeling Conditions and Evalua-
tion Criterion of RFGM(1,r)

3.1 Modeling Conditions of RFGM(1,r)

Definition 3 Assume that X(0) �(
x(0)(1), x(0)(2), · · · , x(0)(n)) is an original

non-negative sequence, where x(0)(k)≥ 0 for
k � 1, 2, · · · , n, then

ρ (k) � x(0) (k)∑k−1
i�1 x(0) (i) , k � 2, 3, · · · , n (9)

is referred to as the smoothness ratio of X(0).
The smoothness ratio is a measure of how consis-

tent or steady the data changes are within the series.
In general, when the data exhibits more stable and
regular patterns of variation, the smoothness ratio
tends to be smaller.

Definition 4 Suppose that X(0) �(
x(0)(1), x(0)(2), · · · , x(0)(n)) is given in Def-

inition 3, if X(0) satisfies the following three
principles, then X(0) is a quasi-smooth sequence
and can be used for grey modeling.

1) σ(k) � ρ(k)
ρ(k−1) < 1, k � 3, 4, · · · , n

2) ρ(k)∈[0, δ], k � 3, 4, · · · , n
3) δ < 0.8

Quasi-smoothness condition serves as a

crucial criterion for evaluating the suitability

of a sequence for constructing a grey predic-

tion model. If the modeling sequence fails to

satisfy the quasi-smoothness test, it suggests

that the sequence exhibits a high level of un-

certainty and instability, which is unfavorable

for establishing a reliable grey model.

3.2 Performance Evaluation

Suppose that X(0) �(
x(0)(1), x(0)(2), · · · , x(0)(n)) is the modeling

sequence, where x(0)(k) ≥ 0 for k � 1, 2, · · · , n.

X̂(0) �
(
x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n)) is the

simulation sequence of X(0), then the error

sequence of X(0) is

e(0) �
(
e(0)(1), e(0)(2), · · · , e(0)(n)) where

e(0)(k) � x(0)(k) − x̂(0)(k), k � 1, 2, · · · , n (10)

The absolute percentage simulation error

of X(0) is

Δ � (Δ(1),Δ(2), · · · ,Δ(n)) where

Δ(k) �
���� e(0) (k)
x(0) (k)

����×100%, k � 1, 2, · · · , n (11)

The mean absolute percentage simulation

error (MAPE) of X(0) is

Δ �
1

n

n∑
k�1

Δ(k), k � 1, 2, · · · , n (12)

In general, a smaller mean absolute percent-

age error indicates a better fitting result of the

model. It represents the average deviation be-

tween the predicted values and the actual val-

ues, with a value closer to 0 indicating a more

accurate prediction. Furthermore, two other

important evaluation metrics are the root mean

square error (RMSE) and the model fitness R2.

The RMSE quantifies the overall difference

between the predicted values and the actual

values, taking into account both the magni-

tude and direction of the errors. A lower RMSE

value suggests a better model performance in

terms of capturing the variability in the data.

The model fitness R2, also known as the coeffi-

cient of determination, assesses the proportion

of the total variation in the dependent variable
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Figure 1 Forecasting Procedures of RFGM(1,r)

that can be explained by the independent vari-

ables in the model. A higher R2 value indicates

a stronger relationship between the predicted

values and the actual values, indicating a better

simulation effect of the model.

RMSE �

√√
1

n

n∑
k�1

(
x(0) (k) − x̂(0) (k))2

(13)

R2
� 1 −

∑n
k�1

[
x(0) (k) − x̂(0) (k)]2

∑n
k�1

[
x(0) (k) − x(0)]2

(14)

x(0)
�

1

n

n∑
k�1

x(0) (k) (15)

If the above performance evaluation met-

rics meet the requirements of system model-

ing, the(n + p) th point data {p � 1, 2, · · · } can

be calculated based on the recursive time re-

sponse function of RFGM(1,r).

3.3 Rolling Mechanism

In traditional grey models, the prediction of

subsequent data at various time points from

n + 1 to n + t is performed directly based on

effective fitting techniques. However, this ap-

proach overlooks the evolving uncertainty of

grey information within a system. To address

this limitation and fully consider the influence

of new information on the modeling process,

a rolling modeling mechanism based on the

principle of information metabolism is intro-

duced. The following procedures outline the

implementation of the rolling mechanism.

Step 1: Set the modeling size of RFGM(1,r)

to n, and get the first predicted data x̂(0)(n+1).
The prediction error of the(n + 1) th point data

is

ΔF1 �

���� x(0) (n + 1) − x̂(0) (n + 1)
x(0) (n + 1)

���� × 100% (16)

Step 2: Add the new modeling data

x(0)(n + 1), and remove the oldest information

x(0)(1)to form a new modeling sequence, that is

Y1 �
(
x(0)(2), x(0)(2), · · · , x(0)(n), x(0)(n + 1)) .

The new round of RFGM(1,r) with the same

modelling size is employed to predict the next

data x̂(0)(n + 2). Similarly, the prediction error

of the (n + 2)th point data is

ΔF2 �

���� x(0) (n + 2) − x̂(0) (n + 2)
x(0) (n + 2)

���� × 100% (17)

Step 3: Repeat the Step 1 and Step 2 until we

finish forecasting the required future steps. In

this study, the training data consists of indus-

trial electricity consumption records from 2005

to 2018. To enhance the prediction accuracy,

the rolling mechanism is incorporated into the

subsequent prediction process. This mech-

anism, as depicted in Figure 1, enables the

model to dynamically update and adapt to new
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Figure 2 The Modeling Flowchart of RFGM(1,r)

information as it becomes available, thereby

improving the forecasting performance.

Based on the above contents includ-

ing parameters estimation, model derivation,

fractional-order determination and model

evaluation criterion of RFGM(1,r), the mod-

eling flowchart is shown in Figure 2.

4. Forecast of Fujian’s Industrial Elec-
tricity Consumption

4.1 Data and Sources

The smooth operation of the electricity system

in Fujian province plays a vital role in ensur-

ing sustainable development within the eco-
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nomic zone on the west coast of the Taiwan

Strait. Accurate forecast and assessment of in-

dustrial electricity consumption are essential

prerequisites for the long-term development

of industries in Fujian Province. The origi-

nal electricity consumption data used in this

research were collected from Fujian Provincial

Bureau of Statistics (https://tjj.fujian.gov.

cn/) and Municipal Bureau of Statistics. Table

2 presents Fujian’s industrial electricity con-

sumption data from 2005 to 2020. In this study,

original data was divided into two parts: train-

ing data spanning from 2005 to 2018, and test-

ing data covering the years 2019 to 2020.

According to Figure 3, it is evident that Fu-

jian’s electricity consumption has experienced

a noticeable upward trend. Among the dif-

ferent sectors contributing to Fujian’s electric-

ity consumption, the secondary industry holds

the largest share, accounting for 84.9% of the

total. It indicates that the secondary indus-

try remains the primary power consumer in

Fujian. On the other hand, the primary indus-

try has the smallest proportion of electricity

consumption, representing only 1.34% of the

total. Since the beginning of the 21st century,

the heavy industry and material industry have

been the key development targets, driving eco-

nomic growth and increasing the demand for

industrial electricity in Fujian.

4.2 Modeling Condition Checking

To verify the applicability of the proposed

model for predicting Fujian’s industrial elec-

tricity consumption, we examine the quasi-

smooth condition of the original sequence. The

quasi-smooth checking results for the model-

ing sequence are demonstrated in Figure 4.

It can be seen from Figure 4 that

all quasi-smooth results satisfy ρ(k)∈[0, 0.8].
max(σ(k)) � σ(14) � 0.997, and σ(k) < 1 for

k � 3, 4, · · · , 14. Therefore, the original elec-

tricity consumption sequence X(0) can be used

to establish the RFGM(1,r) model.

4.3 Simulation and Prediction of Fujian’s
Industrial Electricity Consumption

In this section, the proposed model RFGM(1,r)

along with other seven benchmark prediction

models, GM(1,1), DGM(1,1), ARIMA, Pearl

model, OICGM(1,1), FGM(1,1) and GM(1,1)-

x(1)(n) are employed to simulate and forecast

Fujian’s industrial electricity consumption. For

the purpose of model establishment, the data

from 2005 to 2018 are specifically utilized. The

remaining data, covering the years 2019 to

2020, are then employed for model testing and

evaluation.

The experimental results of different

prediction models are shown in Table

3. Moreover, the accessory model pa-

rameters of RFGM(1,r) are (r1 , r3 , r3)ᵀ �

(−0.0039, 170.9155, 431.2757)ᵀ . The optimal

fractional order is r � 1.3011. Figure 5 il-

lustrates the iterative process of determining

the optimal fractional order using the parti-

cle swarm optimization (PSO) algorithm. The

specific form of the recursive time response

function can be expressed as follows:

x̂(1.3011)(k) �
480.74 × 0.9781k−1 +

∑k−3
g�0[228.7801 × (k − g) +

397.6616] × 0.9781g , k � 2, 3, · · · , n
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Figure 3 Industrial Distribution of Fujian’s Electricity Consumption

Figure 4 The Quasi-smoothness Checking Results of Modeling Sequence

Figure 5 The Searching Process of Optimal Fractional Order by PSO Algorithm

Table 2 Industrial Electricity Consumption of Fujian (Unit: 108 kWh)

Year 2005 2006 2007 2008 2009 2010 2011 2012

IEC 480.74 549.51 633.05 665.01 691.69 810.82 939.21 962.64

Year 2013 2014 2015 2016 2017 2018 2019 2020

IEC 1041.68 1137.62 1137.61 1181.31 1251.62 1401.13 1424.52 1444.01
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The iterative solution process of the particle

swarm optimization algorithm, as depicted in

Figure 5, reveals that convergence is achieved

for the mean absolute percentage error after

the 20th iteration, with an optimal fractional-

order parameter yielding a value of 2.779%.

Table 3 demonstrates the superior performance

of the proposed model in this study compared

to other benchmark models, as it exhibits the

lowest simulation and prediction error. The

simulated values closely align with the actual

values, indicating the model’s accuracy. The

simulation curves of various prediction mod-

els are shown in Figure 6.

4.4 Performance Comparison

To validate the superiority of the proposed

model RFGM(1,r), the errors results of the

aforementioned prediction models are calcu-

lated and analyzed. Figure 7 presents a colum-

nar diagram depicting the mean absolute per-

centage error for eight prediction models. This

visualization allows for a comparative analysis

of the performance of each model.

Figure 7 provides a visual representation

of the prediction performance of the different

models. It is evident that the RFGM(1,r) model

achieves the overall best performance. The

highest absolute percentage error observed for

the RFGM(1,r) model is 8.453%, while the

GM(1,1) model exhibits a higher error rate of

10.533%, and the ARIMA model shows a sig-

nificantly higher error rate of 23.479%. Al-

though the Pearl model demonstrates similar

simulation performance to RFGM(1,r), it devi-

ates from the actual changing trend of Fujian’s

industrial electricity consumption as the fore-

casting curve gradually becomes horizontal. In

contrast, the RFGM(1,r) model captures the

underlying trend accurately, leading to more

reliable and robust predictions.

From the basic form of traditional

grey model, we find that the final

time response function of GM(1,1) is

x̂(0)(k)� (1 − ea) (
x(0)(1) − b · a−1

) ·e−a(k−1),
which is a typical exponential function.

However, the dynamic trend of Fujian’s IEC

is affected by several external factors, so it is

not suitable for forecasting Fujian’s IEC with

non-exponential trend.

Table 4 provides a comprehensive evalua-

tion of the performance of different models, in-

cluding GM(1,1), ARIMA model, OICGM(1,1),

Pearl model, FGM(1,1), GM(1,1)-x(1)(n) and

the proposed RFGM(1,r).

The results in Table 4 highlight the supe-

riority of the RFGM(1,r) model compared to

the other benchmark models. The RFGM(1,r)

model achieves an R2 value of 0.990, which is

closest to the critical value of 1, indicating a

higher level of fitness to the data. Addition-

ally, the RMSE value of RFGM(1,r) is smaller

than that of the competing models, further con-

firming its superior predictive performance.

Based on the mean absolute percentage error,

the top five prediction models are identified as

RFGM(1,r), FGM(1,1), OICGM(1,1), ARIMA,

and GM(1,1)-x(1)(n). These models present

lower prediction errors, indicating their effec-

tiveness in forecasting Fujian’s industrial elec-

tricity consumption.

In summary, the proposed RFGM(1,r)

demonstrates higher accuracy compared to

the FGM(1,1), OICGM(1,1), ARIMA model,

Pearl model, GM(1,1)-x(1)(n), GM(1,1) and

DGM(1,1), indicating that the novel grey
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Figure 6 Simulated Curves of Different Prediction Models
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Figure 7 The Absolute Percentage Error of Different Prediction Models

Table 4 Performance Evaluation Metrics of Diverse models

Model R2 RMSE ΔS/% ΔF/% Δ/% Ranking

RFGM(1,1) 0.990 31.528 2.779% 1.441% 2.612% 1

GM(1,1) 0.955 65.200 4.32% 9.18% 4.93% 6

ARIMA 0.972 51.236 5.24% 2.29% 4.87% 4

OICGM(1,1) 0.982 41.545 5.44% 3.99% 3.90% 3

DGM(1,1) 0.954 66.362 4.35% 8.59% 5.83% 8

Pearl model 0.955 65.364 3.89% 9.22% 4.95% 7

FGM(1,1) 0.981 42.089 2.95% 4.65% 3.17% 2

GM(1,1)-x(1)(n) 0.956 64.507 4.28% 9.00% 4.87% 5

model, incorporating structure expansion, op-

timal fractional-order and rolling mechanism,

contributes to the improvement of predic-

tion accuracy and enhances the overall perfor-

mance of electricity consumption forecasting.

4.5 Forecast of Fujian’s Industrial Elec-
tricity Consumption with Rolling
Mechanism

In view of the outstanding performance

and validity demonstrated by the RFGM(1,r)

model, we proceed to apply it with rolling

mechanism to forecast Fujian’s industrial elec-

tricity consumption for the period from 2021

to 2026. The rolling prediction modeling ap-

proach involves maintaining a consistent sys-

tem capacity of 14 in each round of forecasting.

The testing data in the last forecasting year is

2020. The detailed procedures are shown as

follows.

Step 1: Add the new information in

2020,x(0)(16) � 1444.01 to the original mod-

eling sequence X(0) of RFGM(1,r), and remove

the first point (that is the oldest information)

to keep the modeling steps constant. Then, the

modeling sequence with 14 years is updated as

Y(0)
1

� (633.05, 655.01, · · · , 1424.52, 1444.01).
Step 2: Rebuild the RFGM(1,r) model

based on Y(0)
1

, and we can obtain the newly

predicted value x̂(0) (17) � 1494.01 for the next

fore¦casting year.

Step 3: Similarly, add the next predicted

value x̂(0) (17) to the sequence Y(0)
1

and remove

the first point data x(0)(2).Then, the new round

of RFGM(1,r) is constructed based on the up-

dated system sequence with same length to

complete the next prediction process.

Step 4: Repeat the process until the last
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forecasting year is 2026. To capture the

medium and long-term changing trend of Fu-

jian’s industrial electricity consumption, we

utilize the RFGM(1,r) model proposed in this

study to conduct forecasting. The detailed re-

sults are presented in Table 5.

The forecast results in Table 5 provide valu-

able insights into the future trends of industrial

electricity consumption in Fujian province. It

is evident that the IEC is projected to con-

tinue growing steadily in the coming years,

with a consistent and moderate growth rate.

It is estimated that the industrial electricity

consumption will reach 186.312 billion kWh in

2026. The annual growth rate is expected to

at around 4.34%. Furthermore, an interesting

observation is that the fractional-order param-

eter varies for different years, ranging from 0

to 2. Notably, in the prediction of RFGM(1,r),

the initial data in the system is continuously

updated as new data are added for predic-

tion. Thus, the predicted data from 2021 to

2026 are obtained through the construction of

six round of RFGM(1,r) models. The mini-

mum fractional order of 0.1815 suggests that

inherent growth patterns in the original system

can be excavated without heavy reliance on the

accumulating generation operator. This find-

ing highlights the effectiveness of the proposed

RFGM(1,r) model in capturing and forecasting

the growth trends of industrial electricity con-

sumption in Fujian province.

From the forecasting trend depicted in Fig-

ure 8, the eight prediction models utilized in

this study can be categorized into four types in

terms of their projected industrial power con-

sumption trends in Fujian Province. Firstly,

there are models that indicate a gradually flat-

tening trend, with the Pearl model being the

representative example. The underlying as-

sumption of this model is that the system

has reached saturation, and electricity con-

sumption will plateau based on the historical

data. Secondly, the results suggest a sharp up-

ward trend in industrial electricity consump-

tion, represented by GM(1,1), DGM(1,1) and

OICGM(1,1) model. These models project an

increasing growth rate that is accelerating over

time. The forecasted values from these three

models exhibit a high degree of consistency,

with an expected consumption level of around

240 billion kWh in 2026. The third type in-

cludes the FGM(1,1) model, which also demon-

strates a rising trend in electricity consump-

tion, albeit at a slower growth rate compared

to the GM(1,1) model. Lastly, the RFGM(1,r)

and ARIMA models exhibit similar prediction

results, suggesting a stable growth trend in in-

dustrial electricity consumption over the next

six years. However, the growth rate projected

by these models is slower compared to the

FGM(1,1) model.

In summary, the industrial electricity con-

sumption in Fujian province is expected to ex-

hibit a growth trend according to the predic-

tions of various models, although the growth

rates may differ. Among the models con-

sidered, the proposed RFGM(1,r), which has

demonstrated the highest comprehensive ac-

curacy, is employed to predict Fujian’s indus-

trial electricity consumption from 2021 to 2026.

The results indicate a steady increase from

144.41 billion kWh in 2020 to 186.312 billion

kWh in 2026. The findings hold great signifi-

cance for regional energy planning and future

policy-making endeavors.
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Table 5 Prediction of Fujian’s Electricity Consumption of Industrial Sector from 2021 to 2026 (Unit: 108 kWh)

Year 2021 2022 2023 2024 2025 2026

Fractional order 0.1815 1.8102 1.9219 1.8703 1.9367 0.9570

IEC 1494.01 1583.52 1664.16 1714.62 1792.01 1863.12

Growth rate 3.46% 5.99% 5.09% 3.03% 4.51% 3.97%

Figure 8 The Changing Trend of Industrial Electricity Consumption by Using Different Models

5. Discussion and Policy Suggestions

The prediction trend of Fujian’s industrial

electricity consumption indicates a continuous

growth with no signs of slowing down. There-

fore, electricity substitution in Fujian needs to

be further strengthened to meet the growing

demand for industrial sectors. To further im-

prove the existing electricity energy structure,

the following several policy suggestions can be

considered.

Firstly, it is important to actively enhance

the intelligent level of Fujian’s power grid. By

implementing regional smart grid technolo-

gies, such as smart substations and automatic

distribution devices in urban core areas, the

power information collection and supply re-

liability can be significantly improved. This

will optimize energy resource allocation, en-

hance the operational efficiency, and elevate

the maintenance standards of the power grid.

Secondly, advocating tax reduction and ex-

emption for electricity consumption of lower-

consuming industrial enterprises can be an ef-

fective measure. Such government initiatives

will reduce the electricity costs for these indus-

tries, promoting their competitiveness. Ad-

ditionally, offering support and subsidies to

industrial enterprises that adopt clean energy

power generation technologies, such as wind,

solar, and tidal energy, will incentivize the

development and exploration of clean energy

sources.

Lastly, the steady promotion of electricity

energy substitution (EES) can play a crucial

role in improving the energy structure of Fu-

jian province. EES involves the substitution

of traditional energy sources with electricity

generated from renewable energy and ultra-
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low emission coal-fired power units. This ap-

proach not only expands power consumption

but also contributes to a higher proportion of

clean energy usage and reduces air pollutant

emissions.

By implementing these policy suggestions,

Fujian can meet the growing demand for in-

dustrial electricity consumption while simulta-

neously improving the energy structure, pro-

moting clean energy adoption, and reducing

environmental impacts.

6. Conclusions

Scientific and accurate forecasting of indus-

trial electricity consumption serves as a crucial

guideline for optimizing energy structures and

fostering regional green development. How-

ever, The complexity of the energy market and

the uncertainty of the external environment

pose a great challenge to electricity consump-

tion forecasting.

In this paper, a rolling and fractional-

ordered grey system modeling approach

RFGM(1,r) is designed for accurately forecast-

ing Fujian’s industrial electricity consumption.

The model incorporates structural expansion,

parameter optimization, and a rolling mech-

anism, providing advantages over traditional

grey models. By extending the grey action

quantity and optimizing the fractional order

parameter using a particle swarm optimization

algorithm, the proposed model enhances the

accuracy and flexibility of the forecasting pro-

cess. The effectiveness of the RFGM(1,r) model

is verified by applying it to forecast industrial

electricity consumption in Fujian from 2005

to 2020. Three main evaluation metrics APE,

R2 and the root mean square error are intro-

duced to test the comprehensive performance

compared with other seven benchmark predic-

tion models. The experimental results show

that the proposed grey model outperforms

seven benchmark models in terms of simu-

lation and prediction. In view of the excel-

lent performance that the accuracy is 97.388%,

which demonstrates the superiority of the pro-

posed grey model in capturing the changing

trends of Fujian’s industrial electricity con-

sumption. Some reasonable policy suggestions

are provided, which will be helpful for energy

planning and regional green development in

Fujian province.

However, it is important to acknowledge

the limitations of the modeling process. Fac-

tors such as the background value coefficient

and external interventions like policy changes

and unforeseen events can influence the accu-

racy of the forecasts. Future research should

explore the development of self-adaptive grey

system models with multiple parameter opti-

mization and consider the incorporation of in-

evitable intervention factors in the prediction

framework.

Appendix A The Proof of Theorem 1

Theorem 1 Assume that X(r) , Z(r) are given in
Definition 1,if p̂ � (r1 , r2 , r3)T is the estimated
parameter matrix of RFGM(1,r), and

M �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5 · [
x(r) (2) + x(r) (1)] 3

2 1

−0.5 · [
x(r) (3) + x(r) (2)] 5

2 1

...
...

...

−0.5 · [
x(r) (n) + x(r) (n − 1)] 2n−1

2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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N �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(r) (2) − x(r) (1)
x(r) (3) − x(r) (2)

...

x(r) (n) − x(r) (n − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A1)

then it satisfies

p̂ � (r1 , r2 , r3)T �
(
MT M

)−1
MT N (A2)

Proof. We substitute X(r) and Z(r) into the pro-

posed model, RFGM(1,r) defined in Definition

2, and can obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x(r) (2) − x(r) (1) � −r1z(r) (2) + 3
2 r2 + r3

x(r) (3) − x(r) (2) � −r1z(r) (3) + 5
2 r2 + r3

...

x(r) (n) − x(r) (n − 1) � −r1z(r) (n) + 2n−1
2 r2 + r3

(A3)

The Equation (2) can be expressed as

N � Mp̂ (A4)

x(r−1)(k) can be approximately estimated as

−r1z(r)
(
k
)
+

2k−1
2 r2 + r3, then the residual se-

quence is

ε �
(
N − Mp̂

)
(A5)

In order to get the minimum simulation error,

let

S � min
r1 ,r2 ,r3

(
εTε

)
� min

n∑
k�2

[
x(r)(k) − x(r)(k − 1)+

r1z(r)(k) − 2k − 1

2
r2 − r3

]2

(A6)

According to the ordinary least square method,

the parameters r1 , r2 , r3 of RFGM(1,r) will sat-

isfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂r1

� −2

n∑
k�2

[
x(r)

(
k
) − x(r)

(
k − 1

)
+ r1z(r)

(
k
) − 2k − 1

2
r2 − r3

]
·
[
−z(r)

(
k
) ]

� 0

∂S
∂r2

� 2

n∑
k�2

[
x(r)

(
k
) − x(r)

(
k − 1

)
+ r1z(r)

(
k
) − 2k − 1

2
r2 − r3

]
· 2k − 1

2
� 0

∂S
∂r3

� 2

n∑
k�2

[
x(r)

(
k
) − x(r)

(
k − 1

)
+ r1z(r)

(
k
) − 2k − 1

2
r2 − r3

]
� 0

(A7)

To simplify it, we can get

Mᵀε � 0 ⇔ Mᵀ
(
N − Mp̂

)
� MᵀN − MᵀMp̂ � 0 (A8)

Then p̂ � (MᵀM)−1 MᵀN . �

Appendix B The Proof of Theorem 2

Theorem 2 Assume that X(r) , Z(r) are given in
Definition 2, and p̂ � (r1 , r2 , r3)T is the parameter
vector of the RFGM(1,r) model, we set the initial
value of the model as χ̂(0)(1) � x(0)(1), then the
recursive time response function of RFGM(1,r) can
be deduced as

x̂(r) (t) � αt−1x(0) (1) +
t−2∑
g�0

[ (
t − g

)
β + γ

]
αg ,

t � 2, 3, · · · , n (B1)

In the above Equation, α �
1−0.5r1

1+0.5r1
, β �

r2

1+0.5r1
, γ �

r3−0.5r2

1+0.5r1
.

Proof. According to Definition 1 and Defini-

tion 2, we can get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(0) (k) � (
x(r) (k)) (−r)

z(r) (k) � 0.5 · (
x(r) (k) + x(1) (k − 1))

x(r) (k) − x(r) (k − 1) + r1z(1) (k)
�

1
2 (2k − 1)r2 + r3

⇒ (1 + 0.5r1) x(r)(k) � 0.5 · (2k − 1) r2 + r3+

(1 − 0.5r1) x(r)(k − 1)
(B2)

Rearranging it, then

x(r) (k) � 1 − 0.5r1

1 + 0.5r1
· x(r) (k − 1)

+
r2

1 + 0.5r1
· k +

r3 − 0.5r2

1 + 0.5r1
(B3)

Let x̂(0)(k) be the simulation value of x(0)(k),
x̂(r)(k) be the simulation value of χ(r)(k), then

when k � 2,

x̂(r)(2) � 1 − 0.5r1

1 + 0.5r1
· x̂(r)(1)+ r2

1 + 0.5r1
·2+ r3 − 0.5r2

1 + 0.5r1
(B4)

when k � 3,

x̂(r)(3) � 1 − 0.5r1

1 + 0.5r1
· x̂(r)(2)+ r2

1 + 0.5r1
·3+ r3 − 0.5r2

1 + 0.5r1
(B5)

By substituting Equation (B4) into Equation

(B5), we can get

x̂(r) (3) �
(
1 − 0.5r1

1 + 0.5r1

)2

· x̂(r) (1)

+

(
1 − 0.5r1

1 + 0.5r1

)
·
(

r2

1 + 0.5r1
· 2 +

r3 − 0.5r2

1 + 0.5r1

)
+

r2

1 + 0.5r1
· 3 +

r3 − 0.5r2

1 + 0.5r1
(B6)

Similarly, when k � 4,

x̂(r) (4) �
(
1 − 0.5r1

1 + 0.5r1

)3

· x̂(r) (1)

+

(
1 − 0.5r1

1 + 0.5r1

)2

·
(

r2

1 + 0.5r1
· 2 +

r3 − 0.5r2

1 + 0.5r1

)
+

(
1 − 0.5r1

1 + 0.5r1

)
·
(

r2

1 + 0.5r1
· 3

+
r3 − 0.5r2

1 + 0.5r1
+

r2

1 + 0.5r1
· 4 +

r3 − 0.5r2

1 + 0.5r1

(B7)

When k � t,

x̂(r) (t) (B8)

�

(
1 − 0.5r1

1 + 0.5r1

) t−1

· x̂(r) (1)

+

(
1 − 0.5r1

1 + 0.5r1

) t−2

·
(

r2

1 + 0.5r1
· 2 +

r3 − 0.5r2

1 + 0.5r1

)
+ · · ·

(
1 − 0.5r1

1 + 0.5r1

)
·
(

r2

1 + 0.5r1
· (t − 1) + r3 − 0.5r2

1 + 0.5r1

)
+

r2

1 + 0.5r1
· t +

r3 − 0.5r2

1 + 0.5r1
(B9)

To arrange the form of x̂(r)(t), we can get

x̂(r)(t) �
(
1 − 0.5r1

1 + 0.5r1

) t−1

· x̂(r)(1)

+

t−2∑
g�0

[
r2

1 + 0.5r1

(
t − g

)
+

r3 − 0.5r2

1 + 0.5r1

]
·
(
1 − 0.5r1

1 + 0.5r1

) g
,

t � 2, 3, · · · , n (B10)

when α �
1 − 0.5r1

1 + 0.5r1
, β �

r2

1 + 0.5r1
, γ �

r3 − 0.5r2

1 + 0.5r1
.

In the grey modelling process, the first in-

put x(0)(1) determines the starting point of a

system and is usually used as the initial con-

dition. Then it satisfies that x̂(r)(1) � x̂(0)(1) �
x(0)(1) ,then Equation (17) can be simplified as

x̂(r) (t) � αt−1 · x̂(0)(1) +
t−2∑
g�0

[
β

(
t − g

)
+ γ

]
·
(
α

) g

(B11)

Through the inverse calculation of r-AGO

given in Definition 1, we can get

x̂(0) (k) �
k−1∑
g�0

Γ(r + 1)
Γ

(
g + 1

)
Γ

(
r − g + 1

) · x̂(r)
(
k − g

)
(B12)

Equation (B12) is called the recursive time

response function of RFGM(1,r). When k �

2, 3, · · · , n , x̂(0)(k) is called the fitted value of

RFGM(1,r). And when k � n + 1, n + 2, · · · ,
x̂(0)(k) is called the predicted value. �
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