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Abstract. There are two main issues of fuzzy multi-attribute decision-making: determine the weight of each

attribute and choose an appropriate aggregation method to integrate the evaluation information of different

attributes. In order to solve the multi-attribute decision-making problem in generalized orthopair fuzzy

environment with unknown attribute weights more effectively, we give a decision-making method based on

generalized orthopair fuzzy definite integrals. To be specific, we first introduce the complement operations

of q-rung orthopair fuzzy numbers, and then investigate the multiplicative q-rung orthopair fuzzy calculus.

Through the complement operations, we establish the mutual conversion formula between additive and

multiplicative q-rung orthopair fuzzy calculus theory. Then, we give a multiplicative integral-based q-rung

orthopair fuzzy multi-attribute decision-making method, and discuss the relationship between the q-rung

orthopair fuzzy definite integrals and the q-rung orthopair fuzzy weighted geometric operator. Compared

with traditional decision-making methods, this method does not rely on subjective weight information,

which is especially important when dealing with large sample data. Finally, the application of election

is studied to verify the feasibility and effectiveness of the proposed method. With the introduction of

generalized orthopair fuzzy sets, the expression form of election evaluation information has been expanded.

We also provide some examples to compare the obtained results with the results generated by the addition

operation and reveal the correlation between them.

Keywords: Fuzzy sets, decision making, aggregation operators

1. Introduction
Due to the limitations of decision makers’

(DMs’) cognitions and the complexity of

the decision-making environment, uncertainty

widely exists in actual decision-making prob-

lems. It is a very necessary and urgent problem

to deal with uncertainty with appropriate the-

ories and methods. Bellman and Zadeh (1970)

first applied the method of fuzzy mathemat-

ics to multi-attribute decision-making prob-

lems. Yager (1977), Baas and Kwakernaak

(1977) gave the earliest classical methods of

fuzzy multi-attribute decision-making. Fuzzy

sets provide an effective quantitative repre-

sentation tool for dealing with the cognitive

uncertain information faced in the decision-

making process. Generalized orthopair fuzzy

sets, also known as the q-rung orthopair fuzzy

sets (q-ROFSs), are useful extensions of fuzzy

sets (Yager 2017, Yager and Alajlan 2017). Be-

cause they can dynamically adjust the degree

of hesitation when describing uncertain infor-

mation through the parameter q, thus having

wider constraints and stronger modeling capa-

bilities, and are successfully applied to solve

practical uncertain decision-making problems

(Liu et al. 2020, Wei et al. 2018). Chen and

Hwang (1992) systematically summarized the

decision-making method in the fuzzy environ-

ment and pointed out that the multi-attribute

decision-making method in the fuzzy environ-

ment can usually be divided into two steps: 1)

The first step is to determine the importance

degree of each attribute, that is, the attribute
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weight; 2) The second step is to select an infor-

mation aggregation operator suitable for the

given fuzzy data, and integrate the evaluation

information and attribute weight information

of different attributes. After that, we can use

the fuzzy ranking method to sort and compare

the fuzzy utility values, and finally obtain the

optimal decision result.

As we know, the most important thing

in the first step is to determine the attribute

weight. The attribute weight and the fuzzy in-

formation corresponding to each attribute will

be integrated into the fuzzy utility value of

each scheme. Therefore, whether the weights

are accurate and reliable will have an important

impact on the decision-making results. How

to scientifically, reasonably and objectively de-

termine the weights of attributes in decision-

making problems is an important and difficult

issue in the research of fuzzy multi-attribute

decision-making (Liu et al. 2018, Krishanku-

mar et al. 2020). In the existing research, the

methods for solving attribute weights can be

roughly divided into three categories: 1) Sub-

jective methods assume that the weights of at-

tributes are determined using subjective pref-

erences or empirical information provided by

DMs. The most commonly used methods in-

clude AHP (Saaty 1977, Kou and Chang 2014)

and Delphi (Hwang and Yoon 1981) methods.

2) Contrary to the subjective weight solution

method, the weight calculation in the objective

method completely relies on the existing de-

cision data and the use of various mathemat-

ical models to model and solve the attribute

weights, mainly including multi-objective pro-

gramming models (Xu 2010 2011) , the infor-

mation entropy-based weight solution meth-

ods (Chen and Li 2010, Xia and Xu 2012)

and attribute weight solving method based on

ideal points (Xu 2007, Zhao 2016), etc. 3)Hy-

brid weight solving methods, such as TOPSIS-

based hybrid weighting method (Wang and

Lee 2009), entropy-based hybrid weighting

method(Li et al. 2015), PSO-based weighting

method (Nabavi et al. 2010) and sparse set

method (Zhang and Zhou 2011), etc. However,

the above-mentioned methods still have some

shortcomings. For example, the subjective

weighting method relies heavily on the sub-

jective judgment and empirical information of

the DMs, and the weighting result is subjec-

tive and easily affected by DMs’ personal eval-

uations. Most objective weighting methods

and hybrid weighting methods rely on multi-

objective programming models, which will in-

crease the computational complexity and re-

duce efficiency and timeliness. These defects

are more prominent when dealing with large-

scale data.

Aiming at the second step of fuzzy multi-

attribute decision-making problems, most of

the existing researches on q-rung orthopair

fuzzy multi-attribute decision-making meth-

ods focus on how to use various q-rung or-

thopair fuzzy aggregation operators for in-

formation integration. Such as the q-rung

orthopair fuzzy weighted averaging operator

and the q-rung orthopair fuzzy weighted ge-

ometric operator (Liu and Wang 2018); the

q-rung orthopair fuzzy ordered weighted aver-

aging aggregation operator (Yager et al. 2018);

the fuzzy aggregation operator based on Cho-

quet integral (Yager et al. 2018); the q-rung or-

thopair fuzzy Muirhead mean operator (Wang

et al. 2019); the q-rung orthopair fuzzy dual

Maclaurin symmetric mean operator(Wei et

al. 2019); the q-rung orthopair fuzzy Bonfer-

roni mean operator (Liu and Liu 2018); the

q-rung orthopair fuzzy Archimedean Bonfer-

roni mean operator (Liu and Wang 2018); the

q-rung orthopair fuzzy partitioned Bonferroni

mean operator (Yang and Pang 2019), etc.

However, since the attribute weight and the q-

rung orthopair fuzzy information correspond-

ing to each attribute will be directly fused dur-

ing the integration process, the decision re-

sults obtained by these information integration
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methods are greatly affected by the weight in-

formation. Besides, these studies have focused

only on the aggregation of relatively few and

discrete data. Although some scholars have

conducted research on the integration of con-

tinuous information in an intuitionistic fuzzy

environment (Lei and Xu 2015 2016, Ai and

Xu 2017), these studies rarely involve q-rung

orthopair fuzzy information (Shu et al. 2019,

Shao and Zhuo 2020), especially in q-rung or-

thopair fuzzy multi-attribute decision-making

problems under multiplicative operations.

Therefore, this study focuses on overcom-

ing the shortcomings mentioned in the above

two steps, and the contributions of this paper

can be summarized as follows:

1) We introduce some complement opera-

tions of q-rung orthopair fuzzy numbers (q-

ROFNs) and properties of q-rung orthopair

fuzzy functions (q-ROFFs)’ derivatives. They

are the basis for further research on the multi-

plicative integrals of q-ROFFs.

2) We propose the integral theory of q-

ROFFs under their multiplication operations,

which is parallel of the additive integrals (Gao

et al. 2020). We also intend to study the cor-

relations between them, which will make the

q-rung orthopair fuzzy calculus (q-ROFC) the-

ory more systematic and complete. Compared

with the previous research in the intuitionis-

tic fuzzy environment (Lei and Xu 2015 2016,

Ai and Xu 2017), our work is completely non-

linear, so it has different operations and prop-

erties in mathematics. In addition, because

q-ROFF is applicable to all ranges of q ∈ [1,∞),
it has a wider range of applications and is

more suitable for describing multi-attribute

decision-making problems.

3) We are trying to propose an informa-

tion integration method based on multiplica-

tive integrals, which has a strong mathemat-

ical and theoretical foundation. In addition,

the relationship between q-ROFF’s definite in-

tegral and q-rung orthopair fuzzy weighted

geometric (q-ROFWG) operator is discussed.

The former one focuses on processing and col-

lecting the position distribution information of

q-rung orthopair fuzzy information, so it is

more suitable for processing information inte-

gration problems with unknown weights. Ac-

tually, by defining appropriate integrands and

selecting appropriate integral limits, we can

use multiplicative q-ROFIs to fuse continuous

and large-scale q-rung orthopair fuzzy infor-

mation, which greatly improves the time effi-

ciency. This is extremely important in multi-

attribute decision-making problems dealing

with big data.

In order to do that, the remainder of this pa-

per is set up as follows: We give some prepara-

tions for the whole work in Section 2. In Section

3, we investigate the multiplication q-ROFIs,

including the indefinite and definite integrals.

And then we focus on studying the correlation

between the multiplicative and additive inte-

grals of the q-ROFFs. In Section 4, we discuss

the relationship between the q-rung orthopair

fuzzy definite integral and the q-ROFWG op-

erator, and investigate information integration

based on q-rung orthopair fuzzy multiplicative

integrals. In Section 5, in order to verify the

effectiveness and superiority of the proposed

method, it is applied to the voting decision-

making, and a set of mutual conversion meth-

ods between additive calculus and multiplica-

tion calculus is established to show the rela-

tionship between them. Finally, we end the

paper with some concluding remarks in Sec-

tion 6.

2. Some Concepts Related to the q-
ROFS

In this section, we review and define some re-

lated concepts, which will be frequently used

throughout this paper.

Definition 1 (Yager 2017). Let X be a given non-

empty set, then a q-ROFS A has the form:

A � {〈x , μA (x) , vA (x)〉 | x ∈ X}
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where μA : X → [0, 1] is defined as the member-

ship function and the function vA : X → [0, 1] is

defined as the nonmembership function. For any

x ∈ X, we have

0 ≤ (
μA(x)

) q
+ (vA(x))q ≤ 1, q ≥ 1

Moreover, μA(x) and vA(x) respectively

represent the membership degree and the non-

membership degree of x in X. For convenience,

we consider 〈μ, v〉 as a q-ROFN.

Definition 2 (Liu and Wang 2018). Let q ≥ 1

and α � 〈μα, vα〉, β � 〈μβ, vβ〉 be two q-ROFNs.

Then, the addition and multiplication operations

between them are defined as:

α ⊕ β �
〈(
μ

q
α + μ

q
β − μq

αμ
q
β

) 1
q
, vαvβ

〉
(1)

α ⊗ β �
〈
μαμβ,

(
vq
α + vq

β − vq
αvq
β

) 1
q
〉

(2)

Based on (1)-(2), we give the following def-

inition:

Definition 3 (Gao et al. 2019) . Let α and β be as

mentioned in Definition 2. We have

β � α �

〈(
μ

q
β − μq

α

1 − μq
α

) 1
q

,
vβ
vα

〉
,

where 0 ≤
vq
β

vq
α

≤
(1 − μq

β)
(1 − μq

α)
≤ 1

(3)

β � α �

〈
μβ

μα
,

(
vq
β − vq

α

1 − vq
α

) 1
q
〉
,

where 0 ≤
μ

q
β

μ
q
α

≤
(1 − vq

β)
(1 − vq

α)
≤ 1

(4)

Furthermore, for λ ≥ 0,⎧⎪⎪⎨⎪⎪⎩
λα �

〈
(1 − (1 − μq

α)λ)
1
q , vλα

〉
αλ �

〈
μλα , (1 − (1 − vq

α)λ)
1
q

〉 (5)

The restrictions imposed in (3) and (4) guar-

antee the legitimacy of the difference and quo-

tient operations.

In order to compare and rank q-ROFNs, we

next introduce some partial orders of the q-

ROFNs:

Definition 4 (Gao et al. 2019). Let αi �

〈μαi , vαi 〉 i � 1, 2 be q-ROFNs and S be a set,

which consists of all the q-ROFNs. Then there are

partial orders defined in the set S as follows:

• α1 
 α2 if μα1 ≤ μα2 and vα1 ≥ vα2

• α1 � α2 if μα1 ≥ μα2 and vα1 ≤ vα2

Definition 5 Let αi � 〈μαi , vαi 〉 be given as in

Definition 4.

(i). If α1⊗α3 � α2, then we denote by α1 � α2.

Particularly, α1 � α2 when α3 � 〈1, 0〉.
(ii). If α1⊕α3 � α2, then we denote by α1�α2.

Particularly, α1 � α2 when α3 � 〈0, 1〉.

Then, we propose the following lemma

which is concerned with the complement op-

erations of q-ROFNs:

Lemma 1 Let α and αi be q-ROFNs and

S be the set of all the q-ROFNs, and let

S⊕(α) �
{
β ⊕ α ∈ S | β ∈ S} and S⊗(α) �{

β ⊗ α ∈ S | β ∈ S} be the additive set and the mul-

tiplicative set. Also we introduce

α � 〈μα, vα〉 :� 〈vα, μα〉 (6)

Then,

(i). α1 ⊕ α2 � α1 ⊗ α2 , α1 � α2 � α1 �
α2 , λα � αλ,

(ii). S⊕(α) � S⊗(α), S�(α) � S�(α).

Proof of Lemma 1. The first part in (i). It fol-

lows from Definition 2 and (6) that

α1 ⊕ α2 �

〈(
μ

q
α1

+ μ
q
α2

− μq
α1
μ

q
α2

) 1
q , vα1 vα2

〉
�

〈
vα1 vα2 ,

(
μ

q
α1

+ μ
q
α2

− μq
α1
μ

q
α2

) 1
q
〉

� 〈vα1 , μα1〉 ⊗ 〈vα2 , μα2〉 � α1 ⊗ α2

The middle equality is similar. Let us turn

to the last one in (i). Again using Definition 3
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and (6), we have

λα �

〈
(1 − (1 − μq

α)λ)
1
q , vλα

〉
�

〈
vλα , (1 − (1 − μq

α)λ)
1
q

〉
� 〈vα, μα〉λ � αλ

The proof of (ii). For any β ∈ S⊕(α), there exists

γ ∈ S such that β � α ⊕ γ � α ⊗ γ. Hence

β ∈ S⊗(α), and then

S⊕(α) ⊆ S⊗(α) (7)

Moreover, if β ∈ S⊗(α), then we have β � α ⊗
γ � α ⊕ γ for some γ ∈ S. Thus, β � α ⊕
γ, which implies β ∈ S⊕(α), and clearly, β ∈
S⊕(α). Therefore,

S⊗(α) ⊆ S⊕(α) (8)

The combination of (7) and (8) yields the first

part of (ii). The argument of latter one runs

similarly. �

For the readers to understand more intu-

itively, we recall the addition region of α0 and

the multiplication region of β0 , as shown in

Figure 1 (Gao et al. 2019). Next, with comple-

ment concept in Lemma 1, we explain connec-

tion between them from a geometric perspec-

tive. We see that, by (6), α is the reflection of

α along the line μ � v. See Figure 2 below.

This implies that the region S⊕(α) is perfectly

symmetric with S⊕(ᾱ) along the line μ � v.

Figure 1 S⊕(α0) with bq
α0

�
vq
α0

1−μq
α0

and S⊗(β0) with

bq
β0

�
μ

q
β0

1−vq
β0

Figure 2 Complement of α0

Figure 3 Complement of S⊕(α0)

The segments of the ellipses I and II, namely

vq/bq
α0

+ μq � 1 and vq + μq/bq
ᾱ0

� 1, where

bq
α0

� vq
α0
/(1−μq

α0
), bq
ᾱ0

� vq
ᾱ0
/(1−μq

ᾱ0
), are also

symmetric with each other along the line μ �

v. In other words, if we switch the components

v and μ, then I becomes II. Therefore, we have

S⊗(β) � S⊗(ᾱ) � S⊕(α), as long as β � ᾱ, can

be shown in Figure 3. The same argument

explains the relationship of S�(α) � S�(α).
Definition 6 (Gao et al. 2019). Let the continuous

functions of multi-variables be

f (μα, vα) : [0, 1] × [0, 1] �→ [0, 1]
g(μα, vα) : [0, 1] × [0, 1] �→ [0, 1] (9)

Then the function

ϕ(α) � 〈 f (μα, vα), g(μα, vα)〉
with 0 ≤ f q

+ gq ≤ 1
(10)

is called a continuous q-ROFF in terms of f and g.
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3. Multiplicative Derivative and Differ-
ential Operations of q-ROFFs

First, we analyze the derivative operations of

q-ROFFs based on the multiplication. For the

sake of convenience, we explain some termi-

nologies used in this section. For a given

function of two variables f (x , y), we denote

by
∂ f (x ,y)
∂x its partial derivative with respect to

x. In addition, we use
β
α :� β � α for sim-

plicity. When it comes to a limit of q-ROFF

ϕ(α) � 〈 f (μα, vα), g(μα, vα)〉 in multiplica-

tion (quotient), we mean

lim
β�α→〈1,0〉

ϕ(α) �〈
lim

μβ→μα , vβ→vα
f (μβ, vβ), lim

μβ→μα , vβ→vα
g(μβ, vβ)

〉
where the right-hand side of quantity is the

standard limits in calculus.

Definition 7 Let the q-ROFF ϕ(α) be given as in

Definition 6. If the quantity

lim
β�α→〈1,0〉

ϕ(β)
ϕ(α) �

β

α

is still a q-ROFN, then we say that ϕ admits a

derivative at α, which is denoted by

Dϕ(α)
Dα :� lim

β�α→〈1,0〉
ϕ(β)
ϕ(α) �

β

α
(11)

The following theorem shows in what con-

ditions a q-ROFF admits its derivative under

multiplication arithmetic.

Theorem 1 Assume that the q-ROFF

ϕ(α) � 〈 f (μα, vα), g(μα, vα)〉 � 〈 fα, gα〉

as defined in Definition 7. Then ϕ(α) has a deriva-

tive of the form

Dϕ(α)
Dα �

〈(
1 − μα

fα

∂ fα
∂μα

) 1
q

,(
(1 − vq

α)gq−1
α

(1 − gq
α)vq−1
α

∂gα
∂vα

) 1
q
〉 (12)

if and only if
∂ fα
∂μα
,
∂gα
∂vα

exist, and the following con-

ditions hold true

∂ fα
∂vα

� 0 �
∂gα
∂μα
,

0 ≤ (1 − vq
α)

(1 − gq
α)
∂gq
α

∂vq
α

≤ μα
fα

∂ fα
∂μα

≤ 1

(13)

Remark 1. The latter part of (13) is to guarantee

that if
Dϕ(α)
Dα exists, it is still a q-ROFF.

Remark 2. In particular, if ϕ(α) � 〈μα, vα〉. The

formula (12) becomes

Dϕ(α)
Dα � 〈0, 1〉

Proof of Theorem 1. According to (3) and (4),

we have

Dϕ(α)
Dα � lim

β�α→〈1,0〉
ϕ(β)
ϕ(α) �

β

α

� lim
β�α→〈1,0〉

〈
fβ
fα
,

(
gq
β − gq

α

1 − gq
α

) 1
q
〉

�
〈
μβ

μα
,

(
vq
β − vq

α

1 − vq
α

) 1
q
〉

(14)

� lim
β�α→〈1,0〉

〈�����
f q
β

f q
α
− μ

q
β

μ
q
α

1 − μ
q
β

μ
q
α

�����
1
q

,

( (gq
β − gq

α)(1 − vq
α)

(1 − gq
α)(vq

β − vq
α)

) 1
q
〉

�

〈
lim

β�α→〈1,0〉
I , lim

β�α→〈1,0〉
II
〉

We first consider I. By the continuity of f
and μ, and the simple fact

aq − bq
� (a − b)

( q−1∑
i�0

aq−1−i bi

)
(15)
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we compute

lim
β�α→〈1,0〉

f q
β

f q
α
− μ

q
β

μ
q
α

1 − μ
q
β

μ
q
α

�
1

f q
α

lim
β�α→〈1,0〉

(
f q
β μ

q
α − f q

α μ
q
β

μ
q
α − μq

β

)
�
μ

q
α

f q
α

lim
β�α→〈1,0〉

(
f q
β − f q(μβ, vα)
μ

q
α − μq

β

)
+
μ

q
α

f q
α

lim
β�α→〈1,0〉

(
f q(μβ, vα) − f q

α

μ
q
α − μq

β

)
+ 1

� −μα
fα

∂ fα
∂vα

cos−1(θ, α) − μα
fα

∂ fα
∂μα

+ 1

with cos(θ, α) :� limβ�α→〈1,0〉
vβ−vα
μβ−μα . Hence,

lim
β�α→〈1,0〉

I �
(
1 − μα

fα

(
∂ fα
∂μα

+
∂ fα
∂vα

cos−1(θ, α)
)) 1

q

�

(
1 − μα

fα

∂ fα
∂μα

) 1
q

(16)

where the last equality sign owes to (13).

Utilizing (15) once more,

lim
β�α→〈1,0〉

gq
β − gq

α

vq
β − vq

α

�
gq−1
α

vq−1
α

lim
β�α→〈1,0〉

gβ − gα
vβ − vα

�
gq−1
α

vq−1
α

lim
β�α→〈1,0〉

gβ − g(μα, vβ)
μβ − μα

μβ − μα
vβ − vα

+
gq−1
α

vq−1
α

lim
β�α→〈1,0〉

g(μα, vβ) − gα
vβ − vα

�
gq−1
α

vq−1
α

(
∂gα
∂μα

cos−1(θ, α) + ∂gα
∂vα

)
(17)

With (17) in hand, one has

lim
β�α→〈1,0〉

II

�

(
(1 − vq

α)
(1 − gq

α)
lim

β�α→〈1,0〉

gq
β − gq

α

vq
β − vq

α

) 1
q

�

(
(1 − vq

α)
(1 − gq

α)
gq−1
α

vq−1
α

(
∂gα
∂vα

+
∂gα
∂μα

cos−1(θ, α)
)) 1

q

�

(
(1 − vq

α)gq−1
α

(1 − gq
α)vq−1
α

∂gα
∂vα

) 1
q

(18)

where in the last equality sign we again used

(13).

Inserting the expressions (16) and (18) into

(14), we get the desired (12). Observe that all

the deductions above are inverse, we complete

the proof of Theorem 1. �

Theorems 2-3 below are for the basic oper-

ations on the derivatives of q-ROFFs.

Theorem 2 Assume that the q-ROFFs

ϕi(α) � 〈 fi(μα, vα), gi(μα, vα)〉
� 〈 fi , gi〉 (i � 1, 2)

satisfy the assumptions listed in Theorem 1. Then,

D
Dα (ϕ1(α) ⊗ ϕ2(α))

�

〈(
1 − μα

f1

∂ f1
∂μα

− μα
f2

∂ f2
∂μα

) 1
q

,(
(1 − vq

α)
(1 − gq

1
)
∂gq

1

∂vq
α

+
(1 − vq

α)
(1 − gq

2
)
∂gq

2

∂vq
α

) 1
q
〉 (19)

and

D
Dα (ϕ1(α) � ϕ2(α))

�

〈(
1 − μα

f1

∂ f1
∂μα

+
μα
f2

∂ f2
∂μα

) 1
q

,(
(1 − vq

α)
(1 − gq

1
)
∂gq

1

∂vq
α

− (1 − vq
α)

(1 − gq
2
)
∂gq

2

∂vq
α

) 1
q
〉 (20)



464 Gao et al.: Multiplicative Integral Theory of Generalized Orthopair Fuzzy Sets and Its Applications

Proof of Theorem 2. Define G � 1 − gq
1
− gq

2
+

gq
1

gq
2
. By Definition 2 and Theorem 1, one has

D
Dα (ϕ1(α) ⊗ ϕ2(α))

�
D
Dα

〈
f1 f2 , (1 −G) 1

q

〉
�

〈(
1 − μα

f1 f2

∂( f1 f2)
∂μα

) 1
q

,

���1 − vq
α

G

(
1 −G

vq
α

) q−1
q ∂
∂vα

(1 −G) 1
q ���

1
q 〉

�

〈(
1 − μα

f1 f2

∂( f1 f2)
∂μα

) 1
q

,(
1 − vq

α

Gvq−1
α

(
(1 − gq

2
)gq−1

1

∂g1

∂vα

+(1 − gq
1
)gq−1

2

∂g2

∂vα

)) 1
q
〉

�

〈(
1 − μα

f1

∂ f1
∂μα

− μα
f2

∂ f2
∂μα

) 1
q

,(
(1 − vq

α)
(1 − gq

1
)
∂gq

1

∂vq
α

+
(1 − vq

α)
(1 − gq

2
)
∂gq

2

∂vq
α

) 1
q
〉

Now let us turn to (20). A tedious compu-

tation gives

D
Dα (ϕ1(α) � ϕ2(α))

�
D
Dα

〈
f1
f2
,

(
gq

1
− gq

2

1 − gq
2

) 1
q
〉

�

〈(
1 − μα f2

f1
∂
∂μα

(
f1
f2

)) 1
q

,

����
1 − vq

α

1 − gq
1
−gq

2

1−gq
2

(
gq

1
− gq

2

(1 − gq
2
)vq
α

) q−1
q

∂
∂vα

(
gq

1
− gq

2

1 − gq
2

) 1
q ���

1
q 〉

�

〈(
1 − μα

f1

∂ f1
∂μα

+
μα
f2

∂ f2
∂μα

) 1
q

,

(
(1 − vq

α)
1 − gq

1

· 1

vq−1
α

(gq−1

1

∂g1

∂vα
− gq−1

2

∂g2

∂vα
)+

(1 − vq
α)

1 − gq
1

gq
1
− gq

2

vq−1
α

gq−1

2

∂g2

∂vα

1 − gq
2

���
1
q 〉

�

〈(
1 − μα

f1

∂ f1
∂μα

+
μα
f2

∂ f2
∂μα

) 1
q

,(
(1 − vq

α)
(1 − gq

1
)
∂gq

1

∂vq
α

− (1 − vq
α)

(1 − gq
2
)
∂gq

2

∂vq
α

) 1
q
〉

This is (20). The proof of Theorem 2 is finished.

�

Corollary 1 For any constant q-ROFN C �

〈c1 , c2〉 with ci(i � 1, 2) being the constants, one

has

D
Dα (ϕ(α) ⊗ C) � D

Dα (ϕ(α) � C) � Dϕ(α)
Dα

Proof of Corollary 1. The proof follows di-

rectly from Theorem 2 and Remark 2. �

Theorem 3 (Compound q-ROFFs derivation
law) Assume that the q-ROFFs ϕ(α) and φ(α)
are defined as in Definition 6. ,Then the following

equality sign holds true

Dϕ(φ(α))
Dα �

Dϕ
Dφ ⊕ Dφ

Dα
provided that the derivatives exist.

Proof of Theorem 3. The proof of Theorem 3

is from Definition 2 and Theorem 1. �

4. Indefinite Integrals of q-ROFFs un-
der Multiplication

In the light of elementary calculus, we present

the definition of primitive of q-ROFFs.

Definition 8 Suppose that S is the collection of all

q-ROFNs, and the q-ROFFs φ(α) and Φ(α) are

defined as in Definition 6. If

D
DαΦ(α) � φ(α), α ∈ S

then Φ is called a primitive of φ in S.
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By Corollary 1, it has

D
Dα (Φ(α) ⊗ C) � D

DαΦ(α)
Clearly, if Φ is a primitive of φ, so does Φ(α)
⊗C. This implies that Φ is not unique.

Definition 9 We define all the primitives of φ as∫
φ(α)Dα, the indefinite integral of φ. In partic-

ular, ∫
φ(α)Dα � Φ(α) ⊗ C (21)

where Φ(α) is one of primitives of φ(α).
By previous derivative formula and Defini-

tion 8, we easily check∫ 〈0, 1〉Dα � 〈μα, vα〉 ⊗ C∫ 〈(1 − λ) 1
q , λ〉Dα � αλ ⊗ C

Next, it is desirable to provide a rigorous

mathematical proof for the derivation of prim-

itives, which will help us in dealing with con-

tinuous q-rung orthopair fuzzy information.

Theorem 4 Assume that the q-ROFF φ is defined

as in Definition 6. Assume in addition that all

hypotheses in Theorem 1 hold true. Then,∫
φ(α)Dα

�

〈
c1 exp

{∫
1 − f q

α

μα
dμα

}
,(

1 − c2 exp

{
−
∫

qvq−1
α gq

α

1 − vq
α

dvα

}) 1
q
〉 (22)

where the constant c1 and c2 are arbitrarily given.

Proof of Theorem 4. Assume that∫
ϕ(α)Dα � 〈Fα, Gα〉

The remaining task is to prove

Fα � c1 exp

{∫
1 − f q

α

μα
dμα

}
(23)

and

Gα

�

(
1 − c2 exp

{
−
∫

qvq−1
α gq

α

1 − vq
α

dvα

}) 1
q (24)

In fact, to prove (23)-(24), from Definition 8 we

see that

D
Dα 〈Fα, Gα〉

�
D
Dα

∫
ϕ(α)Dα �

〈
fα, gα

〉 (25)

On the other hand, by Theorem 1 we have

D
Dα 〈Fα, Gα〉

�

〈(
1 − μα

Fα
∂Fα
∂μα

) 1
q

,

( (1 − vq
α)

(1 − Gq
α)
∂Gq
α

∂vq
α

) 1
q
〉 (26)

In accordance with (25)-(26), we deduce

μα
Fα
∂Fα
∂μα

� 1 − f q
α and

(1 − vq
α)Gq−1

α

(1 − Gq
α)vq−1
α

∂Gα
∂vα

� gq
α

(27)

Owing to (13), the latter part in (27) is equals

to

DGq
α

1 − Gq
α

�
gq
α

1 − vq
α

Dvq
α

Solving the ordinary differential equation

gives birth to the desired (24). The same ar-

gument yields (23). The proof is done. �

The theorem below states some algebraic

manipulations of q-ROFIs.

Theorem 5 Assume that the q-ROFFs

φi � 〈 fi(μα, vα),
gi(μα, vα)〉 � 〈 fi , gi〉 (i � 1, 2) (28)

are defined as in Definition 6. Then∫
φ1Dα ⊗

∫
φ2Dα

�

∫ 〈(
1 − (1 − f q

1
) − (1 − f q

2
)) 1

q ,
(
gq

1
+ gq

2

) 1
q
〉
Dα

(29)

and∫
φ1Dα �

∫
φ2Dα

�

∫ 〈(
1 − f q

2
+ f q

1

) 1
q ,

(
gq

1
− gq

2

) 1
q
〉
Dα

(30)
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Proof of Theorem 5. For simplicity, we only

prove (29). Observe from (22) that∫
φ1Dα ⊗

∫
φ2Dα

�

〈
c1

1 exp

{∫
1 − f q

1

μα
dμα

}
,A1

〉
⊗
〈

c2
1 exp

{∫
1 − f q

2

μα
dμα

}
,A2

〉
�

〈
c1

1c2
1 exp

{∫ (1 − f q
1
) + (1 − f q

2
)

μα
dμα

}
,A

〉
(31)

in which

Aq
i

� 1 − ci
2 exp

{
−
∫ qvq−1

α gq
i

1 − vq
α

dvα

}
(i � 1, 2)

and

Aq
� Aq

1
+ Aq

2
− Aq

1
Aq

2

� 1 − c1
2c2

2 exp

{
−
∫ qvq−1

α (gq
1
+ gq

2
)

1 − vq
α

dvα

}
is due to the multiplying operation of q-ROFFs.

The combination of (22) with (31) yields (29).

The proof is done. �

Corollary 2 Let λ ∈ [0, 1]. Then,

(∫
〈 fα, gα〉Dα

)λ
�

∫ 〈
(1 − λ(1 − f q

α ))
1
q , λ

1
q gα

〉
Dα

(32)

Proof of Corollary 2. Operating D to the right

hand side of (32) yields

D
Dα

∫
〈(1 − λ(1 − f q

α ))
1
q , λ

1
q gα〉Dα

� 〈(1 − λ(1 − f q
α ))

1
q , λ

1
q gα〉

For the left side, from Theorem 3 we obtain

D
Dα

(∫
〈 fα, gα〉Dα

)λ
�

D
D ∫ 〈 fα, gα〉Dα

(∫
〈 fα, gα〉Dα

)λ
⊕ D

Dα
∫

〈 fα, gα〉Dα

� 〈(1 − λ) 1
q , λ

1
q 〉 ⊕ 〈 fα, gα〉

�

〈
(1 − λ(1 − f q

α ))
1
q , λ

1
q gα

〉
This, along with the properties of primitive,

leads to∫ 〈
(1 − λ(1 − f q

α ))
1
q , λ

1
q gα

〉
Dα

�
(∫

〈 fα, gα〉Dα
)λ

� C
(33)

Selecting λ � 1 in (33) yields C � 〈1, 0〉, and

thus, generates (32). The proof is done. �

Remark 3. In view of (29), one should expect that

(32) is still valid for integrals λ � 2, 3, · · ·.

5. Definite Integrals of q-ROFFs under
Multiplication

To proceed, we need to introduce the concept of

q-rung orthopair fuzzy integral line (q-ROFIL)

under multiplication operations circumstance.

Definition 10 Let α, β ∈ S, and let L(α, β) ⊂ S
be a line which connects α and β. If for any t1 , t2 ∈
L(α, β), it has

t2 ∈ S⊗(t1) ∀ α � t1 � t2 � β

Then, the line L(α, β) is called an q-ROFIL from

α to β.

Let us present several examples to assist the

readers’ understanding.

Example 1 Fixed q-ROFN α � 〈μα, vα〉,
and let another q-ROFN β � 〈μβ, vβ〉 ∈ S⊗(α).
Then, according to Definition 10, we might as

well construct the following q-ROFILs:
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(i) Segment

L1 :�{
〈μξ, vξ〉

%%% vξ − vα
μξ − μα �

vβ − vα
μβ − μα , μξ ∈ [μβ, μα]

}
(ii) Convex curve

L2 :�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩〈μξ, vξ〉
%%%%%%%%
vξ � ψ(μξ), μξ ∈ [μβ, μα],
vβ � ψ(μβ), vα � ψ(μα),
ψ′ ≤ 0, ψ′′ ≤ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(iii) Concave curve

L3 :�

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩〈μξ, vξ〉
%%%%%%%%
vξ � ϕ(μξ), μξ ∈ [μα, μβ],
vα � ϕ(μα), vβ � ϕ(μβ),
ϕ′ ≤ 0, ϕ′′ ≥ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
With Definition 10, we now turn to the in-

tegrals of q-ROFF in L(α, β).
Definition 11 Assume that q-ROFNs α, β ∈ S and

q-ROFF φ is well defined in L(α, β).
(i). Insert arbitrarily finite point αi �

〈μi , vi〉 (i � 0, 1, · · · , n) in L(α, β), satisfying

α � α0 � α1 � · · · � αn−1 � αn � β

(ii). Select arbitrarily ξi ∈ L(αi−1 , αi) and

compute

⊗n
i�1

(
φ(ξi) ⊕ (αi � αi−1)) :� 〈Fn , Gn〉 (34)

(iii). Define

λ1 � min

{
μ1

μ0
, · · ·, μi

μi−1
, · · ·, μn

μn−1

}
(35)

and

λ2 �

max{v1 − v0 , · · ·, vi − vi−1 , · · ·, vn − vn−1}
(36)

Then, if there exists a constant q-ROFF 〈F,G〉
which relies only on α, β, f and g, such that

lim ⊗n
i�1

(
φ(ξi) ⊕ (αi � αi−1))

:� 〈 lim
λ1→1

Fn , lim
λ2→0

Gn〉 :� 〈F,G〉

we call that φ is summable over L(α, β), denoted

by∫
L(α,β)

φ(ξ)Dξ �
∫
L(α,β)

〈 fξ , gξ〉Dξ � 〈F,G〉
(37)

The theorem below gives the explicit ex-

pression of 〈F,G〉, as long as some extra as-

sumptions are made.

Theorem 6 Under the same assumptions listed in

Theorem 1, we have∫
L(α,β)

φ(ξ)Dξ

�

〈
exp

{∫ μβ

μα

1 − f q
ξ

μξ
dμξ

}
,

���1 − exp

⎧⎪⎨⎪⎩−
∫ vβ

vα

qvq−1

ξ gq
ξ

1 − vq
ξ

dvξ
⎫⎪⎬⎪⎭���

1
q 〉 (38)

Proof of Theorem 6. By Definition 11, it suf-

fices to show

lim
λ1→1

Fn � exp

{∫ μβ

μα

1 − f q
ξ

μξ
dμξ

}
(39)

and

lim
λ2→0

Gq
n � 1−exp

⎧⎪⎨⎪⎩−
∫ vβ

vα

qvq−1

ξ gq
ξ

1 − vq
ξ

dvξ
⎫⎪⎬⎪⎭ (40)

Due to the basic operations in Definitions 2-3,

we infer

⊗n
i�1

(
φ(ξi) ⊕ (αi � αi−1)

)
� ⊗n

i�1

���〈 fi , gi〉 ⊕
〈
μi

μi−1
,

(
vq

i − vq
i−1

1 − vq
i−1

) 1
q
〉���

� ⊗n
i�1〈(

f q
i +

μ
q
i

μ
q
i−1

− f q
i

μ
q
i

μ
q
i−1

) 1
q

, gi

(
vq

i − vq
i−1

1 − vq
i−1

) 1
q
〉

�

〈∏
i

(
1 − (1 − f q

i )(1 − μ
q
i

μ
q
i−1

)
) 1

q

,(
1 −

∏
i

(
1 − gq

i

vq
i − vq

i−1

1 − vq
i−1

)) 1
q
〉

(41)
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Combining with (34) brings us to

Fq
n �

∏
i

(
1 − (1 − f q

i )(1 − μ
q
i

μ
q
i−1

)
)

and

Gq
n � 1 −

∏
i

(
1 − gq

i

vq
i − vq

i−1

1 − vq
i−1

) (42)

Let us first deal with (40). Notice from (42)

that

1 − Gq
n �

∏
i

(
1 − gq

i

vq
i − vq

i−1

1 − vq
i−1

)
� exp

{
ln
∏

i

(
1 − gq

i

vq
i − vq

i−1

1 − vq
i−1

)}
� exp

{∑
i

ln

(
1 − gq

i

vq
i − vq

i−1

1 − vq
i−1

)}
which implies that if we pass λ2 → 0

1 − lim
λ2→0

Gq
n

� exp

{
lim
λ2→0

∑
i

ln

(
1 − gq

i

vq
i − vq

i−1

1 − vq
i−1

)}
� exp

⎧⎪⎨⎪⎩−
∫ vβ

vα
gq
ξ

qvq−1

ξ

1 − vq
ξ

dvξ
⎫⎪⎬⎪⎭

where in the equalities we have used Propo-

sition 2.1 in (Gao et al. 2020), the continuity

of exponential function, g and μ. This proves

(40). (39) can be dealt in a similar method. So,

we complete the proof of Theorem 6. �

As a direct application of Theorem 6, we

have the following∫
L(α,α)

φ(ξ)Dξ � 〈1, 0〉∫
L(α,β)

〈0, 1〉 Dξ � β � α∫
L(α,β)

〈1, 0〉 Dξ � 〈1, 0〉

(43)

Remark 4. Under the same assumptions listed in

Theorem 1, we check that the value of
∫
L(α,β) φDξ

is independent of the path of L, but only relies on

the location of the endpoints α and β.

The following several theorems provide us

some basic properties of multiplication inte-

grals.

Theorem 7 (Multiplication of Integrals)∫
L(α,β)

〈 f1 , g1〉Dξ ⊗
∫
L(α,β)

〈 f2 , g2〉Dξ

�

∫
L(α,β)

〈(
1 − (1 − f q

1
) − (1 − f q

2
)) 1

q ,(
gq

1
+ gq

2

) 1
q
〉
Dξ

(44)

Proof of Theorem 7. Utilizing Theorem 6 and

the basic operation of q-ROFFs, we compute∫
L(α,β)

〈 f1 , g1〉Dξ ⊗
∫
L(α,β)

〈 f2 , g2〉Dξ

�

〈
exp

{∫ μβ

μα

1 − f q
1

μ
dμ

}
, B1

〉
⊗
〈
exp

{∫ μβ

μα

1 − f q
2

μ
dμ

}
, B2

〉
�

〈
exp

{∫ μβ

μα

(1 − f q
1
) + (1 − f q

2
)

μ
dμ

}
,(

1 − exp

{
−
∫ vβ

vα

qvq−1(gq
1
+ gq

2
)

1 − vq dv

}) 1
q
〉

�

∫
L(α,β)

〈(
1 − (1 − f q

1
) − (1 − f q

2
)
) 1

q
,(

gq
1
+ gq

2

) 1
q
〉
Dξ

(45)

where

Bq
i � 1 − exp

{
−
∫ vβ

vα

qvq−1 gq
i

1 − vq dv

}
(i � 1, 2)

and the last equality sign owes to (38). The

proof is done. �

Theorem 8 (Power Algorithm of Integral) Let

λ ∈ [0, 1] or λ ∈ N+. Then it satisfies(∫
L(α,β)

〈 f , g〉Dξ
)λ

�

∫
L(α,β)

〈
(1 − λ(1 − f q

ξ ))
1
q , λ

1
q gξ

〉
Dξ

(46)
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Proof of Theorem 8. In case of λ ∈ [0, 1]. Uti-

lizing (38), one deduces(∫
L(α,β)

〈 f , g〉Dξ
)λ

�

〈
exp

{∫ μβ

μα

λ(1 − f q)
μ

dμ
}
,A

1
q

〉
�

∫
L(α,β)

〈(1 − λ(1 − f q)) 1
q , λ

1
q g〉Dξ

where the last equality sign is due to the basic

operations of q-ROFFs, and

A � 1 −
(
1 −

(
1 − exp

{
−
∫ vβ

vα

qvq−1 gq

1 − vq dv
}))λ

� 1 − exp

{
−
∫ vβ

vα

qvq−1λgq

1 − vq dv
}

While in case of λ ∈ N+ , (46) follows from

(44) and deduction argument. We complete

the proof. �

Theorem 9 (Algebraic Operation of Integral
Line) Assume that

γ ∈ S⊗(β), β ∈ S⊗(α), α ∈ S
Then∫

L(α,β)
〈 f , g〉Dξ ⊗

∫
L(β,γ)

〈 f , g〉Dξ

�

∫
L(α,γ)

〈 f , g〉Dξ
(47)

Proof of Theorem 9. By (38), we compute∫
L(α,β)

〈 f , g〉Dξ ⊗
∫
L(β,γ)

〈 f , g〉Dξ

�

〈
exp

{∫ μβ

μα

1 − f q

μ
dμ

}
, B(α, β)

〉
⊗
〈
exp

{∫ μγ

μβ

1 − f q

μ
dμ

}
, B(β, γ)

〉
�

〈
exp

{∫ μγ

μα

1 − f q

μ
dμ

}
, B(α, γ)

〉
�

∫
L(α,γ)

〈 f , g〉Dξ

(48)

where

Bq(α, β) � 1 − exp

{
−
∫ vβ

vα

qvq−1 gq

1 − vq dv
}

Thus, we complete the proof. �

At last we discuss the relationship between

two different types integrals which are based

on the addition and multiplication operations

respectively.

In the light of (6) and Definition 6, we define{
φ(α) :� 〈 f (vα, μα), g(vα, μα)〉
φ(α) :� 〈g(vα, μα), f (vα, μα)〉

(49)

To achieve the above purpose, we first recall

some known theorems developed in (Gao et al.

2020).

Lemma 2 (Gao et al. 2020) Let the same assump-

tions in Theorem 1 hold true. Then,∫
φ(α)dα

�

〈(
1 − c1 exp

{
−
∫

qμq−1
α f q

α

1 − μq
α

dμα

}) 1
q

,

c2 exp

{∫
1 − gq

α

vα
dvα

}〉
where c1 and c2 are given constant.

Lemma 3 (Gao et al. 2020) The following equality

holds true∫
〈 f1 , g1〉dα ⊕

∫
〈 f2 , g2〉dα

�

∫ 〈(
f q
1
+ f q

2

) 1
q ,

(
1 − (1 − gq

1
) − (1 − gq

2
)) 1

q
〉

dα

provided the quantities on both sides make sense.

Definition 12 (Gao et al. 2020) The line L(α, β) ⊂
S from α to β is called an integral line, which satis-

fies for any t1 , t2 ∈ L(α, β),

t2 ∈ S⊕(t1) ∀ α 
 t1 
 t2 
 β

Definition 13 (Gao et al. 2020) Insert finitely

many IFNs αi � 〈μi , vi〉 (i � 0 ∼ n) into the

line L(α, β) such that

α � α0 � α1 � · · · � αn−1 � αn � β

Select arbitrarily ξi ∈ L(αi−1 , αi) and define

⊕n
i�1 φ(ξi) ⊗ (αi � αi−1) :� 〈Fn , Gn〉 (50)
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Let

λ1 � max
1≤i≤n

{μ1−μ0 , · · ·, μi −μi−1 , · · ·, μn −μn−1}
(51)

and

λ2 � min
1≤i≤n

{
v1

v0
, · · ·, vi

vi−1
, · · ·, vn

vn−1

}
(52)

If there exists a constant q-ROFF 〈F,G〉 which

relies only on α, β, f and g, and satisfies

lim ⊕n
i�1φ(ξi) ⊗ (αi � αi−1)

� 〈 lim
λ1→0

Fn , lim
λ2→1

Gn〉 � 〈F,G〉
Then, we say that φ is summable over L(α, β), and

denote by∫
L(α,β)

φ(ξ)dξ �
∫

L(α,β)
〈 fξ , gξ〉dξ

� 〈F,G〉
(53)

Having the above preparation obtained,

we are willing to compare the integral values

based on the addition and multiplication.

Theorem 10 Under the assumptions made in The-

orems 4 and 6 , it has∫
φ(α)dα �

∫
φ(α)Dα (54)

Proof of Theorem 10. Owing to Theorem 6 ,∫
φ(α)dα

�

〈
F , c2 exp

{∫
1 − gq

v
dv
}〉

�

〈
c2 exp

{∫
1 − gq

v
dv
}
, F

〉
where

F q
� 1 − c1 exp

{
−
∫

qμq−1 f q

1 − μq dμ
}

and the last equality sign owes to (6).

Due to (22) and (49), we have∫
φ(α)Dα

�

〈
c1 exp

{∫
1 − gq

v
dv
}
,(

1 − c2 exp

{
−
∫

qμq−1 f q

1 − μq dμ
}) 1

q
〉

The last two equality quantities, along with the

arbitrariness of c1 and c2, generates the desired

(54). The proof is done. �

Theorem 11 Under the assumptions made in The-

orems 5 and 7, it has∫
〈 f1 , g1〉dα ⊕

∫
〈 f2 , g2〉dα

�

∫
〈 f1 , g1〉Dα ⊗

∫
〈 f2 , g2〉Dα

Theorem 12 Under the assumptions made in Def-

initions 11 and 13, it has∫
L(α,β)

φ(ξ)dξ �
∫
L(α,β)

φ(ξ)Dξ (55)

Proof of Theorem 12. By (6), (49), and Defini-

tion 11, we deduce∫
L(α,β)

φ(ξ)Dξ

� lim ⊗n
i�1

(
φ(ξi) ⊕ (αi � αi−1)

)
� lim ⊕n

i�1

(
φ(ξi) ⊗ (αi � αi−1))

�

∫
L(α,β)

φ(ξ)dξ

(56)

in which the limits are specified in Definitions

11 and 13. Again using (6), we immediately get

(55) from (56). �

6. Information Integration Based on q-
rung Orthopair Fuzzy Multiplicative
Integrals

Based on the q-rung orthopair fuzzy multi-

plicative integral theory, this section mainly

discusses the relationship between the q-

rung orthopair fuzzy definite integral and

q-ROFWG operator, and proposes a multi-

plicative integral-based orthopair fuzzy multi-

attribute decision-making method.

Refer to Liu and Wang (2018), we have the

classical q-ROFWG:

q-ROFWG(α1 , α2 , · · ·, αn) � ⊗n
i�1α

wi
i (57)

We claim that the formula (57) can be regarded

as a special case of the Theorem 7-9. To see this,
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let us select 〈 f , g〉 � 〈0, 1〉 in (46) and utilize

(43), to discover(
β � α)λ � (∫

L(α,β)
〈0, 1〉Dξ

)λ
�

∫
L(α,β)

〈(1 − λ) 1
q , λ

1
q 〉Dξ

(58)

If we denote by β0 � 0 and βi+1 � βi ⊗ αi+1 (i �
0, · · ·, n − 1), and choose

〈 f , g〉 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(1 − w1)1/q , w1/q
1

〉, β0 � ξ � β1

...

〈(1 − wi)1/q , w1/q
i 〉, βi−1 � ξ � βi

...

〈(1 − wn)1/q , w1/q
n 〉, βn−1 � ξ � βn

(59)

we deduce that, by virtue of (59) and Theorem

9, ∫
L(β0 ,βn )

〈 f , g〉dξ � ⊗n−1
i�0

∫
L(β0 ,βn )

〈 f , g〉dξ

� ⊗n−1
i�0

(
βi+1 � βi

)wi+1

� ⊗n−1
i�0 α

wi+1

i+1

� ⊗n
i�1α

wi
i

(60)

Therefore, combining (60) with (57), we con-

clude ∫
L(β0 ,βn )

〈 f , g〉dξ

� q-ROFWG(α1 , α2 , · · ·, αn)
(61)

The above analysis implies that the infor-

mation integration method can be manipu-

lated by using q-ROFF multiplicative integrals,

as follows:

Step 1 Suppose that there are n DMs

using q-ROFNs to give their evaluation value

αi � 〈μi , vi〉(i � 1, 2, · · · , n) to the evaluation

object, as shown in Figure 4. In addition, the

starting point O � α0 � 〈1, 0〉 and ending

point E � αn+1 � 〈0, 1〉 are introduced. For

the convenience of constructing the latter in-

tegration function, we arrange the monotone

sequences {μ(i)}n
i�1

and {v(i)}n
i�1

as below:

0 ≤ μ(1) ≤ · · · ≤ μ(i) ≤ · · · ≤ μ(n) ≤ 1

and

0 ≤ v(1) ≤ · · · · · · ≤ v(i) ≤ · · · · · · ≤ v(n) ≤ 1

Figure 4 Decision Maker’s Evaluation

Step 2 Let the positive integer n ∈ N+ be

the number of evaluation values determined

by all DMs. For each i ∈ {0, 1, 2, · · · , n}, intro-

ducing function as:

| f (μ)|
n

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, μ ≤ μ(1)
n − (i − 1)

n
, μ(i−1) < μ ≤ μ(i)

0, μ(n) < μ
(62)

and

|g(v)|
n

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, v(n) ≤ v
n − (i − 1)

n
, v(i−1) ≤ v < v(i)

1, v < v(1)
(63)

where i � 2, 3, · · · , n, and {μ(i)}n
i�1

and

{v(i)}n
i�1

are the same as in previous Step 1.

In fact, if the value of f at point αi is very

large, it means that μi is too small for most

DMs, so it can be increased reasonably. Sim-

ilarly, if g is too large at point αi , it means

that most DMs think that vi of αi is very small

and should not continue to decrease the value.

Therefore, we can consider that f and g con-

tain some uncertain data.

Step 3 Inspired by Lei and Xu

(2015), we can get the q-ROFF, Count(α) �
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n

)
,
( |g(v)|

n

)〉
. However, the value of q-

rung orthopair fuzzy line integral based on the

Count(α) will be compressed, so that the ob-

tained integration result may be very small,

which is not ideal for comparative analysis.

Thus, according to the distribution of the above

evaluation, and the above-mentioned func-

tions | f (μ)| and |g(v)|, we can construct the

q-rung orthopair fuzzy line integral aggrega-

tion function (q-ROFLIAF) as:

Countq(α) �
〈( | f (μ)|

n

)1/q

,

( |g(v)|
n

)1/q
〉

Obviously, 0 ≤
( | f (μ)|

n

)1/q ≤ 1 and 0 ≤( |g(v)|
n

)1/q ≤ 1 are correct. In order to make

0 ≤
( | f (μ)|

n

)
+

( |g(v)|
n

)
≤ 1 always hold, we

can find an integral line, as shown in Figure

5. In this way, the function Countq(α) we

constructed will always meet the conditions

in Definition 6.

Remark 5. For Figure 5, it should be noted that:

1) When the evaluation value points are finite, we

can find lines (a) or (c) as the suitable integration

lines; 2) As the evaluation value points in the area

increase to infinite, the above-mentioned integral

lines may become lines (b) or (c). That is, when

the number of evaluation value points N → +∞,

we have |La − Lb | → 0, which represents that

the integral line L(O , E) in Fig.5(a) and Fig.5(b)

overlap.

Step 4 In view of (61) and Theorem 6, we

have the following formula of the information

integration method

q-ROFLIA(α1 , α2 , · · ·, αn)
�

∫
L(O ,E)

Countq(α)Dα

�

〈
exp

{∫ μ(1)

1

1 − | f (μ)|
n

μ

}
,(

1 − exp

{
−
∫ v(n)

0

qvq−1 |g(v)|
n(1 − vq)

})1/q〉
(64)

Step 5 Using the above steps to integrate

the evaluation decision matrix R of the corre-

sponding attributes of each candidate, and es-

tablish the consensus of the voters, the overall

evaluation value Val of each candidate can be

obtained. Next, the final ranking results can

be obtained by calculating the scoring values

of candidates.

Remark 6. It should be noted that the value of q is

first determined according to the condition of 0 ≤
μq + vq ≤ 1, and we do not change the parameter q
during the calculation process.

At the end of this section, we provide some

theoretical results for the proposed q-ROFLI

operator
∫
L(O ,E) Countq(α)Dα, which is also

known as the fundamental properties of the

aggregation operators.

Theorem 13 (Uniformity) Assume that all the

estimate values by DMs are all the same value

α∗ � 〈μ∗ , v∗〉, then∫
L(O ,E)

Countq(α)Dα � α∗

Proof of Theorem 13. As in (62)-(63) in Step 2,

we define

| f (μ)|
n

�

{
1, μ ≤ μ(∗)
0, μ∗ < μ

|g(v)|
n

�

{
0, v > v(∗)

1, v ≤ v(∗)

(65)

Moreover, taking the integral lineL(O , E)with

the endpoints O � 〈1, 0〉 and E � 〈μ∗ , v∗〉. If

we select select the functions in (65) in the for-

mula (64) , and utilize Theorem 6, we deduce∫
L(O ,E)

Countq(α)Dα

�

〈
exp

{∫ μ∗

1

1

μ
dμ

}
,(

1 − exp

{
−
∫ v∗

0

qvq−1

1 − vq dv

}) 1
q
〉

� 〈μ∗ , v∗〉

(66)

The proof is completed. �
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Figure 5 Integral Curve of Function Count(α)
Theorem 14 (Monotony) Assume that

Countq(α1) � Countq(α2), in particular,
| f (μα1

)|
n ≥ | f (μα2

)|
n and

|g(vα1
)|

n ≤ |g(vα1
)|

n . Then, we

have ∫
L

Countq(α1) �
∫
L

Countq(α2) (67)

Proof of Theorem 14. Making use of the prop-

erties of classical integrations, we easily check

the validity of (67) from the formula (38) in

Theorem 6. �

Theorem 15 (Extremum) For given endpoints

α � 〈μ(n) , v(1)〉 and α � 〈μ(1) , v(n)〉, as men-

tioned before, we have the following bounds

α �
∫
L(O ,α)

Countq(α) � α

Proof of Theorem 15. The proof is a direct con-

sequence of Theorem 13 and Theorem 14. �

7. Applications and Comparative
Analysis

7.1 Numerical Examples
In this section, we use an information integra-

tion method based on the q-ROFF definite inte-

gral for the enumeration. We use two examples

to illustrate the finite and infinite evaluation

points respectively to verify the feasibility and

effectiveness of the method. We also provide

examples to compare the results with those

generated by the addition operation, and re-

veal the intrinsic structural differences through

the complementary operations.

Example 1 Suppose an election is about

to be held in a county, and it decides to choose

a voting organization to conduct a poll in or-

der to select the candidates it supports. The

organization intends to use the q-ROFNs to

fully understand the public opinion of voters.

There are two reasons for this choice. Firstly,

in a voting election, there are often support-

ers and opponents, and q-ROFNs can not only

show membership information, but also non-

membership information, so it can evaluate

candidates more fairly and justly. Secondly, q-

ROFNs do not need to be restricted by the sum

of membership degree and non-membership

degree less than 1, and the membership space

that can be described is larger. Therefore, it is

more suitable for large-scale group decision-

making, and can better describe the true pref-
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erence information of group DMs. The voter

evaluation data can be obtained by the follow-

ing methods:

Suppose there are 20,000 people voting,

and they are divided into two groups of P g(g �

μ, v), each with 10,000 people. Among them,

Pμ is called the support group, and Pv is called

the disapproval group. Now, there are three

candidates Ai(i � 1, 2, 3), and each candidate

has four evaluation attributes, including per-

sonal charisma (C1), leadership ability (C2),
political resources (C3), and democratic ori-

entation (C4). Voters score each characteris-

tic of the candidate. For example, if voters in

the approval group agree with the candidate

A2’s evaluation the attribute C2, then 1 point is

scored. There are 2000 people who agree with

this attribute, then the score μ1
22

� 0.2, where

μk
i j(i , k � 1, 2, 3; j � 1, 2, 3, 4) is the scoring

function of μ. On the contrary, if 6000 people

disapprove of this attribute, the scored is v1
22

�

0.6, where vk
i j(i , k � 1, 2, 3; j � 1, 2, 3, 4) is the

scoring function of v. Through this scoring

method, we can get α1
22

� 〈μ1
22
, v1

22
〉 � 〈0.2, 0.6〉

in Table 1.

Similarly, we performed the above steps

three times using non-repeated sampling to

get all the evaluation value q-ROFNs αk
i j �

〈μk
i j , v

k
i j〉. Then, the q-rung orthopair fuzzy de-

cision matrices Rk � (αk
i j)3×4(k � 1, 2, 3) can be

constructed as shown in Tables 1, 2 and 3.

Table 1 The Decision Matrix R1

C1 C2 C3 C4

A1 〈0.7, 0.8〉 〈0.5, 0.7〉 〈0.3, 0.9〉 〈0.4, 0.6〉
A2 〈0.8, 0.6〉 〈0.2, 0.6〉 〈0.2, 0.5〉 〈0.7, 0.9〉
A3 〈0.5, 0.4〉 〈0.7, 0.3〉 〈0.4, 0.8〉 〈0.6, 0.9〉

Table 2 The Decision Matrix R2

C1 C2 C3 C4

A1 〈0.6, 0.8〉 〈0.7, 0.6〉 〈0.3, 0.7〉 〈0.6, 0.9〉
A2 〈0.4, 0.7〉 〈0.5, 0.5〉 〈0.6, 0.8〉 〈0.6, 0.9〉
A3 〈0.5, 0.6〉 〈0.9, 0.9〉 〈0.3, 0.5〉 〈0.7, 0.4〉

Table 3 The Decision Matrix R3

C1 C2 C3 C4

A1 〈0.9, 0.7〉 〈0.7, 0.8〉 〈0.9, 0.3〉 〈0.6, 0.9〉
A2 〈0.7, 0.9〉 〈0.8, 0.2〉 〈0.8, 0.9〉 〈0.5, 0.9〉
A3 〈0.2, 0.6〉 〈0.7, 0.9〉 〈0.5, 0.6〉 〈0.8, 0.8〉

In order to understand the multiplica-

tive integral-based q-rung orthopair fuzzy

multi-attribute decision-making method more

clearly, we state it in several steps:

Step 1 Integrate the evaluation values

given by the the interviewees. Taking the

first integration value α11 as an example. The

corresponding q-ROFNs in three decision ma-

trices are integrated, namely α1
11

� 〈0.7, 0.8〉
in Table 1, α2

11
� 〈0.6, 0.8〉 in Table 2 and

α3
11

� 〈0.9, 0.7〉 in Table 3, and define the end-

points O � 〈1, 0〉 and E � 〈0, 1〉. We arrange

the following monotone sequences:

0 ≤ μ(1)
11

≤ μ(2)
11

≤ μ(3)
11

≤ 1

0 ≤ v(1)
11

≤ v(2)
11

≤ v(3)
11

≤ 1

Step 2 let n be the sample size that con-

sists of αk
i j , (k � 1, 2, 3) . We build the q-ROFF

〈 f , g〉 �
〈( | f (μ)|

n

) 1
q

,

( |g(v)|
n

) 1
q
〉

according to the distribution of the above as-

sessments. Specifically,

| f (μ)|
3

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ μ ≤ 0.6

2

3
, 0.6 < μ ≤ 0.7

1

3
, 0.7 < μ ≤ 0.9

0, 0.9 < μ ≤ 1

|g(v)|
3

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 0 ≤ v < 0.7

2

3
, 0.7 ≤ v < 0.8

0, 0.8 ≤ v ≤ 1

Step 3 According to 0 ≤ μq + vq ≤ 1,

we set q � 7 in (64) and calculate directly, to
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discover,∫
L(O ,E)

〈( | f (μ)|
n

)1/q
,

( |g(v)|
n

)1/q
〉
Dα

�

〈
exp

⎧⎪⎨⎪⎩
∫ μ(1)

1

1 − | f (μ)|
n
μ

dμ
⎫⎪⎬⎪⎭ ,(

1 − exp

{
−
∫ v(3)

0

7v6 |g(v)|
(1 − v7)n dv

}) 1
7
〉

� 〈0.72, 0.78〉

(68)

Step 4 In the same calculation method,

the integrated values corresponding to other

items can be calculated. Therefore, the inte-

grated q-rung orthopair fuzzy decision matrix

R � (αi j)3×4 is finally obtained, as shown in

Table 4.

Table 4 The q-Rung Orthopair Fuzzy Decision

Matrix R

C1 C2 C3 C4

A1 〈0.72, 0.78〉 〈0.56, 0.73〉 〈0.43, 0.80〉 〈0.46, 0.86〉
A2 〈0.61, 0.81〉 〈0.43, 0.53〉 〈0.46, 0.82〉 〈0.59, 0.97〉
A3 〈0.27, 0.57〉 〈0.76, 0.86〉 〈0.36, 0.70〉 〈0.61, 0.82〉

Step 5 Integrate the evaluation values of

each candidates, and the calculation process

is the same as Steps 1-3. Utilize the resulting

integrated new q-rung orthopair fuzzy deci-

sion matrix R � (αi j)3×4, the overall evaluation

value Val[Ai](i � 1, 2, 3) of each candidates is

as follows:

Val[A1] � 〈0.53, 0.80〉
Val[A2] � 〈0.52, 0.88〉
Val[A3] � 〈0.46, 0.79〉

Step 6 According to Wei et al. (2018), the

scores of the three candidates can be obtained:

S[A1] � 0.40, S[A2] � 0.30, S[A3] � 0.41. Thus

we can get the ranking of the candidates as:

A3 � A1 � A2. That is, A3 is most likely to be

elected.

Besides, we also can give an example of the

Complement of integrals operations. By the

formula (6), (68) takes∫
L(O ,E)

〈( | f (μ)|
n

)1/q
,

( |g(v)|
n

)1/q
〉
Dα

� 〈0.72, 0.78〉
� 〈0.78, 0.72〉

�

∫
L(O ,E)

〈( | f (μ)|
n

)1/q
,

( |g(v)|
n

)1/q
〉

dα

where the last equality sign is the aggregation

under addition operation.

Example 2 Suppose that the voting orga-

nization changes its election strategy by con-

ducting the interviewing procedure only once

in order to reduce polling expenses, and each

respondent gives a specific score from 0-100.

Each of kth (k � 1, 2, · · · , 10000) voters from

the support group and the disapproval group

gave their evaluation information and con-

stituted q-ROFNs αk
i , where i � 1, 2, 3 and

k � 1, 2, · · · , 10000). Thus we can obtain the

evaluation value with all the q-ROFNs. For

the sake of clarity, we use the data of the can-

didate A1 for calculation and follow the steps

below:

Step 1 According to the distribution of

the points, we fit the scatter plot and get the

curve L, as shown in Figure 6.

Figure 6 Data Fitting of All the q-ROFNs

L : v � 2−
1
3
(
1 − μ3

) 1
3 , ∀ μ ∈ [0.53, 1] (69)
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Step 2 The above curve (69) can be re-

garded as the limit of (62) and (63), we set

q � 3, then the form of the q-rung orthopair

fuzzy line integral aggregation functions can

be obtained as:

f 3
ξ � μ3

ξ and g3
ξ � 1 − 2v3

ξ

Step 3 Based on the formula (64), calcu-

lating the line integral along L, we can get the

following integration result:∫
L
φ(ξ)Dξ

�

〈
exp

{∫ 0.53

1

1 − f q
ξ

μξ
dμξ

}
,(

1 − exp

⎧⎪⎨⎪⎩−
∫ 0.75

0

qvq−1

ξ gq
ξ

1 − vq
ξ

dvξ
⎫⎪⎬⎪⎭
) 1

q
〉

� 〈0.7039, 0.3512〉 (70)

Actually, through the above example, it can

be shown that by defining a proper integrand

and selecting a proper limit of integration, we

can use multiplicative q-rung orthopair def-

inite integrals to fuse continuous and large-

scale q-rung orthopair fuzzy information.

7.2 Comparison and Analysis
This section uses different methods for com-

parative analysis to verify the effectiveness and

advantages of our approach. The methods in-

clude: q-rung orthopair fuzzy weighted av-

eraging (q-ROFWA) operator (Liu and Wang

2018), q-ROFWG operator (Liu and Wang

2018) and q-rung orthopair fuzzy Einstein

weighted geometric (q-ROFEWG) operator

(Riaz et al. 2020). For generality, we set the

weights of each selection in the above opera-

tors to be the same, q � 7 unchanged, and still

build on the case above.

Method 1 q-ROFWA operator (Liu and

Wang 2018)

q − ROFWA(a1 , a2 , · · · , am)

�

〈(
1 −

m∏
k�1

(
1 − uq

k

)wk

) 1
q

,
m∏

k�1

vwk
k

〉

Step 1 We aggregate the data in Tables 1-

3 to obtain the fusion matrix, as shown in Table

5.

Table 5 The q-Rung Orthopair Fuzzy Decision Matrix

R
′

C1 C2 C3 C4

A1 〈0.81, 0.77〉 〈0.67, 0.70〉 〈0.79, 0.57〉 〈0.57, 0.79〉
A2 〈0.72, 0.72〉 〈0.69, 0.39〉 〈0.70, 0.71〉 〈0.63, 0.90〉
A3 〈0.47, 0.52〉 〈0.81, 0.62〉 〈0.44, 0.62〉 〈0.73, 0.66〉

Step 2 By integrating the fusion

matrix once, we can obtain the over-

all evaluation value of each candidate

as: Val[Ã1] � 〈0.75, 0.70〉, Val[Ã2] �

〈0.70, 0.65〉, Val[Ã3] � 〈0.71, 0.60〉.
Step 3 Utilize score function to evaluate

the three candidates are: S[Ã1] � 0.52, S[Ã2] �
0.51, S[Ã3] � 0.53. Thus, we sort them as A3 �
A1 � A2.

Method 2 The q-ROFWG operator (Liu and

Wang 2018)

q-ROFWG(a1 , a2 , · · · , am)

�

〈
m∏

k�1

uwk
k ,

(
1 −

m∏
k�1

(
1 − vq

k

)wk

) 1
q
〉

Step 1 We aggregate the data in Tables 1-

3 to obtain the fusion matrix, as shown in Table

6.

Table 6 The q-Rung Orthopair Fuzzy Decision Matrix

R
′

C1 C2 C3 C4

A1 〈0.72, 0.78〉 〈0.63, 0.73〉 〈0.43, 0.80〉 〈0.52, 0.86〉
A2 〈0.61, 0.80〉 〈0.43, 0.53〉 〈0.46, 0.82〉 〈0.60, 0.90〉
A3 〈0.37, 0.57〉 〈0.76, 0.86〉 〈0.39, 0.70〉 〈0.70, 0.82〉

Step 2 Similarly, we obtain the evalua-

tion value of each candidate as: Val[Ã1] �

〈0.56, 0.80〉, Val[Ã2] � 〈0.51, 0.82〉, Val[Ã3] �
〈0.53, 0.78〉.

Step 3 Utilize the score function to eval-

uate the three candidates and get: S[Ã1] �

0.40, S[Ã2] � 0.38, S[Ã3] � 0.41. Thus, we sort

them as A3 � A1 � A2.
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Method 3 The q-ROFEWG operator (Riaz

et al. 2020)

q − ROFEWG(a1 , a2 , · · · , am)

�

〈
q
√

2
∏m

k�1 uwk
k∏m

k�1(2 − (uk)q)wk +
∏m

k�1((uk)q)wk
,

q

√ ∏m
k�1(1 + (vk)q)wk −∏m

k�1(1 − (vk)q)wk∏m
k�1(1 + (vk)q)wk +

∏m
k�1(1 − (vk)−q)wk

〉
Step 1 We aggregate the data in Tables 1-

3 to obtain the fusion matrix, as shown in Table

7.

Table 7 The q-Rung Orthopair Fuzzy Ddecision Matrix

R
′

C1 C2 C3 C4

A1 〈0.73, 0.77〉 〈0.63, 0.73〉 〈0.44, 0.79〉 〈0.52, 0.86〉
A2 〈0.61, 0.80〉 〈0.43, 0.53〉 〈0.46, 0.81〉 〈0.60, 0.90〉
A3 〈0.37, 0.56〉 〈0.77, 0.85〉 〈0.39, 0.70〉 〈0.70, 0.81〉

Step 2 Similar to the methods 1 and 2,

we can obtain the evaluation values of the can-

didates as: Val[Ã1] � 〈0.57, 0.80〉 Val[Ã2] �

〈0.52, 0.82〉 Val[Ã3] � 〈0.53, 0.77〉.
Step 3 Utilize the score function to

evaluate the three candidates are: S[Ã1] �

0.40, S[Ã2] � 0.38, S[Ã3] � 0.42. Thus, we sort

them as A3 � A1 � A2.

Obviously, all methods have achieved good

results (see Table 8), which shows the ratio-

nality of the proposed multiplicative integral-

based q-rung orthopair aggregation operator.

In addition, the integral-based aggregation op-

erator we proposed here has the following ad-

vantages over the above-mentioned methods.

1) The multiplicative integral-based q-

rung orthopair aggregation operator has bet-

ter computational efficiency than q-ROFWA,

q-ROFWG, q-ROFEWG and other methods

when there are more attributes and alterna-

tives. In particular, discrete aggregation op-

erators often have limitations when dealing

with large-scale data. Specifically, consider

a large data set with n alternatives and n at-

tributes. The integral-based aggregation op-

erator only needs to consider the maximum

and minimum evaluation values of the at-

tributes, and then perform O(n) calculations

to obtain the integrated information. Assum-

ing there are two attributes, then the com-

putational complexity is about O(2n) times.

In contrast, the other methods need to con-

sider each evaluation value information and

weight of each attribute, and its computational

complexity will increase significantly. Actu-

ally it becomes O(n2) times when there are

only two attributes. Obviously, the integral-

based aggregation operator is more time effec-

tive in dealing with large-scale multi-attribute

decision-making problems.

2) The integration-based aggregation

method we proposed here focuses on process-

ing and collecting information on the loca-

tion and distribution of evaluation informa-

tion, and does not need to rely on too many

variable parameters. As the amount of q-rung

orthopair fuzzy information increases, the op-

erational advantages of this aggregation oper-

ator will become more obvious.

8. Conclusion
In this paper, the theory of q-rung orthopair

fuzzy multiplicative integrals is established on

the basis of multiplication algorithm. Specif-

ically, we introduce some basic operations,

partial orders, complement operations of q-

ROFNs, and related properties of q-ROFFs’

derivative operations. They are the basis for

further research on q-ROFC. Then, in order

to derive the multiplicative q-ROFIs, we start

with the concept of primitive of q-ROFFs, and

then, come up with the definition of indefinite

q-ROFIs. Later, we give the definition of the

definite q-ROFIs under the multiplicative oper-

ation rules. Furthermore, the relationship be-

tween q-ROFF definite integral and q-ROFWG

operator is discussed, and an information in-

tegration method based on q-ROFF definite

integrals is proposed. We also reveal the in-

trinsic relationship between the additive and
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Table 8 Ranking Results from Different Methods

Methods The score f unction Rankin g

q-ROFWA S[Ã1] � 0.52, S[Ã2] � 0.51, S[Ã3] � 0.53. A3 � A1 � A2

q-ROFWG S[Ã1] � 0.40, S[Ã2] � 0.38, S[Ã3] � 0.41. A3 � A1 � A2

q-ROFEWG S[Ã1] � 0.40, S[Ã2] � 0.38, S[Ã3] � 0.42. A3 � A1 � A2

q-ROFFs(in this paper) S[A1] � 0.40, S[A2] � 0.30, S[A3] � 0.41. A3 � A1 � A2

the multiplicative q-ROFC. Roughly speaking,

through the complement operations, we can

establish the mutual transformation relation-

ship between these two different types of q-

ROFCs.

Finally, we comment on the novelty of this

paper and give possible future research direc-

tions. First, please note that our research al-

lows the functions to be completely non-linear,

that is, the results are valid for all q-ROFFs in

the range of q ∈ [1,∞). This is more compli-

cated mathematically, but in fact it has a wider

range of applications. Future research can be

extended from the following aspects: 1) Fur-

ther study the related properties and theorems

of q-ROFC to simplify its operations. 2) Con-

sidering the large-scale heterogeneous fuzzy

information environment, by constructing the

conversion formula of heterogeneous informa-

tion, the application scope of the proposed in-

tegral model is expanded. 3) Combine the q-

ROFC theories with different types of aggre-

gation operators can further solve the practical

problems of different properties in real life.
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