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Abstract. Social trust network (STN) and minimum cost consensus (MCC) models have been widely used

to address consensus issues in multi-attribute group decision-making (MAGDM) problems with limited

resources. However, most researchers have overlooked the decision maker’ (DMs)’ confidence levels (CLs)

and adjustment willingness implicit in their evaluations. To address these problems, this paper explores

a confidence-based MCC model that considers DMs’ adjustment willingness in the STN. The proposed

model includes several modifications to the traditional trust propagation and consensus optimization

models. Firstly, the improved method for measuring CLs of DMs and the confidence-based normalization

approach are defined, respectively. Secondly, the bounded trust propagation operator is proposed, which

considers the credibility of mediators to complete the STN. Thirdly, the identification rules based on the

consensus index and CL are defined, and the MCC model with personalized cost functions and acceptable

adjustment thresholds is built to automatically generate adjustment values for non-consensus DMs. Finally,

a model to identify the non-cooperative behavior at the element level is established and the hybrid MCC

model with persuasion strategies is provided. Finally, a case study is processed to verify the applicability

of the proposed model, and comparison and sensitivity analysis are conducted to highlight its benefits.

Keywords: Confidence level, social trust network, bounded trust propagation, minimum cost consensus

models, multi-attribute group decision making

1. Introduction

Multi-attribute group decision-making

(MAGDM) method usually means that mul-

tiple decision makers (DMs) evaluate the

alternatives under different attributes and

select the optimal solution (Pang and Liang

2012). MAGDM, as opposed to individual

multi-attribute decision-making, can combine

the benefits of DMs in different fields to make

more accurate decisions (Gupta et al. 2018).

Based on this, MAGDM is widely used to

deal with complex decision-making problems

in corporate strategy (Krishankumar et al.

2021), internet venture capital (Gou and Xu

2021), and other fields. Especially, social

trust network (STN), as a powerful tool for

describing the relationships among DMs, is

widely used to derive DM weights in MAGDM

problems (Wu et al. 2019, Li et al. 2022, Liu et

al. 2022a).

In real life, DMs may be unable to ex-

press their trust degree in other DMs due to

a lack of familiarity, resulting in an incom-

plete STN (Gao et al. 2021). As such, the trust

propagation used to estimate unknown trust
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relationships (TRs) has received a lot of at-

tention lately. For example, Wu et al. (2021)

proposed a t-norm trust propagation opera-

tor, Xu et al. (2021) developed a trust propaga-

tion method with uncertainty theory, Gao et al.

(2021) defined the probabilistic linguistic trust

relationship (PLTR) and the corresponding t-

norm propagation operator. Su et al. (2022) fur-

ther proposed the PLTR with CL in MAGDM.

On this basis, some scholars pointed out that

trust transmission is not infinite, and explored

different ways to characterize the finiteness,

such as relationship strength (Liu et al. 2019a),

limited mediator paths (Tan et al. 2022), and

relative importance of trust degree (Liu et al.

2022b). Current research on limited trust prop-

agation focuses on objective factors and ignores

the subjective factor of the uncertainty of the

TR graph, which is vital information hidden in

fuzzy graphs (Hao et al. 2015).

After determining the weights of DMs, the

DMs’ evaluations can be integrated into the

collective evaluations. However, due to dif-

ferences in knowledge backgrounds and posi-

tions among DMs, divergent evaluations com-

monly exist in the process of MAGDM (Wang

and Wan 2020). Therefore, compared to di-

rectly integrating DMs’ evaluations, the con-

sensus reaching process (CRP) is easier to ob-

tain accurate and reliable information which

is accepted by all DMs (Tang et al. 2020).

CRP mainly includes two stages: identification

rules of non-consensus DMs and the feedback

mechanism. For identification rules, most re-

searchers designed them with the similarity

measures among the DMs’ evaluations (Chi-

clana et al. 2013) or with the collective eval-

uations (Gou et al. 2021). Some researchers

adopted correlation measures (Wu and Liao

2019), clustering (Wu et al. 2019), satisfaction

measures (Zhang et al. 2017), etc. Most iden-

tification rules are based on various measures

between DMs, with little attention to the un-

certainty of the DM’s preference, which is the

vital factor that influences DMs to adjust the

evaluation.

For feedback mechanisms, there are two

mainstream ways to provide modification sug-

gestions for non-consensus DMs. One way

is a linear combination of the original evalu-

ations and the collective evaluations (Zhang

et al. 2014). For example, Xing et al. (2023)

proposed a feedback mechanism based on the

STN and the bargaining game analysis. Cao

et al. (2021) provided the feedback mechanism

with the harmony degree. However, the lin-

ear combination way easily leads to the re-

sult that the collective evaluations are manip-

ulated through feedback parameters. In con-

trast, the other way is adopting the modifica-

tion model which seeks minimum deviation

between the original and modified evaluations

(Gao et al. 2021), which is more conducive

to obtaining fair and reasonable results. For

the second way, the minimum cost consen-

sus (MCC) model was proposed in the con-

text of limited resources (Ben-Arieh and Eas-

ton 2007). Many scholars focused on the MCC

model, for example, Yu et al. (2023) developed

an enhanced MCC model with flexible cost,

García-Zamora et al. (2023) introduced the con-

vex optimization theory into the MCC model,

Liu et al. (2023a) proposed the MCC model

for incomplete probabilistic linguistic prefer-

ence relations (PLPR), where the unit cost is

derived by the hesitancy index of PLPR. Meng
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et al. (2022) built the MCC model with the

hybrid penalty mechanism for noncooperative

behaviors. From above, it’s worth noting that

most studies hypothesize that the adjustment

costs are known. Only Liu et al. (2023a) pro-

vided a hesitancy-based method to determine

the adjustment costs. But the hesitancy-based

method contains four parameters, which may

cause errors in the results. Furthermore, most

studies consider the adjustment willingness at

the DM level, ignoring the differences in ad-

justment willingness for the same DM’s eval-

uation of different alternatives under different

attributes.

In complex and uncertain circumstances,

DMs always display some personal psycho-

logical characteristics when they make deci-

sions. Given this finding, some scholars in-

vestigated the influence of CL on the results

of STN and MAGDM. Ding et al. (2019) stud-

ied how the CL affects the velocity of CRP

in STN. Liu et al. (2019b) introduced the CL

into the determination method of DM weights

and the feedback mechanism based on linear

combinations. Xie et al. (2022) proposed the

probabilistic linguistic term set (PLTS) with the

given confidence interval in CRP. You and Hou

(2022) defined the CL as the entropy of PLTS

and presented a minimum trust propagation

operator. Li et al. (2022) derived the CL by

the completeness of PLTS and the DM’s hesi-

tancy and preference among linguistic terms.

Chen et al. (2022) defined the hesitancy de-

gree of intuitionistic fuzzy sets as the CL and

designed the feedback strategy to adjust the

DMs’ evaluation or weight penalty accord-

ing to the confidence correlation degree of

DMs. Liu et al. (2023b) developed person-

alized individual self-confidence in dynamic

STN and implemented it into the interactive

CRP, where the weights of DMs are derived by

the trust aggregation method with the shortest

path. For the optimization model, Zhang et

al. (2019) and Liu et al. (2022b) established the

minimum adjustment consensus (MAC) model

with bounded confidence, successively. Re-

search on CL has focused on two aspects: (1)

studying the effect of CL on linear combination

parameters in STN; (2) exploring the effect of

CL on the adjustment range of DMs in the MCC

model.

From the above review, it is clear that the

impact of CL on the MCC model in STN has

not been explored. Furthermore, the roles of

CL and the trust degree of DMs in the MCC

model for identifying noncooperative behav-

ior and developing punishment strategies are

ignored. As aforementioned, portraying DMs’

attitudes and willingness in a more targeted

and personalized manner in CRP facilitates ob-

taining the results that are supported by all

DMs. Meanwhile, we can see that there is a

wealth of research on PLTS in MAGDM prob-

lems. This is because that PLTS is a natural and

powerful way of expressing information (Gao

et al. 2021, Su et al. 2022, Wu and Liao 2019,

Liu et al. 2023b, Xie et al. 2022, You and Hou

2022). Furthermore, the research on PLTS-

based CL offers DMs a platform to commu-

nicate their uncertainty regarding evaluation

through PLTS. Therefore, the motivations of

this research are utilizing the PLTS-based CL

and trust degree of DMs to bridge the theory of

STN analysis and the MCC model and provid-

ing a new framework to solve the STN-based

MAGDM problems. The main contributions
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and innovations are as follows:

1) To follow up on the role of the DM’s CL

in the MAGDM problems, an improved mea-

surement of CL is defined by the complete-

ness and entropy of PLTS, where the entropy

is different from the one proposed by You and

Hou (2022). On this basis, a confidence-based

normalization method for incomplete PLTS is

proposed,

2) To portray the efficiency of trust propaga-

tion flexibly and realistically in practical STN-

based MAGDM problems, the confidence-

based PLTR is defined and a bounded trust

propagation operator is constructed, where the

CL derived by the given PLTR means the cer-

tainty degree of a DM how he/she trusts an-

other DM. In the process of trust transitivity,

the CL is regarded as the credibility of media-

tors, where mediators refer to the trusted DMs.

3) To construct a more objective measure-

ment for the unit adjustment cost, a cost func-

tion is defined as the CL of a DM under each

alternative and attribute. Moreover, to con-

sider the personalized adjustment willingness,

an acceptable adjustment threshold captured

by DMs’ CL and trust degree in STN is inserted

into the MCC model.

4) To identify the non-cooperative behav-

ior of DMs in CRP fairly and accurately, an

objective model is constructed at the element

level. And the hybrid MCC model with the

persuasion strategies is established, where the

persuasion strategies are provided by DMs’ CL

and trust degree. The hybrid MCC model with

more user-friendly strategies provides refer-

ences for solving management problems such

as major strategic decisions in which the atti-

tudes and willingness of each DM cannot be

ignored.

The remainder of this paper is organized

as follows: Section 2 gives the definition and

operations of PLTSs, and the related concepts

of STN analysis. In Section 3, the confidence-

based consensus method for MAGDM based

on STN analysis is proposed. Section 4 rep-

resents a case study for the sustainable busi-

ness model innovation and some discussions

with the comparative analyses and simulation

tests to verify the highlights of the proposed

method. The conclusions are provided in Sec-

tion 5.

2. Preliminaries

In this section, we briefly review the definition

and operations of PLTS and the classical STN

analysis.

2.1 PLTSs

Based on the additive linguistic term set S �{
sϕ

��ϕ � 0, 1, 2, · · · , τ } (τ is a positive integer),

PLTS was defined as (Pang et al. 2016):

�

{
sl

(
pl
) ��sl ∈ S, pl ≥ 0, l � 1, 2, · · · ,

#L,
∑#L

l�1
pl ≤ 1

} (1)

where L(ς) (p(ς)) is a probabilistic linguistic el-

ement (PLE) that contains the linguistic term

L(ς) and its corresponding probability p(ς), and

#L
(
p
)

is the number of linguistic terms in L
(
p
)
.

In general, a PLTS only needs to list the linguis-

tic terms whose corresponding probability is

greater than 0.
{

pl |l � 1, 2, · · · , #L
}

denotes

the probability distribution corresponding to

the linguistic terms in L. When
∑#L

l�1 pl � 1, the

probability distribution of PLTS is complete;

when
∑#L

l�1 pl < 1, p̂ � 1 − ∑#L
l�1 pl is defined
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as the missing probability of PLTS. The miss-

ing probability can be redistributed using the

normalization method. The normalized PLTS

is denoted as:

L̃ �

{
s̃l

(
p̃l
) ��s̃l ∈ S, p̃l ≥ 0, l � 1, 2, · · · , ,

#L̃
∑#L

l�1
p̃l ≤ 1

} (2)

To avoid the situation that the value of a

linguistic term is out of range during the cal-

culation, (Gou and Xu 2016) gave equivalent

functions for the linguistic term set and PLTS

as follows:

g : [0, τ] → [0, 1] , g : [0, τ] → [0, 1] ,
g
(
sϕ

)
�
ϕ

τ
� γ

(3)

g : [0, τ] → [0, 1] , g (
L̃
)
�{(l/τ ) (p̃l

) |l ∈ [0, τ]} � L̃γ
(4)

g−1 : [0, 1] → [0, τ] , g−1
(
γ
)
�{

sγ·τ
��γ ∈ [0, 1] } (5)

g−1 : [0, 1] → [0, τ] , g−1
(
L̃γ

)
�{ (

s̃γ·τ
) (

p̃l
) ��γ ∈ [0, 1] � L̃

} (6)

For improving the computability of PLTSs, the

expectation function and deviation of a nor-

malized PLTS were proposed as (Wu and Liao

2019):

E
(
L̃
)
�

∑#L̃

l�1

(
g (s̃l) × p̃l

)
(7)

σ
(
L̃
)
�

√∑#L̃

l�1

(
p̃l

(
g (s̃l) − E

(
L̃
) ) )2

(8)

where l is the subscript of the linguistic term

s̃l .

2.2 STN Analysis

STN analysis is a set of norms and methods

for exploring the structure and characteristics

of the TRs among DMs (Gao et al. 2021). The

concept of STN is represented as follows:

Definition 1 Let G (E, R, B) be a weighted graph
where E � {ek |k ∈ K } represents the set of ver-
tices, R �

{
rkh |k � h ∧ k , k ∈ K} denotes the set

of edges, T �
{
Tkh |k � h ∧ k , k ∈ K

}
is the set

of weights with respect to edges. In the STN, the
vertices ek represent DMs, the edges rkh represent
trust relationships between DMs, and the weighted
trust matrix T represents the strength of TRs.

Based on Definition 2.1, there are three

representations of STN (Gao et al. 2021): 1)

graphic: a directed graph with vertices and

edges showing the STN; 2) matrices, a matrix

represents the strength of all TRs; 3) algebraic:

the representation shows many combinations

of relationships.

Furthermore, considering the transitivity

of TR, the TR is classified into three types (Xu et

al. 2021): 1) direct TR, where exists a directed

edge between the vertices ek and eh ; 2) indirect

TR, where exists no directed edge, but it can

be derived from the direct trust propagation

paths that exist between them and mediators;

3) unrelated relationships, where exists no TR

exist between the vertices ek and eh .

3. The Confidence-based Consensus
Method for MAGDM Based on STN
Analysis

In this section, a confidence-based consensus

method for MAGDM is established to ensure

that the final decision results are closer to the

actual situation. The improved measurement

of CL based on PLTS is proposed in Section 3.1,

and a confidence-based normalization method

for the incomplete PLTS is shown in Section

3.2. Then, the determination method of DMs’

weights based on bounded trust propagation
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is explored in Section 3.3. Finally, a confidence-

based CRP for MAGDM is developed in Sec-

tion 3.4.

3.1 The Confidence-based Consensus
Method for MAGDM based on STN
Analysis

In MAGDM, the CL of a DM refers to the

recognition degree of the evaluation given by

the DM. The CL of DMs will significantly af-

fect their choices and behaviors. For exam-

ple, when a DM’s CL is low, he/she will be

more inclined to make decisions based on the

choices of other DMs in the group. But, when

his/her CL is high, it will be more difficult for

him/her to accept modifying their initial eval-

uations during the CRP. Therefore, it is vital to

consider the CL of DMs in the MAGDM.

Based on the literature review in Introduc-

tion, You and Hou (2022) defined the CL as

the entropy of PLTS, Li et al. (2022) and Zhong

et al. (2022) successively proposed representa-

tion methods of CL based on the completeness

of PLTS and the DM’s hesitancy and prefer-

ence among linguistic terms. However, the

above three representation methods have the

following aspects that can be improved: 1) The

method proposed by Li et al. (2022) ignored the

correlation between the DM’s hesitancy and

preference among linguistic terms, which may

result in an underestimation of the results; 2)

the method proposed by Zhong et al. (2022)

used a subjectively designed function to fit the

correlation between the two, which may cause

the accuracy of results to be further in-depth in-

quiry; 3) the method proposed by You and Hou

(2022) overlooked the completeness of PLTS,

and the entropy of PLTS they used repeatedly

computed the uncertainty of probabilities and

linguistic terms.

Aiming at the above problems, the defini-

tion of DM’s CL is given based on the complete-

ness of PLTS and information entropy. Firstly,

the concept of completeness for PLTS is given

as follows:

Definition 2 Let {e1 , · · · , ek , · · · , eK} be the set
of DMs, the PLTS given by DM ek . be Lk �{

sl
k (

pl
k ) ��sl

k ∈ S, pl
k ≥ 0, l � 1, 2, · · · , #L ,∑#L

l�1 pl
k ≤ 1

}
, � be the set of PLTSs given by

all DMs, the map ECk
c : �k → [0, 1] is called as

the CL of DM based on the completeness of PLTS,
where the ECk

c can be calculated by:

ECk
c �

∑#L

l�1
pl

k (9)

Then, we adopt the information entropy

of the PLTS to simultaneously represent the

DM’s hesitancy and preference among linguis-

tic terms, where the information entropy refers

to the uncertainty of each possible linguistic

term in a PLTS. Specifically, the more uniform

the probability distribution of PLTS (the lower

the DM’s preference for a certain linguistic

term), the greater the uncertainty. The greater

the shown probability (the greater the DM’s

hesitancy), the greater the uncertainty. The

detailed definition is as follows:

Definition 3 Let {e1 , · · · , ek , · · · , eK} be the
set of DMs, the PLTS given by the DM Lk �{

sl
k (

pl
k ) ��sl

k ∈ S, pl
k ≥ 0, l � 1, 2, · · · , #L ,∑#L

l�1 pl
k ≤ 1

}
, � be the set of PLTSs given by all

DMs, the map ECk
u : �k → [0, 1] is called as the

CL of DM based on the uncertainty of PLTS, in
which the ECk

u can be calculated by

ECk
u � 1 −

Eck
u − min

Lk∈�
{
Eck

u
}

max
Lk∈�

{
Eck

u
} − min

Lk∈�
{
Eck

u
} (10)
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where Eck
u � −∑#L

l�1

(
pk

l∑#L
l�1 pk

l

)
ln

(
pk

l∑#L
l�1 pk

l

)
is the

information entropy of PLTS. When Eck
u � 0,

ECk
u � 0.

Remark 1 The range of pk
l in the equation Eck

u �

−∑#L
l�1

(
pk

l /
∑#L

l�1 pk
l

)
ln

(
pk

l /
∑#L

l�1 pk
l

)
is (0, 1].

Particularly, when Lk � �, all pk
l are equal to 0.

At this time, the linguistic terms in the PLTS are
completely determined, so we default that Eck

u � 0.

Based on Definitions 2 and 3, the CL con-

sists of two parts: completeness and uncer-

tainty of PLTS. The higher the completeness

and the lower the uncertainty of the PLTS given

by a DM, the higher the CL of the DM, and vice

versa. On this basis, we derive the concept for

the CL of DM as:

Definition 4 Let {e1 , · · · , ek , · · · , eK} be the set
of DMs, the PLTS given by the DM ek be Lk �{

sl
k (

pl
k ) ��sl

k ∈ S, pl
k ≥ 0, l � 1, 2, · · · , #L ,∑#L

l�1 pl
k ≤ 1

}
, � be the set of PLTSs given by all

DMs, the map ECk
u : �k → [0, 1] is called as the

CL of DM, in which ECk can be calculated by

ECk
� β · ECk

c + (1 − β) · ECk
u , β ∈ [0, 1] (11)

where Eck
u � −∑#L

l�1

(
pk

l /
∑#L

l�1 pk
l

)
ln

(
pk

l /
∑#L

l�1 pk
l

)
is the information entropy

of PLTS. When Eck
u � 0, ECk

u � 0.

Property 1 ECk (
Lk ) � 1, if and only if Lk �{

sϕ(1)
}
; ECk (

Lk ) � 0, if and only if Lk � �.

Proof. According to Definition 3.3, when

ECk (
Lk ) � 1, ECk

c �
∑#L

l�1 pl
k � 1 and ECk

u � 1.

Then, when ECk
u � 1, Eck

u � 0, which means all

pk
l in the PLTS are equal to 0 or one pk

l is equal

to 1 and the other pk
l are equal to 0. Combined

with ECk
c �

∑#L
l�1 pl

k � 1, we can get that . Sim-

ilarly, when ECk (
Lk ) � 0, ECk

c �
∑#L

l�1 pl
k � 0

and ECk
u � 0, which means all pk

l are equal to

0. Then, Lk � �. Proof completed. �

3.2 The New Normalization Method for the
Incomplete PLTS

Based on the improved measurement of CL

proposed in Section 3.1, we further give a

new normalization method for the incomplete

PLTS. This method assigns the missing proba-

bilities to the existing linguistic terms and un-

known linguistic terms using the CL derived

by the original PLTS as the assigned propor-

tions.

Let Lk �
{

sl
k (

pl
k ) ��sl

k ∈ IS ∈ S, pl
k ≥ 0 ,

l � 1, 2, · · · , #L,
∑#L

l�1 pl
k ≤ 1

}
be an in-

complete PLTS given by the DM ek ,

p̂k � 1−∑#L
l�1 pk

l
be the missing probability, L̃k �{

s̃ k
l

(
p̃k

l

) ���s̃ k
l ∈ S, p̃k

l ≥ 0, l � 1, 2, · · · , #L̃,
∑#L̃

l�1

p̃k
l � 1

}
be the normalized PLTS, then the

assigned formula is represented as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
p̃k

l � pk
l +

(
p̂k · ECk )/#IS ,

s̃ k
l ∈ IS

p̃k
l �

(
p̂k · (1 − ECk)) /(τ + 1

−#IS
)
, s̃ k

l ∈ S − IS

(12)

Remark 2 When p̂k � 0 for a PLTS, that is, when
its probability distribution is complete, its linguis-
tic term length may not be consistent with other
normalized PLTS. Hence, to reduce the computa-
tional difficulty between the PLTSs, it is necessary
to add τ + 1 − #L arbitrary linguistic terms and
their corresponding probabilities (the probabilities
are equal to 0) to the PLTS.

3.3 The Determination Method of DMs’
Weights based on Bounded Trust
Propagation

In this section, we firstly propose a confidence-

based PLTR by extending the concept of CL
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for DM proposed in Section 3.1 to the classical

PLTR. Then, the comparison rules for any two

confidence-based PLTRs are provided. Next,

we extend the traditional t-norm trust prop-

agation operator to a t-norm trust propaga-

tion operator considering the CL based on the

PLTR. After that, the aggregation operator of

confidence-based PLTRs is defined, and the de-

termination method of DMs’ weights is pro-

posed based on the trust in-degree in STN and

the CL of DMs in the decision matrix.

3.3.1 The Confidence-based PLTR

In the actual MAGDM, the TR in STN is closely

related to the behavior and psychological fac-

tors of DMs. However, the definition of the

classical PLTR overlooked the CL implicit in

the trust evaluation given by the DM. The CL

here represents the cognitive belief of the DM.

When the trust evaluation given by the DM is

more accurate, it means that the DM has higher

confidence in accurately assessing how much

he/she trusts other DMS. Based on this, the

definition of confidence-based PLPR is repre-

sented as:

Definition 5 Let {e1 , · · · , ek , · · · , eK} be the set of
DMs, the confidence-based PLPR between the DMs
ek and eh is defined as:

Tkh
�

{{
sl

kh(pl
kh)

����sl
kh ∈ S, pl

kh ≥ 0,

l � 1, 2, · · · , #L,
#L∑
l�1

pl
kh ≤ 1

}
,(

ECkh
����0 ≤ ECkh ≤ 1

)}
(13)

where skh
l

(
pkh

l

)
is the probabilistic linguistic trust

information (PLTI) given by the DM ek , ECkh is
the CL derived by the PLTI based on Equation (11).

The larger ECkh is, the more explicit the DM ek is
about the TR with the DM eh .

According to Equations (12) and (13), the

normalized confidence-based PLPR between

the DMs ek and eh can be got as:

T̃kh
�

{{
s̃l

kh
(
p̃l

kh
) ����s̃l

kh ∈ S, p̃l
kh ≥ 0,

l � 1, 2, · · · , #T̃ ,
#L∑
l�1

p̃l
kh

� 1

}
,(

ECkh
����0 ≤ ECkh ≤ 1

)} (14)

For a normalized confidence-based PLPR,

its expectation function and deviation are pre-

sented as:

E
(
T̃kh

)
�

���
#L̃∑
l�1

(
g
(
s̃ kh

l

)
· p̃kh

l

)���
1/ECkh

(15)

σ
(
T̃kh

)
�

(
#L̃∑
l�1

((
g
(
s̃ kh

l

)
− E

(
T̃kh

) )2 · p̃kh
l

))ECkh/2
(16)

where g is the equivalent function for the lin-

guistic term set obtained by Equation (3).

Property 2 For any normalized confidence-based
PLPR, we have 0 ≤ E

(
T̃kh ) ≤ 1.

Proof. Since 0 ≤ g
(
s̃ kh

l

)
≤ 1, 0 ≤ p̃kh

l ≤ 1, and∑#L̃
l�1 p̃kh

l � 1, then 0 ≤ ∑#L̃
l�1

(
g
(
s̃ kh

l

)
· p̃kh

l

)
≤ 1.

Hence, when
∑#L̃

l�1(g(s̃ kh
l ) · p̃kh

l ) � 0, E(T̃kh) �
1; when 0 <

∑#L̃
l�1(g(s̃ kh

l ) · p̃kh
l ) < 1, since

1
ECkh > 0, E(T̃kh) can be regarded as an ex-

ponential function with a range of [0, 1); when∑#L̃
l�1(g

(
s̃ kh

l

)
· p̃kh

l ) � 1, E(T̃kh) � 1. To sum up,

0 ≤ E(T̃kh) ≤ 1. �

For any two normalized confidence-based

PLPRs, T̃
1
< T̃

2
, if and only if one of the fol-

lowing two conditions is satisfied:
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1) E
(
T̃

1
)
< E

(
T̃

2
)
;

2) E
(
T̃

1
)
� E

(
T̃

2
)

and σ
(
T̃

1
)
> σ

(
T̃

2
)
.

3.3.2 The Bounded Propagation Operator

In the actual STN-based MAGDM, it may be

difficult for some DMs to directly provide the

PLTR for other DMs since they are not famil-

iar with each other. In this situation, the STN

is incomplete. To obtain the unknown PLTR

in the STN, the trust propagation operator is

proposed to estimate the indirect TRs among

DMs. The existing trust propagation meth-

ods focused on the relationship strength, path

length, and propagation time, etc. However,

the existing method have ignored the effect of

TRs’ uncertainty on trust transitivity. Inspired

by this, we hypothesize that the efficiency of

trust propagation is related to the uncertainty

of TR graph, which is represented by the CL

among DMs in STN. The CL indicates the cred-

ibility of mediators and the mediators refer to

the trusted DMs. Specifically, the higher the

credibility of mediators, the higher their prop-

agation efficiency, and vice versa. On this basis,

the bounded t-norm trust propagation opera-

tor for confidence-based PLTR is defined as:

Definition 6 Let ek
1−→ eθ(1)

2−→ eθ(2)
3−→

· · · z−→ eθ(z)
z+1−−→ eh be a path between the

DMs ek and eh , where its length z + 1,
and T̃k ,θ(1) �

{{
s̃l1

k ,θ(1)(p̃l1
k ,θ(1))��s̃l1

k ,θ(1) ∈
S, l1 � 1, 2, · · · , #T̃1 ,

∑#T̃
l1�1 p̃l

k ,θ(1) �

1
}
,
(
ECk ,θ(1)��Υ ≤ ECk ,θ(1) ≤ 1

)}
,

T̃θ(1),θ(2) �
{{

s̃l2
θ(1),θ(2)(p̃l2

θ(1),θ(2))��s̃l2
θ(1),θ(2) ∈

S, p̃l2
θ(1),θ(2) ≥ 0, l2 � 1, 2, · · · , #T̃2 ,∑#L2

l2�1
p̃l2
θ(1),θ(2) � 1

}
,
(
ECθ(1),θ(2)

��Υ ≤
ECθ(1),θ(2) ≤ 1

)}
, · · · , T̃θ(z),h �{{

s̃θ(z),hlz+1
(p̃θ(z),hlz+1

)��s̃θ(z),hlz+1
∈ S, p̃θ(z),hlz+1

≥

0, lz+1 � 1, 2, · · · , #T̃z+1 ,
∑#Lz+1

l�1
p̃θ(z),hlz+1

�

1
}
,
(
ECθ(z),h

��Υ ≤ ECθ(z),h ≤ 1
)}

, then the
bounded t-norm trust propagation operator for
confidence-based PLTR can be got by

T̃kh � Δ
(
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h ) �⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
g−1

���������������

⋃
γ1

l1
∈ g

(
T̃k ,θ(1)) ,

γ2
l2
∈ g

(
T̃θ(1),θ(2)

)
· · · γz+1

lz+1
∈ g

(
T̃θ(z),h

){(
γ1

l1
× γ2

l2
× · · · × γz+1

lz+1

) (
p̃1

l1
× p̃2

l2
× · · · p̃z+1

lz+1

)}) }
,(

ECk ,θ(1) × ECθ(1),θ(2) × · · · × ECθ(z),h
)}
,

l1 � 1, 2, · · · , #T̃k ,θ(1);
l2 � 1, 2, · · · , #T̃θ(1),θ(2); · · · ;

lz+1 � 1, 2, · · · , #T̃θ(z),h
(17)

whereΥ is the confidence-based propagation thresh-
old, γ1

l1
, γ2

l2
, · · · , γz+1

lz+1
is calculated by Equation (3)

and the function g−1 is got by Equation (5).

Remark 3 The boundness of Definition 6 is em-
bodied in the credibility of mediators, that is, the
CL between the DM and the mediators. When
min

(
ECk ,θ(1) , ECθ(1),θ(2) , · · · , ECθ(z),h

)
< Υ,

the credibility of at least one mediator is less than
Υ, the propagation is interrupted. Here, the CL
ECk ,θ refers to the certainty degree that DM ek

trusts the mediator eθ. When the certainty de-
gree is low, it is difficult for the DM ek to trust
the suggestions from the mediator eθ, leading to
the interruption of propagation. Therefore, only
when min

(
ECk ,θ(1) , ECθ(1),θ(2) , · · · , ECθ(z),h

) ≥
Υ, the effective indirect TR can be derived from the
propagation path.

Property 3 For any operator Δ, we
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have Δ
(
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h ) ≤

min
{
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h}.

Proof. According to Equations

(5) and (17), we can obtain that

Δ

(
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h

)
�

{{(
s
τ·
(
γ1

1
×γ2

1
×···×γz+1

1

) ) (p̃1
1 × p̃1

2 × · · · × p̃1
z+1

)
,

(
s
τ·
(
γ1

1
×γ2

2
×···×γz+1

2

) )(
p̃1

1 × p̃2
2 × · · · × p̃2

z+1

)
, · · · ,

(
s
τ·
(
γ1

1
×γ2

#T̃θ(1),θ(2)×···×γ
z+1

#T̃θ(z),h
) ) (p̃1

1 × p̃2
#T̃θ(1),θ(2) × · · · × p̃z+1

#T̃θ(z),h

)
,(

s
τ·
(
γ1

2
×γ2

1
×···×γz+1

1

) ) (p̃2
1 × p̃1

2 × · · · × p̃1
z+1

)
,

(
s
τ·
(
γ1

2
×γ2

2
×···×γz+1

2

) ) (p̃2
1 × p̃2

2 × · · · × p̃2
z+1

)
, · · ·(

s
τ·
(
γ1

1
×γ2

#T̃θ(1),θ(2)×···×γ
z+1

#T̃θ(z),h

) ) (p̃2
1 × p̃2

#T̃θ(1),θ(2) × · · · × p̃z+1
#T̃θ(z),h

)
,

...(
s
τ·

(
γ1

#T̃k ,θ(1)×γ2
1
×···×γz+1

1

) ) (
p̃1

#T̃k ,θ(1) × p̃1
2 × · · · × p̃1

z+1
)
,

(
s
τ·

(
γ1

#T̃k ,θ(1)×γ2
2
×···×γz+1

2

) ) (
p̃2

1 × p̃2
2 × · · · × p̃2

z+1
)
,

· · ·
(
s
τ·

(
γ1

#T̃k ,θ(1)×γ2

#T̃θ(1),θ(2)×···×γ
z+1

#T̃θ(z),h
) ) (

p̃2
1 × p̃2

#T̃θ(1),θ(2) × · · · × p̃z+1
#T̃θ(z),h

)
,(

ECk ,θ(1) × ECθ(1),θ(2) × · · · × ECθ(z),h
)}}

According to Equations (6) and (15), we can get that

E
(
Δ

(
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h ) ) � ((

γ1
1
p̃1

1 × γ2
1
p̃1

2 × · · · × γz+1
1

p̃1
z+1

)
+

(
γ1

1
p̃1

1 × γ2
2
p̃2

2 × · · · ×

γz+1
2

p̃2
z+1

)
+ · · · +

(
γ1

1
p̃1

1 × γ2
#T̃θ(1),θ(2) p̃

2
#T̃θ(1),θ(2) × · · · × γz+1

#T̃θ(z),h p̃z+1
#T̃θ(z),h

)
+

(
γ1

2
p̃2

1 × γ2
1
p̃1

2 × · · · ×

γz+1
1

p̃1
z+1

)
+

(
γ1

2
p̃2

1 × γ2
2
p̃2

2 × · · · × γz+1
2

p̃2
z+1

)
+

(
γ1

1
p̃2

1 × γ2
#T̃θ(1),θ(2) p̃

2
#T̃θ(1),θ(2) × · · · × γz+1

#T̃θ(z),h p̃z+1
#T̃θ(z),h

)
+ · · · +

(
γ1

#T̃k ,θ(1) p̃
1
#T̃k ,θ(1) × γ2

1
p̃1

2 × · · · × γz+1
1

p̃1
z+1

)
+

(
γ1

#T̃k ,θ(1) p̃2
1 × γ2

2
p̃2

2 × · · · × γz+1
2

p̃2
z+1

)
+

· · · +
(
γ1

#T̃k ,θ(1) p̃2
1 × γ2

#T̃θ(1),θ(2) p̃
2
#T̃θ(1),θ(2) × · · · × γz+1

#T̃θ(z),h p̃z+1
#T̃θ(z),h

))1/ECk ,θ(1) × ECθ(1),θ(2) × · · · × ECθ(z),h

�

((
γ1

1
p̃1

1 + γ1
2
p̃2

1 + · · · + γ1
#T̃k ,θ(1) p̃#T̃k ,θ(1)1

)
×

(
γ2

1
p̃1

2 + γ2
2
p̃2

2
+ · · · + γ2

#T̃θ(1),θ(2) p̃
2
#T̃θ(1),θ(2)

)
× · · ·

×
(
γz+1

1
p̃1

z+1 + γz+1
2

p̃z+1
2

+ · · · + γz+1
#T̃θ(z),h p̃z+1

#T̃θ(z),h

))1/ECk ,θ(1) × ECθ(1),θ(2) × · · · × ECθ(z),h

�

( (∑#T̃k ,θ(1)
l1�1

(
γ1

l1
p̃l1

1
)) (∑#T̃θ(1),θ(2)

l2�1

(
γ1

l2
p̃l2

1
))

× · · ·

×
(∑#T̃θ(z),h

lz+1�1

(
γ1

lz+1
p̃lz+1

1
)) )1/ECk ,θ(1) × ECθ(1),θ(2) × · · · × ECθ(z),h

Let min

{
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h

}
� T̃k ,θ(1), then E

(
min

{
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · ,

T̃θ(z),h
})

� E
(
T̃k ,θ(1))

�

( ∑#T̃k ,θ(1)
l1�1

(
γ1

l1
p̃l1

1

))1/ECk ,θ(1)
;
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Since Υ ≤ EC ≤ 1, then ECk ,θ(1) ≥(
ECk ,θ(1) × ECθ(1),θ(2) × · · · × ECθ(z),h

)
, then

1
/

ECk ,θ(1) ≤ 1
/(

ECk ,θ(1) × ECθ(1),θ(2) × · · · ×

ECθ(z),h
)
.

And since 0 ≤ γl ≤ 1, 0 ≤ p̃l ≤ 1, and∑#L
l�1 p̃l � 1, then 0 ≤ ∑#T̃k ,θ(1)

l1�1 (γ1
l1

p̃1
l1
) ≤

1, and thus,
∑#T̃k ,θ(1)

l1�1

(
γ1

l1
p̃1

l1

) ≥( ∑#T̃k ,θ(1)
l1�1

(
γ1

l1
p̃1

l1

) ) ( ∑#T̃θ(1),θ(2)
l2�1

(
γ2

l2
p̃2

l2

) ) × · · · ×( ∑#T̃θ(z),h
l1�1

(
γz+1

lz+1
p̃z+1

lz+1

) )
.

In summary,

E
(
Δ
(
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h

) ) ≤
E
(
min

{
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h}) ;

then Δ
(
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h

) ≤
min

{
T̃k ,θ(1) , T̃θ(1),θ(2) , · · · , T̃θ(z),h}holds

true. �

3.3.3 The Determination Method of DMs’
Weights

Before determining the DMs’ weights, we need

to integrate the indirect TRs derived from mul-

tiple propagation paths. Inspired by the q-

rung fuzzy weighted averaging operator de-

fined in Gao et al. (2022), the confidence-based

probabilistic linguistic trust ordered weighted

averaging (PLT- OWA) operator is proposed as:

Definition 7 Suppose that there are Pr propaga-
tion paths between the DMs ek and eh , and their
confidence-based PLTRs are

{
T̃kh

1
, T̃kh

2
, · · · , T̃kh

Pr

}
,

then the aggregated confidence-based PLTR between
the DMs ek and eh can be derived by the PLT-OWA
operator:

T̄kh
� OWA

(
T̃kh

1 , T̃
kh
2 , · · · , T̃kh

Pr

)
� ⊕Pr

pr�1 ψpr T̃kh
pr

�

{ ⋃
γ

pr
lpr

∈g
(
T̃kh

pr

)
{

g−1

(
1 −

Pr∏
pr�1

(
1−

γ
pr
lpr

)Ψpr

) ���
Pr∏

pr�1

p̃pr
lpr

���
}
,∑Pr

pr�1ΨprECpr∑Pr
pr�1Ψpr

}
(18)

where T̃kh
1

is the largest confidence-based PLTR
in

{
T̃kh

1
, T̃kh

2
, · · · , T̃kh

Pr

}
, Ψ � (Ψ1 ,Ψ1 , · · · ,ΨPr)

are the corresponding weights, Ψpr ≥ 0 and∑Pr
pr�1Ψpr � 1.

The value of Ψpr can be determined by the lin-
guistic quantifier Q (Yager 1996):

Ψpr � Q
( pr
Pr

)
− Q

(
pr − 1

Pr

)
(19)

where the monotone non-decreasing quantifier Q �

irδ, satisfies δ ≥ 0, Q : [0, 1] → [0, 1], Q (0) � 0,
Q (1) � 1. In this paper, we set δ as 0.5.

Remark 4 The PLTR-OWA operator differs from
the traditional PL-OWA by utilizing the CL of PLTI
to induce the reordering process. The CL of PLTI
suggests its reliability. Therefore, it’s crucial to con-
sider both its value and CL level when determining
its order. Specifically, the largest confidence-based
PLTR must contain both high value and high CL
level.

Based on the bounded propagation op-

erator and the aggregation operator, the

incomplete STN matrix IT �
(
T̃kh )

K×K can be

transformed into the complete STN matrix

CT �
(
T̃kh )

K×K . Then, we can obtain the in-

degree trust (ID) and the integrated in-degree

trust (CID) of DM ek as:
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IDk
�

1

K − 1

K∑
h�1,k�h

E
(
T̃hk

)
,

h � 1, 2, · · · , K
(20)

CIDk
�

IDk

max
(
IDk

) , k � 1, 2, · · · , K (21)

And the out-degree trust (OD) and the in-

tegrated out-degree trust (COD) of the DM ek :

ODk
�

1

K − 1

K∑
h�1,k�h

E
(
T̃kh

)
,

h � 1, 2, · · · , K
(22)

CODk
�

ODk

max
(
ODk

) , k � 1, 2, · · · , K (23)

where E
(
T̃hk ) is the expectation function of

T̃hk .

When DMs have low CL in their evalua-

tions, it indicates that the quality and accu-

racy of the evaluations are low. Hence, to ob-

tain accurate and reliable group evaluations, it

is necessary to consider the CL derived from

DMs’ evaluations when determining the DMs’

weights. From this, we represent the DMs’

weights based on the CL and CID of DMs as:

Definition 8 Let ECij(k)(i � 1, 2, · · · ,m; j �

1, 2, · · · , n) be the CL derived from the PLTS Li j(k)

given by the DM ek , then the weight of the DM ek

can be obtained by

vk �
ECk · CIDk∑K

k�1 ECk · CIDk
(24)

where ECk �
1

mn
∑m

i�1

∑n
j�1 ECij(k).

Remark 5 According to Definition 8, it is easy
to find that even if a DM is highly trusted in the
STN, his/her weight won’t be very high if the qual-
ity of the evaluations they provided is low. Com-
pared to the determination method that exclusively

derives the weights from the CID in STN, the pro-
posed method incorporating the objective evalua-
tions given by DMs can more effectively prevent
weight manipulation.

3.4 The Confidence-based CRP for
MAGDM

After determining the weights of experts, this

section provides the integration method of

group evaluations and calculates the group

consensus index (CI) according to the sim-

ilarity measures between individual evalua-

tions and group evaluations. Then, we judge

whether the DMs reach a consensus on the

group evaluations. If the group does not reach

a consensus, it is necessary to identify DMs

with low CIs and supply their modification

suggestions.

3.4.1 Consensus Measure

Firstly, we adopt the method proposed by Wu

and Liao (2019) to collect K × m × n PLTSs into

m×n PLTSs. Let A � {A1 , · · ·Ai , · · ·,Am} be the

set of alternatives, C � {C1 , · · · , Cj , · · · , Cn}
be set of attributes, (w1 , · · · , wj , · · · , wn) be the

weights of attributes, E � {e1 , · · · , ek , · · · , eK}
be the set of DMs, (v1 , · · · , vk , · · · , vK) be

the DMs’ weights. The PLTS Li j(k) �{
sl

i j(k) (pl
i j(k)) ��sl

i j(k) ∈ S, pl
i j(k) ≥ 0, l �

1, 2, · · · , #L,
∑#L

l�1 pl
i j(k) ≤ 1

}
is the evalua-

tion provided by the DM ek with respect to

the alternative Ai on the attribute Cj , and

L̃i j(k) �
{

s̃l
i j(k) (p̃l

i j(k)) ��s̃l
i j(k) ∈ S, p̃l

i j(k) ≥ 0, l �

1, 2, · · · #L̃,
∑#L̃

l�1 p̃l
i j(k) � 1

}
is the normalized

PLTS. Then, let the collective evaluation be

Li j(Λ) �
{

sl
i j(Λ) (pl

i j(Λ)) ��sl
i j(Λ) ∈ S, pl

i j(Λ) ≥
0, l � 1, 2, · · · , #L,

∑#L
l�1 pl

i j(Λ) � 1
}
, pl

i j(Λ) can
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be calculated by

pl
i j(Λ)

�

K∑
k�1

vk pi j′
l , l � 1, 2, · · · , #L (25)

where pi j′
l �

{
pi j′

l , if sl
i j(Λ) ∈ L̃i j(k)

0, if sl
i j(Λ) � L̃i j(k) , k �

1, 2, · · · , K.

Then, the similarity measure between the

individual evaluations and collective evalua-

tions is represented as Cao et al. (2021):

Definition 9 Let L̃k �
(
L̃i j(k))

m×n be the evalua-
tion given by the DM ek , the collective evaluation
be L(Λ) �

(
Li j(Λ))

m×n , then the CIs in three levels
is shown as:

1) The CI of the DM ek on the element level:

CIk
i j � 1 −

���E (
Li j(Λ)

)
− E

(
L̃i j(k)

)��� (26)

2) The CI of the DM ek on the alternative level:

CIk
i �

1

n

n∑
j�1

CLk
i j (27)

3) The CI of the DM ek on the matrix level:

CIk
�

1

m

m∑
i�1

CLk
i (28)

Definition 10 Let CIk be the CI of the DM ek , the
group consensus index (GCI) is represented as:

GCI �
1

K

K∑
k�1

CIk (29)

Obviously, GCI ∈ [0, 1]. After setting the

group consensus threshold ε, we can deter-

mine whether the group has reached an ac-

ceptable level of consensus. When GCI ≥ ε,
it indicates that the group consensus has been

reached.

3.4.2 Feedback Mechanism
The traditional feedback mechanism directly

identifies the non-consensus DMs and pro-

vides them with modification suggestions.

However, if the non-consensus DMs have a

high level of confidence in their evaluations,

it is difficult to make them accept the modifica-

tion suggestions, which finally causes the CRP

fails. Hence, we establish identification rules

which consider both the CL and CI of DM as

follows:

Step 1 Identify the DMs with low CL and

CI:

EXPCH �

{
k
���(CLk

i < ε
)
∧

(
ECk < ψ

) }
(30)

Step 2 Identify the alternatives with low CL

and CI for the non-consensus DMs:

ALT �

{
(k , i)�� (k ∈ EXPCH) ∧(

CLk
i < ε

)
∧

(
ECi(k) < ψ

) } (31)

Step 3 Identify the elements with low CL

and CI for the non-consensus alternatives:

APS �

{ (
k , i , j

) �� ((k , i) ∈ ALT) ∧(
CLk

i j < ε
)
∧

(
ECij(k) < ψ

) } (32)

Remark 6 The proposed identification rules aim
to find out the DMs and the corresponding evalua-
tions whose CI and CL are lower than the thresholds.
There are two benefits of this design: one is to en-
sure that the group has a lower cost to persuade
the non-consensus DMs to accept the modification
suggestions; the other is to retain the evaluations
with a high CL as much as possible, which will help
ensure that the quality of group evaluations.

After identifying the non-consensus DMs,

we need to generate modification suggestions
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for them through the MCC model. Consider-

ing the impact of the DMs’ CL on their behav-

iors, we introduce the DMs’ CL into the cost

function in the MCC model, the confidence-

based unit adjustment cos function under each

alternative and attribute for each DM is defined

as:

Let L̃i j(k) be the original evaluation, ECk
i j be

the CL of the DM ek for the evaluation L̃i j(k),
L̄i j(k) be the adjustment evaluation provided

by the MCC model, the confidence-based unit

adjustment cost function is obtained by

f(k ,i , j)∈APS � ECk
i j

����E (
L̄i j(k)

)
− E

(
L̃i j(k)

) ���� (33)

The total confidence-based adjustment cost

function is represented by

f �

∑
(k ,i , j)∈APS

ECk
i j

���E (
L̄i j(k)

)
− E

(
L̃i j(k)

)��� (34)

Remark 7 The confidence-based unit adjustment
cost function personalizes the definition of the DM’s
cost for modifying each evaluation, which is more in
line with the psychological behavior of the DMs in
actual situations. Due to the limitations of the pro-
fessional field and experience, the cognitive levels of
DMs for each alternative under different attributes
may be inconsistent. That is, the CL of DMs for
each evaluation may be different, then the unit ad-
justment cost may also be different. Specifically,
if a DM lacks confidence in his/her evaluation, the
cost to the group of persuading him/her to accept an
adjustment is relatively low. The DM with a high
CL, on the other hand, is more inclined to maintain
the original evaluation, so the cost of persuasion is
very high.

Note, although that the group is willing to

pay costs to persuade the non-consensus DMs

to accept adjustments, the DMs’ willingness to

adjust can still not be ignored. In this section,

we adopt the CL and COD of DMs to portray

their willingness. The acceptable adjustment

threshold is obtained by

uck
i j �

(
1 − ECk

i j

)
+ CODk

2
(35)

Then, the adjustment evaluation needs to

satisfy the following conditions:����E (
L̄i j(k)

)
− E

(
L̃i j(k)

) ���� ≤ uck
i j ,(

i , j, k
) ∈ APS

(36)

Remark 8 Although both the cost function and the
adjustment threshold involve the DM’s CL, their
meanings are different. The cost refers to the unit
cost paid by the group to persuade the DM to ad-
just the evaluation, so only the DM’s CL on the
evaluation should be considered. The adjustment
threshold refers to the maximum degree to which
the DM is willing to adjust the evaluation. It de-
pends not only on the CL, which is the internal cause
that affects the DMs’ adjustment willingness, but
also on DM’s trust in other DMs in the group. A
DM with high CL can still increase his/her range
of adjustment due to a high trust degree in other
DMs, but the cost of persuading him/her to adjust
the evaluation is still high.

Based on the above thinking, we establish

the following confidence-based MCC model:
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Model 3.1
min

∑
(k ,i , j)∈APS ECk

i j

���E (
L̄i j(k)

)
− E

(
L̃i j(k)

)���

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
L̄i j(k)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × p̄k
i j,ϕ

)
,
(
k , i , j

) ∈ APS (1)
E

(
L̃i j(h)

)
�

∑τ
ϕ�0

(
g
(
s̃ϕ

) × p̃h
i j,ϕ

)
,
(
h , i , j

)
� APS (2)

E
(
L̄i j(Λ)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × (
p̄Λi j,ϕ

))
, k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n} (3)

p̄Λi j,ϕ �
∑K

k�1 vk
(
p̄k

i j,ϕ + p̃k
i j,ϕ

)
, k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n} (4)∑τ

ϕ�0 p̄Λi j,ϕ � 1, i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n} (5)
1

Kmn
∑K

k�1

∑m
i�1

∑n
j�1

(
1 −

���E (
L̄i j(k)

)
− E

(
L̄i j(Λ)

)���) ≥ ε,
k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n} (6)���E (

L̄i j(k)
)
− E

(
L̃i j(k)

)��� ≤ uck
i j ,

(
k , i , j

) ∈ APS (7)

where L̃i j(k) is the original evaluation, L̄i j(k) is

the adjustment evaluation obtained from the

model, L̄i j(Λ) is the adjusted group evaluation.

The objective function represents the overall

cost to the group of persuading the DMs to

adjust their evaluation from L̃i j(k) to L̄i j(k), and

it should be the smallest it can be. The con-

straints (1-3) indicate the expectations of L̃i j(k),
L̄i j(k), and L̄i j(Λ). The constraints (4-5) provide

a way to integrate probabilistic information for

group evaluation L̄i j(Λ).

The goal of constraint (6) is to guarantee

that the deviation between the group evalua-

tion L̄i j(Λ) and the individual adjustment evalu-

ation L̄i j(k) can satisfy the consensus threshold.

The constraint (7) stipulates that the deviation

between the adjustment evaluation L̄i j(k) and

the original evaluation L̃i j(k) must not exceed

the range of DMs’ willingness. The range uck
i j

is represented by the certainty of evaluation

(CL) and the DMs’ trust in other DMs (COD)

in the STN.

Since Model 3.1 is a nonlinear program-

ming model, it is necessary to convert it to a lin-

ear programming model through mathemati-

cal transformation, which is shown as follows:

Model 3.2
min

∑
(k ,i , j)∈APS

ECk
i j · ai j(k)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
L̄i j(k)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × p̄k
i j,ϕ

)
,
(
k , i , j

) ∈ APS

E
(
L̃i j(k)

)
�

∑τ
ϕ�0

(
g
(
s̃ϕ

) × p̃k
i j,ϕ

)
,
(
k , i , j

)
� APS

E
(
L̄i j(Λ)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × (
p̄Λi j,ϕ

))
, k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}

p̄Λi j,ϕ �
∑K

k�1 vk
(
p̄k

i j,ϕ + p̃k
i j,ϕ

)
, k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}

mdij(k) � E
(
L̄i j(k)

)
− E

(
L̃i j(k)

)
,
(
k , i , j

) ∈ APS

mdij(k) ≤ ai j(k) ,
(
k , i , j

) ∈ APS

−mdij(k) ≤ ai j(k) ,
(
k , i , j

) ∈ APS

xi j(k) � E
(
L̄i j(k)

)
− E

(
L̄i j(Λ)

)
, k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}

xi j(k) ≤ yi j(k) , k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}
−xi j(k) ≤ yi j(k) , k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}

1
Kmn

∑K
k�1

∑m
i�1

∑n
j�1

(
1 − yi j(k)

)
≥ ε, k ∈ {1, 2, · · · , K} ; i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}

ai j(k) ≤ uck
i j ,

(
k , i , j

) ∈ APS∑τ
ϕ�0 p̄Λi j,ϕ � 1, i ∈ {1, 2, · · · ,m} ; j ∈ {1, 2, · · · , n}
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where mdij(k) � E
(
L̄i j(k)) − E

(
L̃i j(k)) , ai j(k) ���mdij(k)��, xi j(k) � E

(
L̄i j(k)) − E

(
L̄i j(Λ)) and

yi j(k) �
��xi j(k)��.

In the case of setting thresholds ε and ψ,

Model 3.2 may not have a feasible solution,

which means some DMs refuse to accept the

adjustment suggestion generated by the Model

3.2. Hence, we represent the following:

Property 4 Let uck∗
i j be the optimal solution of the

Model 3.3, then if all uck
i j satisfy the conditions

uck
i j ≥ uck∗

i j , then the Model 3.2 exists in at least
one optimal solution; if any uck

i j do not satisfy the
conditions uck

i j ≥ uck∗
i j , then there is no solution to

the Model 3.2, which means that it cannot generate
the adjustment suggestions that make all DMs to
accept by the Model 3.2.

Model 3.3

min
∑

(k ,i , j)∈APS

uck
i j

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
L̄i j(k)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × p̄k
i j,ϕ

)
,
(
k , i , j

) ∈ APS

E
(
L̃i j(k)

)
�

∑τ
ϕ�0

(
g
(
s̃ϕ

) × p̃k
i j,ϕ

)
,
(
k , i , j

)
� APS

E
(
L̄i j(Λ)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × (
p̄Λi j,ϕ

))
, k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}

p̄Λi j,ϕ �
∑K

k�1
vk

(
p̄k

i j,ϕ + p̃k
i j,ϕ

)
, k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}

mdij(k) � E
(
L̄i j(k)

)
− E

(
L̃i j(k)

)
,
(
k , i , j

) ∈ APS

mdi j(k) ≤ ai j(k) ,
(
k , i , j

) ∈ APS

−mdij(k) ≤ ai j(k) ,
(
k , i , j

) ∈ APS

xi j(k) � E
(
L̄i j(k)

)
− E

(
L̄i j(Λ)

)
, k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}

xi j(k) ≤ yi j(k) , k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}
−xi j(k) ≤ yi j(k) , k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}

1
Kmn

∑K
k�1

∑m
i�1

∑n
j�1

(
1 − yi j(k)

)
≥ ε, k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}

ai j(k) ≤ uck
i j ,

(
k , i , j

) ∈ APS∑τ
ϕ�0 p̄Λi j,ϕ � 1, i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n}

When we cannot reach a consensus through

the Model 3.2, it is necessary to identify the

non-cooperative DMs who refuse to accept the

suggestions generated by the Model 3.2. Then,

the group can utilize the impact of the STN on

DMs’ preferences to persuade them to accept

the new adjustment strategy. Firstly, the DMs

and the corresponding evaluations who refuse

adjustments are identified by

RPS �

{(
k
′
, i , j

) ���uck
′

i j < uck∗
i j

}
(37)

Then, the new adjustment strategy is rep-

resented as:

L
k
′

i j � uck
′

i j Li j(Λ)
+

(
1 − uck

′
i j

)
L̃k

′
i j (38)

Remark 9 The traditional adjustment strategies in
the STN-based MAGDM usually use the evaluation
of the trusted DMs to generate suggestions, which
is easy to ignore the evaluation of DMs on the edge
of the STN. Therefore, in order to avoid the collective
evaluation being manipulated by DMs at the center
of the STN, we use the current group evaluation to
generate adjustment suggestions.

Then, we construct the following hybrid
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model to provide the adjustment suggestions for the other elements in the set APS:

Model 3.4

min
∑

(k ,i , j)∈APS/RPS

ECk
i j

���E (
L̄i j(k)) − E

(
L̃i j(k))���

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
L̄i j(k)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × p̄k
i j,ϕ

)
,
(
k , i , j

) ∈ APS/RPS (1)
E

(
L̄

i j
(
k
′ ) )

�
∑τ
ϕ�0

(
g
(
s̄ϕ

) × p̄k
′

i j,ϕ

)
,
(
k , i , j

) ∈ RPS (2)
E

(
L̄i j(h)

)
�

∑τ
ϕ�0

(
g
(
s̃ϕ

) × p̃h
i j,ϕ

)
,
(
h , i , j

)
� APS (3)

E
(
L̄i j(Λ)

)
�

∑τ
ϕ�0

(
g
(
s̄ϕ

) × (
p̄Λi j,ϕ

))
,

k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n} (4)
p̄Λi j,ϕ �

∑K
k�1

vk
(
p̄k

i j,ϕ + p̄k
′

i j,ϕ + p̃k
i j,ϕ

)
,

k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n} (5)∑τ
ϕ�0 p̄Λi j,ϕ � 1, i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n} (6)

p̄k
′

i j,ϕ �

(
uck

′
i j +ODk

′ )
2 pΛi j,ϕ +

(
1 −

(
uck

′
i j +ODk

′ )
2

)
p̃k

′
i j,ϕ ,

(
k , i , j

) ∈ RPS (7)
1

Kmn
∑K

k�1

∑m
i�1

∑n
j�1

(
1 −

���E (
L̄i j(k)

)
− E

(
L̄i j(Λ)

)���) ≥ ε,
k ∈ {1, 2, · · · , K}; i ∈ {1, 2, · · · ,m}; j ∈ {1, 2, · · · , n} (8)���E (

L̄i j(k)
)
− E

(
L̃i j(k)

)��� ≤ uck
i j ,

(
k , i , j

) ∈ APS (9)

where L̄i j(k′ ) is the adjustment evaluation for

non-cooperative DMs. The constraints (4-5) in-

dicate the integration of group evaluation. The

constraint (6) provides the strategy to adjust

the evaluation of non-cooperative DMs. The

remaining variables, objective function, and

constraints are the same as in the Model 3.1.

3.4.3 Selection Process

After the group reached a consensus and the

final group decision matrix L(Λ) �
(
Li j(Λ))

m×n

was obtained, the score of the alternatives Ai

can by calculated by CEi �
∑n

j�1 wjE
(
Li j(Λ)) .,

where we set wj �
1
n . Then, we can obtain the

rankings of alternatives and select the optimal

one by comparing the CEi .

3.5 Procedure of the Proposed Method

Based on the STN analysis with the bounded

trust propagation proposed in Section 3.3 and

the confidence-based MCC model in MAGDM

proposed in Section 3.4, we summarize the

procedure of the proposed method in Figure

1, and present the detailed steps as follows:

Step 1 Invite DMs to give the PLTS matrix

(Lk �
(
Li j(k))

m×n), the incomplete PLTR matrix

(IT �
(
Tkh )

K×K), and determine the values of

the parameter and three thresholds β,Υ, ε, and

ψ. Then, we use Equation (11) to obtain the CL

of the PLTS (ECij(k)) and the CL of the PLTR

(ECkh);

Step 2 Utilize Equation (12) to acquire the

normalized PLTS (L̃k �
(
L̃i j(k))

m×n) and the

PLTR (IT̃ �
(
T̃kh )

K×K);

Step 3 Apply the bounded trust propaga-

tion operator in Equation (17) and the PLT-

OWA operator in Equation (18) to calculate

the missing value in the incomplete PLTR ma-

trix for obtaining the complete PLTR matrix
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Figure 1 Confidence-based Consensus Framework for MAGDM in STN

(CT̃ �
(
T̃kh )

K×K);

Step 4 Use Equation (24) to calculate the

weights of DMs (v1 , · · · , vk , · · · , vK), and apply

Equation (25) to derive the collective matrix

(LΛ � (Li j(Λ))m×n);

Step 5 Utilize Equations (26)-(29) to calcu-

late the CIs of all DMs and the GCI, if GCI ≥ ε,
then the group has reached a consensus, go to

Step 9; Otherwise, proceed to Step 6;

Step 6 Utilize Equations (30)-(32) to identify

the non-consensus DMs and the correspond-

ing elements set APS, and then apply Model

3.1 to seek the modification suggestions, if the

Model 3.1 has a feasible solution, go to Step 9;

Otherwise, proceed to Step 7;

Step 7 Apply the Model 3.3 to obtain uck∗
i j ,

if the Model 3.3 has a feasible solution, then

we use Equation (33) to identify the DMs who

refuse to accept the modification suggestions,

and utilize Equation (34) to calculate the ad-

justment values of the DMs; Otherwise, return

to Step 1;

Step 8 Utilize the Model 3.4 to calculate the

adjustment values of the other DMs in the set

APS;

Step 9 Use Equation (25) to obtain the final

collective matrix and the ranking of all alterna-

tives.

The proposed method sufficiently consid-

ers the psychological factors existing in the

practical STN-based MAGDM and the fairness

in CRP, which can make the results high qual-

ity and obtain the support of all DMs.

4. Numerical Example and Discussion

In this section, we apply the proposed methods

to a sustainable business model selection case

where the evaluations are given by the DMs

with PLTSs for verifying its reliability. More-

over, some comparative analyses and discus-
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sions for the parameters are made to further

show the advantages of the proposed meth-

ods.

4.1 Numerical Example

In the current economic situation and mar-

ket environment, a small manufacturing en-

terprise is facing low-cost competition, short-

age of funds, and technological lag. To get rid

of the current dilemma, the enterprise makes

the sustainable business model innovation to

break the old framework for enhancing its sus-

tainable development capabilities under eco-

nomic uncertainty. By consulting experts in re-

lated fields and referring to the successful cases

of other enterprises, the enterprise initially

drafted the following five innovation modes:

Industry alliance mode (A1), Media marketing

mode (A2), Precise service mode (A3), Product

innovation mode (A4), Resource management

mode (A5).

To select the best alternative, the CEO (as

the coordinator) and the experts establish three

indicators to evaluate the five m odes, which

are "Profitability ( C1)", " Feasibility ( C2)", and

"Risk (C3)". At the same time, they set the

thresholds as β � 0.4, Υ � 0.5, ε � 0.85, and

ψ � 0.71. After determining the index system,

the CEO of the enterprise invites five DMs on

the board of directors to provide evaluations

in the form of PLTSs for the five modes under

the three indicators, the detailed evaluations

are shown in Tables 1-5.

Additionally, the five DMs are invited

to give their trust degree to each other.

However, since the choice of a sustainable

business innovation mode is a crucial but

highly uncertain strategic decision, DMs can

only provide an incomplete STN as follows:

IT �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− {s4(1)} −
{

s0(0.3), s1(0.28),
s2(0.1), s3(0.32)

}
{s3(1)}

{s2(1)} − {s0(1)} {s1(0.4), s2(0.6)} {s0(0.2)}
{s0(0.56)} − − − −⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s1(0.03),
s3(0.54),
s4(0.43)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
{

s0(0.36), s1(0.2),
s2(0.1), s3(0.26)

}
{s0(0.6), s2(0.4)} − {s3(0.44)}

− − − {s2(0.77)} −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the dotted lines in Figure 2 represent the

indirect TRs among DMs.

Step 1. Use Equation (11) to calculate ECL

based on the PLTSs and ECT based on the

PLTRs as follows:

1e

3e2e

4e 5e

Figure 2 The incomplete STN
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EC1
L �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7643 0.7476 0.4529

1 0.8480 0.5790

1 0.5673 0.8289

0.5600 0.4820 0.6725

0.7466 1 0.4887

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
EC2

L �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5725 0.5738 0.5105

0.6093 0.6108 0.7753

1 0.5142 0.5600

0.5357 0.5920 0.5071

1 0.5578 0.5125

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
EC3

L �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6247 0.7504 0.7979

0.7441 0.5743 0.6197

1 0.6026 1

0.5392 0.7536 0.4609

0.6063 0.8501 0.7681

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
EC4

L �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5663 0.6355 0.7434

0.5600 1 0.5876

0.6825 0.4475 1

0.6760 0.7234 0.4650

0.5790 0.6035 0.6677

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EC5
L �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7434 0.4243 0.5203

0.6455 0.6983 1

0.5600 0.4458 0.7029

0.5254 0.6075 0.5788

0.6072 0.9520 0.8057

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ECT �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 − 0.5125 1

1 − 1 0.7496 0.56

0.7016 − − − −
0.6972 0.4918 0.7491 − 0.6403

− − − 0.8321 −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 2 Utilize Equation (12) to obtain the

normalized PLTSs and PLTRs (shown in Tables

6-10 and the matrix ĨT);

IT̃ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− {s4(1)} −
{

s0(0.3), s1(0.28),
s2(0.1), s3(0.32)

}
{s3(1)}

{s2(1)} − {s0(1)} {s1(0.4), s2(0.6)}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0(0.64), s1(0.09),
s2(0.09), s3(0.09),
s4(0.09)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0(0.87),
s1(0.04),
s2(0.03),
s3(0.03),
s4(0.03)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
− − − −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s1(0.03),
s3(0.54),
s4(0.43)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0(0.37), s1(0.21),
s2(0.11), s3(0.27),
s4(0.04)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ {s0(0.6), s2(0.4)} −
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0(0.05), s1(0.05),
s2(0.05), s3(0.8),
s4(0.05)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
− − −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s0(0.01), s1(0.01),
s2(0.96), s3(0.01),
s4(0.01)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 1 The Bounded Trust Propagation Paths for Missing Values

Missing value The bounded trust propagation paths

T13 e1 → e2 → e3; e1 → e4 → e3;e1 → e2 → e4 → e3;e1 → e5 → e4 → e3;e1 → e2 → e5 → e4 → e3

T32 e3 → e1 → e2

T34 e3 → e1 → e4; e3 → e1 → e2 → e4; e3 → e1 → e5 → e4;e3 → e1 → e2 → e5 → e4

T35 e3 → e1 → e5; e3 → e1 → e2 → e5; e3 → e1 → e4 → e5; e3 → e1 → e2 → e4 → e5

T51 e5 → e4 → e1; e5 → e4 → e3 → e1

T52 e5 → e4 → e1 → e2

T53 e5 → e4 → e3; e5 → e4 → e1 → e2 → e3

Step 3. Apply Equations (17)-(18) to calculate the missing value in ĨT, the trust propagation paths are

shown in Table 11.

T13 �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0(0.25), s0.08(0.26), s0.16(0.05), s0.2(0.14), s0.24(0.06),
s0.28(0.08), s0.32(0.04), s0.36(0.04), s0.44(0.04), s0.48(0.01),
s0.52(0.01), s0.56(0.01), s0.68(0.01)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 0.5003

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭;

T32 � {{s0(0.87), s1(0.04), s2(0.03), s3(0.03), s4(0.03)} 0.7016};

T34 �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0(0.68), s0.04(0.02), s0.08(0.01), s0.12(0.05), s0.16(0.02), s0.2(0.03),
s0.24(0.03), s0.28(0.01), s0.36(0.02), s0.4(0.03), s0.48(0.01), s0.52(0.02),
s0.6(0.03), s0.8(0.01), s0.84(0.03)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 0.5018

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭;

T35 �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s0(0.7), s0.04(0.03), s0.08(0.05), s0.12(0.04), s0.16(0.01),
s0.2(0.01), s0.24(0.01), s0.28(0.02), s0.4(0.03), s0.52(0.01),
s0.84(0.03), s1.36(0.03), s2(0.03)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ 0.5165

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭;

T51 �

{{
s0.24(0.01), s0.56(0.02), s0.64(0.01), s1.12(0.01), s1.2(0.02),
s1.32(0.29), s1.36(0.22), s1.6(0.02), s1.68(0.02), s1.76 (0.18)

}
0.5802

}
;

T52 � {{s0(0.01), s0.52(0.03), s0.76(0.01), s1.52(0.52), s2(0.41), s2.24(0.01), s3(0.01)} 0.5802};
T53 � {{s0(0.59), s0.36(0.01), s0.72(0.38), s1.12(0.01), s1.56(0.01)} 0.6107};

Step 4 Use Equation (24) to get the weights

of DMs v � (0.3041, 0.2469, 0.0268, 0.1646,

0.2576), and utilize Equation (25) to derive the

group evaluations (shown in Table 12);

Step 5 The CIs of five DMs are calculated

as CI � (0.8317, 0.8304, 0.8509, 0.8346, 0.8484),
and the GCI is equal to 0.8392. Since GCI <

0.85, go to Step 6;

Step 6 Utilize Equations (30)-(32) to identify

the non-consensus DMs EXPCH � {2, 4, 5},
and the corresponding elements set APS �

{(2, 2, 2), (2, 3, 3), (2, 5, 2), (4, 5, 2), (5, 3, 1),
(5, 3, 3)}, and then apply the model 3.1 to seek

the modification suggestions. Since there is

no feasible solution in the Model 3.1, proceed

to Step 7;

Step 7 Apply the Model 3.3 to ob-

tain that uc2∗
22

� 0, uc2∗
33

� 0.7266,

uc2∗
52

� 0.273, uc4∗
52

� 0.1044,uc5∗
31

� 0.4155,

uc5∗
33

� 0.8649, and compare them with

uc2
22

� 0.4228, uc2
33

� 0.4482, uc2
52

� 0.4493,

uc4
52

� 0.6144, uc5
31

� 0.4449, uc5
33

� 0.3735

to obtain the elements that rejected the

adjustment RPS � {(2, 3, 3), (5, 3, 3)}.
Then, we utilize Equation (34) to cal-

culate the adjustment values as: L
2

33 �

{s0(0.53), s1(0.06), s2(0.07), s3(0.09), s4(0.25)},
L

2

33 � {s0(0.53), s1(0.06), s2(0.07), s3(0.09),
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s4(0.25)};
Step 8 Utilize the Model 3.4 to calculate

the adjustment values in the set APS/RPSas

L
2

22 � {s0(0.67), s4(0.33)}, L
2

52 � {s0(1)}, L
4

52 �

{s0(0.77), s0(0.23)}, L
5

31 � {s0(0.15), s3(0.85)};
Step 9 Use Equation (25) to obtain the

final group evaluations (shown in Table

13). It is easy to find that only four

PLTSs have been adjusted located in the

coordinates {(2, 2), (3, 1), (3, 3), (5, 2)}, which

means that the original information is pre-

served to the greatest extent. More-

over, the revised CIs for the five DMs are

CI
′

� (0.8462, 0.8725, 0.8547, 0.8358, 0.8914)
and GCL

′
� 0.8601. The total adjustment cost

for CRP is 0.6168 and the final ranking of the

five modes is A3 > A1 > A4 > A2 > A5.

4.2 Comparative Analysis and Discus-
sion

In this section, sensitivity analyses and com-

parative analyses are performed to demon-

strate the viability of the proposed method.

The discussion on the effect of different values

of ε and ψ on the results of the Model 3.1 is

generated.

4.2.1 Sensitivity Analyses

Since the proposed method contains three

thresholds (Υ, ε and ψ), it is necessary to ex-

plore their effects on the results in the numer-

ical example. Here we design two simulation

tests as follows:

1) The analysis based on the propagation
threshold Υ

Let the value of Υ vary from 0 to 1 with the

step 0.0001, and use the proposed method to

obtain the weights of the five DMs, the results

are shown in Figure 3.

In Figure 3, we divide the value of Υ into

8 intervals according to the nodes where the

weights of DMs change, which is conducive

to concisely and clearly showing the influ-

ence of the value of Υ on the weights. It

can be seen that as Υ changes, the weight of

each DM changes. Especially, when the value

of Υ increases from the interval [0, 0.4917] to

[0.4918, 0.5129], the weights of the DMs e4 and

e5 decrease significantly, and the weight of DM

e2 increases significantly; when the value of Υ

increases from the interval [0.6403, 0.6972] to

[0.6973, 0.7016], the weights of the DMs e1 and

e2 decrease significantly, and the weights of

the DMs e4 and e5 increase significantly. Com-

bined with the CL matrix based on the TRs

ECT , we can obtain the following findings.

When the value of Υ is greater than 0.4917,

it is difficult for the DM e4 to trust the advice

from the mediator e2, so the propagation paths

containing e4 → e2 are interrupted; When the

value of Υ is greater than 0.6972, the prop-

agation paths containing e1 → e4, e2 → e5,

e4 → e2, and e4 → e5 are all interrupted.

These findings demonstrate the effectiveness

of bounded trust propagation.
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Figure 3 The Effect of Υ on DMs’ Weights

2) The analysis based on the consensus
threshold ε and the CL threshold ψ

Let the value of ε change in the interval

[0.8393, 1] and the value of ψ change in the in-
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Table 2 The PLTSs Given by the DM e1

C1 C2 C3

A1 {s1(0.33), s3(0.67)} {s0(0.59), s1(0.41)} {s0(0.15), s2(0.24), s3(0.17), s4(0.26)}
A2 {s3(1)} {s1(0.89), s2(0.08), s3(0.03)} {s0(0.05), s1(0.42), s3(0.4), s4(0.06)}
A3 {s2(1)} {s0(0.42), s1(0.29), s2(0.12)} {s3(0.17), s4(0.83)}
A4 {s0(0.2)} {s0(0.14), s2(0.05), s3(0.34), s4(0.24)} {s2(0.58), s4(0.18)}
A5 {s0(0.42), s4(0.58)} {s0(1)} {s0(0.1), s1(0.42), s2(0.31), s3(0.1), s4(0.07)}

Table 3 The PLTSs Given by the DM e2

C1 C2 C3

A1 {s1(0.33), s2(0.23), s3(0.42), s4(0.02)} {s2(0.39), s4(0.15)} {s0(0.1), s1(0.35), s3(0.29), s4(0.26)}
A2 {s0(0.43), s3(0.19), s4(0.38)} {s0(0.18), s2(0.03), s3(0.2), s4(0.59)} {s2(0.29), s4(0.71)}
A3 {s4(1)} {s0(0.11), s1(0.26), s2(0.4), s4(0.23)} {s0(0.2)}
A4 {s1(0.35), s2(0.37), s3(0.07), s4(0.21)} {s0(0.43), s1(0.03), s2(0.13), s3(0.41)} {s0(0.21), s1(0.02), s2(0.37), s4(0.17)}
A5 {s0(1)} {s0(0.11), s1(0.42), s2(0.25)} {s0(0.31), s2(0.09), s3(0.31), s4(0.29)}

Table 4 The PLTSs Given by the DM e3

C1 C2 C3

A1 {s2(0.48), s3(0.15), s4(0.37} {s0(0.61), s1(0.39)} {s2(0.77), s4(0.23)}
A2 {s0(0.44), s1(0.56)} {s0(0.34), s1(0.04), s2(0.37)} {s1(0.51), s2(0.29), s3(0.2)}
A3 {s0(1)} {s0(0.37), s4(0.32)} {s2(1)}
A4 {s0(0.37), s1(0.18), s4(0.24)} {s1(0.63), s3(0.37)} {s0(0.18), s1(0.21), s2(0.25), s3(0.25)}
A5 {s0(0.37), s1(0.43), s4(0.18)} {s0(0.8)} {s1(0.72), s4(0.24)}

Table 5 The PLTSs Given by the DM e4

C1 C2 C3

A1 {s0(0.24), s2(0.47), s3(0.01), s4(0.14)} {s1(0.27), s3(0.48)} {s0(0.55), s3(0.45)}
A2 {s0(0.2)} {s2(1)} {s0(0.33), s1(0.09), s4(0.43)}
A3 {s0(0.36), s3(0.51)} {s0(0.15), s1(0.2), s2(0.11), s3(0.29)} {s4(1)}
A4 {s0(0.41), s1(0.01), s4(0.49)} {s0(0.66), s1(0.03), s3(0.31)} {s1(0.26), s2(0.2), s3(0.07), s4(0.26)}
A5 {s0(0.39), s1(0.2)} {s0(0.37), s2(0.07), s4(0.42)} {s0(0.33), s1(0.04), s4(0.56)}

Table 6 The PLTSs Given by the DM e5

C1 C2 C3

A1 {s1(0.45), s4(0.55)} {s0(0.11), s1(0.28), s2(0.13), s3(0.29), s4(0.19)} {s0(0.22), s1(0.09), s3(0.35), s4(0.34)}
A2 {s0(0.3), s1(0.55), s4(0.05)} {s0(0.01), s1(0.56)} {s3(1)}
A3 {s0(0.2)} {s1(0.19), s2(0.15), s3(0.29), s4(0.13)} {s0(0.56)}
A4 {s0(0.27), s1(0.25), s4(0.08), s4(0.4)} {s1(0.2), s2(0.44), s4(0.36)} {s0(0.42), s2(0.06), s3(0.01), s4(0.34)}
A5 {s0(0.42), s1(0.2), s4(0.38)} {s0(0.97), s4(0.03)} {s1(0.78), s4(0.22)}
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Table 7 The Normalized PLTSs Given by the DM e1

C1 C2 C3

A1 {s1(0.33), s3(0.67)} {s0(0.59), s1(0.41)} {s0(0.17), s1(0.1), s2(0.26), s3(0.19), s4(0.28)}
A2 {s3(1)} {s1(0.89), s2(0.08), s3(0.03)} {s0(0.06), s1(0.43), s2(0.03), s3(0.41), s4(0.07)}
A3 {s2(1)} {s0(0.45), s1(0.32), s2(0.15), s3(0.04), s4(0.04)} {s3(0.17), s4(0.83)}
A4 {s0(0.64), s1(0.09), s2(0.09), s3(0.09), s4(0.09)} {s0(0.17), s1(0.12), s2(0.08), s3(0.36), s4(0.27)} {s0(0.03), s1(0.03), s2(0.66), s3(0.02), s4(0.26)}
A5 {s0(0.42), s4(0.58)} {s0(1)} {s0(0.1), s1(0.42), s2(0.31), s3(0.1), s4(0.07)}

Table 8 The Normalized PLTSs Given by the DM e2

C1 C2 C3

A1 {s1(0.33), s2(0.23), s3(0.42), s4(0.02)} {s0(0.07), s1(0.07), s2(0.52), s3(0.06), s4(0.28)} {s0(0.1), s1(0.35), s3(0.29), s4(0.26)}
A2 {s0(0.43), s3(0.19), s4(0.38)} {s0(0.18), s2(0.03), s3(0.2), s4(0.59)} {s2(0.29), s4(0.71)}
A3 {s4(1)} {s0(0.11), s1(0.26), s2(0.4), s4(0.23)} {s0(0.64), s1(0.09), s2(0.09), s3(0.09), s4(0.09)}
A4 {s1(0.35), s2(0.37), s3(0.07), s4(0.21)} {s0(0.43), s1(0.03), s2(0.13), s3(0.41)} {s0(0.24), s1(0.05), s2(0.4), s3(0.11), s4(0.2)}
A5 {s0(1)} {s0(0.14), s1(0.45), s2(0.28), s3(0.03), s4(0.1)} {s0(0.31), s2(0.09), s3(0.31), s4(0.29)}

Table 9 The Normalized PLTSs Given by the DM e3

C1 C2 C3

A1 {s2(0.48), s3(0.15), s4(0.37)} {s0(0.61), s1(0.39)} {s2(0.77), s4(0.23)}
A2 {s0(0.44), s1(0.56)} {s0(0.39), s1(0.09), s2(0.42), s3(0.05), s4(0.05)} {s1(0.51), s2(0.29), s3(0.2)}
A3 {s0(1)} {s0(0.47), s1(0.04), s2(0.04), s3(0.04), s4(0.41)} {s2(1)}
A4 {s0(0.41), s1(0.22), s2(0.04), s3(0.05), s4(0.28)} {s1(0.63), s3(0.37)} {s0(0.19), s1(0.23), s2(0.26), s3(0.26), s4(0.06)}
A5 {s0(0.37), s1(0.43), s4(0.18)} {s0(0.96), s1(0.01), s2(0.01), s3(0.01), s4(0.01)} {s1(0.74), s4(0.26)}

Table 10 The Normalized PLTSs Given by the DM e4

C1 C2 C3

A1 {s0(0.26), s1(0.06), s2(0.49), s3(0.03), s4(0.16)} {s0(0.03), s1(0.35), s2(0.03), s3(0.56), s4(0.03)} {s0(0.55), s3(0.45)}
A2 {s0(0.64), s1(0.09), s2(0.09), s3(0.09), s4(0.09)} {s2(1)} {s0(0.36), s1(0.12), s2(0.03), s3(0.03), s4(0.46)}
A3 {s0(0.4), s1(0.02), s2(0.01), s3(0.56), s4(0.01)} {s0(0.18), s1(0.23), s2(0.14), s3(0.31), s4(0.14)} {s4(1)}
A4 {s0(0.43), s1(0.03), s2(0.02), s3(0.01), s4(0.51)} {s0(0.66), s1(0.03), s3(0.31)} {s0(0.11), s1(0.28), s2(0.22), s3(0.1), s4(0.29)}
A5 {s0(0.1), s1(0.31), s2(0.06), s3(0.06), s4(0.06)} {s0(0.4), s1(0.03), s2(0.1), s3(0.02), s4(0.45)} {s0(0.34), s1(0.06), s2(0.01), s3(0.01), s4(0.58)}

Table 11 The Normalized PLTSs Given by the DM e5

C1 C2 C3

A1 {s1(0.45), s4(0.55)} {s0(0.11), s1(0.28), s2(0.13), s3(0.29), s4(0.19)} {s0(0.22), s1(0.09), s3(0.35), s4(0.34)}
A2 {s0(0.32), s1(0.57), s2(0.02), s3(0.02), s4(0.07)} {s0(0.16), s1(0.72), s2(0.04), s3(0.04), s4(0.04)} {s3(1)}
A3 {s0(0.64), s1(0.09), s2(0.09), s3(0.09), s4(0.09)} {s0(0.13), s1(0.22), s2(0.18), s3(0.31), s4(0.16)} {s0(0.88), s1(0.03), s2(0.03), s3(0.03), s4(0.03)}
A4 {s0(0.27), s1(0.25), s4(0.08), s4(0.4)} {s1(0.2), s2(0.44), s4(0.36)} {s0(0.44), s1(0.07), s2(0.09), s3(0.03), s4(0.37)}
A5 {s0(0.42), s1(0.2), s4(0.38)} {s0(0.97), s4(0.03)} {s1(0.78), s4(0.22)}

Table 12 The Original Group Evaluations

C1 C2 C3

A1 {s0(0.04), s1(0.31), s2(0.15), s3(0.32), s4(0.18)} {s0(0.25), s1(0.28), s2(0.17), s3(0.18), s4(0.12)} {s0(0.23), s1(0.14), s2(0.1), s3(0.29), s4(0.24)}
A2 {s0(0.31), s1(0.18), s2(0.02), s3(0.37), s4(0.12)} {s0(0.09), s1(0.46), s2(0.22), s3(0.07), s4(0.16)} {s0(0.08), s1(0.17), s2(0.09), s3(0.39), s4(0.27)}
A3 {s0(0.26), s1(0.03), s2(0.33), s3(0.11), s4(0.27)} {s0(0.24), s1(0.26), s2(0.21), s3(0.15), s4(0.14)} {s0(0.38), s1(0.03), s2(0.06), s3(0.08), s4(0.45)}
A4 {s0(0.35), s1(0.19), s2(0.14), s3(0.05), s4(0.27)} {s0(0.27), s1(0.12), s2(0.17), s3(0.27), s4(0.17)} {s0(0.2), s1(0.09), s2(0.37), s3(0.07), s4(0.27)}
A5 {s0(0.58), s1(0.11), s2(0.01), s3(0.01), s4(0.29)} {s0(0.68), s1(0.12), s2(0.09), s3(0.01), s4(0.1)} {s0(0.16), s1(0.36), s2(0.12), s3(0.11), s4(0.25)}



Pan and Xu: A Confidence-based Consensus Model for Multi-Attribute Group Decision Making 507

Table 13 The Final Group Evaluations

C1 C2 C3

A1 {s0(0.04), s1(0.31), s2(0.15), s3(0.32), s4(0.18)} {s0(0.25), s1(0.28), s2(0.17), s3(0.18), s4(0.12)} {s0(0.23), s1(0.14), s2(0.1), s3(0.29), s4(0.24)}
A2 {s0(0.31), s1(0.18), s2(0.02), s3(0.37), s4(0.12)} {s0(0.22), s1(0.46), s2(0.21), s3(0.02), s4(0.09)} {s0(0.08), s1(0.17), s2(0.09), s3(0.39), s4(0.27)}
A3 {s0(0.13), s2(0.31), s3(0.31), s4(0.25)} {s0(0.24), s1(0.26), s2(0.21), s3(0.15), s4(0.14)} {s0(0.31), s1(0.02), s2(0.06), s3(0.08), s4(0.53)}
A4 {s0(0.35), s1(0.19), s2(0.14), s3(0.05), s4(0.27)} {s0(0.27), s1(0.12), s2(0.17), s3(0.27), s4(0.17)} {s0(0.2), s1(0.09), s2(0.37), s3(0.07), s4(0.27)}
A5 {s0(0.58), s1(0.11), s2(0.01), s3(0.01), s4(0.29)} {s0(0.95), s4(0.05)} {s0(0.16), s1(0.36), s2(0.12), s3(0.11), s4(0.25)}

terval [0.5, 1], where the steps are both 0.0001,

the setting ranges of ε and ψ for the Models 3.1

and 3.4 are explored and the final results are

as follows:

As shown in Table 14, the range of ε is

[0.8393, 0.8520], when ε ∈ [0.83930.8485], we

can obtain all modification suggestions for

non-consensus DMs through the Model 3.1;

when ε ∈ [0.84840.8520], we need to apply

the Model 3.3 to identify the DMs who refuse

modification and use the Model 3.4 to generate

modification suggestions for the other DMs;

when ε ∈ [0.85211], the group fails to reach

a consensus, we need to re-invite DMs to give

their evaluations. Combined with the identi-

fication rules in Subsection 3.4, it can be seen

that the smaller the value of ψ, the better it

can ensure that the evaluations with a higher

CL can be retained. Based on Table 14, as the

value of ε increases from 0.8393 to 0.8520, the

minimum value of ψ increases from 0.6902 to

0.7030, which means that more evaluations are

identified in the adjusted range.

4.2.2 Comparative Analyses

1) The comparison for the measurements of
CL

To observe the difference between the pro-

posed improvement measurement of CL (No.

1) with the method proposed by You and Hou

(2022) (No. 2), the method proposed by Li et

al. (2022) (No. 3) and the method proposed

by Zhong et al. (2022) (No. 4), we design a

simulation test.

We set the linguistic term set as S �

{s0 , s1 , s2 , s3 , s4} and the length of PLTS is

#L ≤ 5. Considering the method 3 contains

two parameters α � 0.4, β1 � 0.3, we set the

parameter in our method as β2 � α � 0.4 since

the entropy can represent the hesitancy and

preference of DMs. Then, we randomly gen-

erate 1000 PLTSs through MATLAB software

and use the above four methods to calculate

their CLs, the results are shown as:

From Figure 4, the value of CL obtained by

the method 1(green line) is generally higher

than the value of CL obtained by the method

3 (red line), which confirms that the method

3 has an underestimation of the CLs. More-

over, it is easy to find that the values of CL

obtained by the methods 2 (blue line) and 4

(yellow line) fluctuate more than the method

1, which means the lack of completeness or the

subjective design for the correlation function

between the hesitancy and preference can lead

to underestimation or overestimation of the re-

sults. The comparative analysis shows that the

proposed method can acquire more stable re-

sults.

2) The comparison for the determination
method of the DMs’ weights

To further illustrate the effectiveness of

the weight determination method based on

bounded trust propagation, we compare the

method proposed in Subsection 3.3 (No. 1)
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Table 14 The Setting Ranges of ε and ψ

Consensus threshold ε CL threshold ψ Model selection

[0.8393, 0.8397] [0.6902, 0.7752], [0.8289, 1] Model 3.1

[0.8398, 0.8405] [0.6651, 0.7752], [0.8289, 1) Model 3.1

[0.8406, 0.8465] [0.6651, 0.7434] Model 3.1

[0.8466, 0.8485] [0.6902, 0.6913] Model 3.1

[0.8484, 0.8509] [0.7030, 0.7434] Model 3.4

[0.8410, 0.8520] [0.7030, 0.7128] Model 3.4

Figure 4 The Comparative Result for the Measurements of CL

with the method of removing the CL of DMs

in Equation (24) (No. 2) and the method pro-

posed by Gao et al. (2021) (No. 3), the results

are shown in Figure 5.

From Figure 5, it can be seen that the

weights obtained by the three methods are cer-

tainly different. In detail, the weights of the

DMs e1, e2, e4 and e5 acquired by the method

3 are quite different from the weights obtained

by the methods 1 and 2. And there is much

difference between the weights of the DMs e1

and e2 get by the method 1 and their weights

obtained by the method 2. This shows that it

is necessary to consider CL and bounded trust

propagation when determining the weights of

DMs.

3) The comparison for CRP

To explore the advantages of the

confidence-based CRP for MAGDM pro-

posed in Subsection 3.4, we compare it with

the traditional MCC model and the linear

combination method proposed by You and

Hou (2022), the results are shown in Table 15.

Compared with the traditional MCC model

and the linear combination method proposed

by You and Hou (2022), the adjustment amount
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Figure 5 The Comparative Result for the Weight Determination Method

Table 15 Comparison for Different Consensus Method

Method Iterations Adjustment number Adjustment value GCI Ranking of alternatives

Method of You and Hou [33] 1 15 4.6017 0.8542 A1 > A2 > A3 > A4 > A5

Traditional MCC model 1 20 3.186 0.8808 A3 > A1 > A2 > A4 > A5

Proposed method 1 6 1.2137 0.8601 A3 > A1 > A4 > A2 > A5

of evaluations and overall adjustment value ob-

tained by the proposed method is the smallest,

but the final GCI is between the two methods.

At the same time, it can be seen that the rank-

ing results obtained by the linear combination

method are quite different from those based on

the MCC model. Moreover, the difference be-

tween the ranking of the alternatives obtained

by the traditional MCC model and the pro-

posed method is mainly reflected in the rank-

ing of the alternatives A2 and A4. It demon-

strates that the proposed method can achieve a

better level of consensus on the basis of retain-

ing the original evaluations as much as possi-

ble and respecting the adjustment willingness

of DMs. In other words, the decision-making

results obtained through the proposed method

can better reflect the needs and concerns of all

DMs.

4.2.3 Simulation Tests

Through the above sensitivity analysis, it can

be seen that whether the Model 3.1 has a fea-

sible solution largely depends on the values of

ε and ψ. Hence, we design simulation tests to

explore the ranges of ε and ψ, which can serve

as references for the coordinator who sets these

two parameters in the actual decision-making

process. Specifically, we set the number of al-

ternatives as m � 5, the number of attributes as

n � 5, the number of DMs as K � 5. Then, we

use MATLAB to randomly generate 1000 deci-

sion matrices and let the value of ε change in

the interval [0.8, 1] and the value of ψ change

in the interval [0.5, 1], where the steps are both

0.01. After that, we can obtain the average ad-

justment cost for the 1000 matrices where we

set the adjustment cost as 0 when Model 3.1 has

no solution. The results are shown in Figure 6.

From Figure6, we can see when the value
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Figure 6 The Effect of ε and ψ on Adjustment Cost in the Model 3.1

of ψ is greater than 0.65, the Model 3.1 has

a feasible solution. Moreover, when the val-

ues of ε and ψ increase, the average adjust-

ment cost increases. When ε ∈ [0.8, 0.9] and

ψ ∈ [0.65, 0.75], the average adjustment cost is

low. Furthermore, the larger the value ofψ, the

more evaluations of DMs are modified. And

the larger the value of ε, the higher the con-

sensus level of group. Hence, the coordinator

needs to make a compromise between a high

consensus level and retaining the original eval-

uation in the actual decision- making process,

which both are critical to gain support from all

DMs.

5. Conclusions

Psychological factors of DMs play a vital role

in the actual decision-making process. To ob-

tain accurate and reliable group evaluations

supported by all DMs, we utilize the CL and

trust degree of DMs to bridge the theory of

STN analysis and the MCC model. It pro-

vides a new framework to solve the STN-based

MAGDM problems. In this framework, the

bounded trust propagation is proposed to de-

scribe the psychology of DMs when they in-

directly trust others. Then, the determination

method of DMs’ weights is proposed based on

the CID in STN and the CL of DMs in the de-

cision matrix. In the CRP, we adopt the CL to

fit the unit adjustment cost at the element level

and combine it with the COD in STN to repre-

sent the acceptable adjustment range for DMs.

Thus, the proposed confidence-based CRP can

consider the psychology of all DMs while en-

suring the pursuit of the minimum cost. Mean-

while, it offers an approach that is impartial for

determining DMs’ noncooperative behavior.

However, this paper still has some limita-

tions that should be addressed in future re-

search. Firstly, only the CL and trust degree

are considered when characterizing the psy-
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chology of DMs, and future research can fur-

ther explore conflicts of interest among DMs in

CRP. Next, the bounded trust propagation only

considers the interactions between two DMs,

the future research can focus on more complex

interactions among more than two DMs.
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