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Abstract. Due to the fourth revolution experiencing, referred to as Industry 4.0, many production firms are

devoted to integrating new technological tools to their manufacturing process. One of them, is rescheduling

the tasks on the machines responding to disruptions. While, for static scheduling, the efficiency criteria

measure the performance of scheduling systems, in dynamic environments, the stability criteria are also

used to assess the impact of jobs deviation. In this paper, a new performance measure is investigated for a

flowshop rescheduling problem. This one considers simultaneously the total weighted waiting time as the

efficiency criterion, and the total weighted completion time deviation as the stability criterion. This fusion

could be a very helpful and significant measure for real life industrial systems. Two disruption types are

considered: jobs arrival and jobs cancellation. Thus, a Mixed Integer Linear Programming (MILP) model is

developed, as well as an iterative predictive-reactive strategy for dealing with the online part. At last, two

heuristic methods are proposed and discussed, in terms of solution quality and computing time.

Keywords: Rescheduling, flowshop, predictive-reactive strategy, weighted waiting time, stability, weighted

completion time deviation

1. Introduction and Literature Review

Thanks to smart technological tools, the cus-

tomer’s practices are changed. Henceforth, a

customer can, at any time, create or cancel an

order Zhao et al. (2019). This, has a direct in-

fluence on the production management, espe-

cially the production scheduling (Ivanov et al.

2016, Moeuf et al. 2018, Uhlmann and Frazzon

2018). Most of scheduling problems assume

that the work environment is static and that

no event occurs during the job execution. In

fact, the real production environment is dy-

namic (Pinedo et al. 2015, Khorsi et al. 2020),

and it is subjected to unexpected events that

disrupt the established schedule, such as: ma-

chine breakdowns, new jobs arrival, jobs can-

celation, uncertain processing times, shortage

of raw materials. (Li et al. 1003, Sabuncuoglu

and Karabuk 1999, Zhang et al. 2003, Katragjini

et al. 2013). Consequently, the production com-

panies are forced to quickly react for dealing

with this changed situation. Hence, reschedul-

ing process is required for revising the initial

schedule in a cost-effective way (Vieira et al.

2003).

According to Vieira et al. (2003), reschedul-

ing is the process of updating an established

schedule in response to disruptions. In the lit-

erature, some works have already presented

literature reviews of developing research for

this area, such as: Vieira et al. (2003), Li and

Le (2008), Ouelhadj and Petrovic (2009), and

recently Uhlmann and Frazzon (2018). More-

over, rescheduling problems are taking interest

in studying different types of machine envi-

ronments, for instance: single machine (Unal

et al. 1997, Hall and Potts 2004, Hall et al.

2017), parallel machines (Curry and Peters

2005, Wang et al. 2018, Kovalyov et al. 2016,

Tighazoui 2020), jobshop (Biewirth and Mat-
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tfeld 1999, Muluk et al. 2003, Mason et al.

2004, Salido et al. 2017, ?), or open-shop

Liu and Zhou (2013). As well, interesting

papers on flowshop environment. Katragjini

et al. (2013) studied a rescheduling problem

on permutation flowshop environments sub-

jecting to simultaneous random disruptions:

new jobs arrival, machine breakdowns, and

release times delays. The authors considered

the makespan as the schedule efficiency mea-

sure, and the number of tasks who’s the start-

ing times have been altered as the stability

measure. They proposed an iterated greedy

algorithm for solving the described problem.

Rahmani and Ramezanian (2016) considered

a flexible flowshop problem with unexpected

new jobs arrival. A predictive-reactive strategy

is adopted, which consists in generating an ini-

tial schedule for minimizing the weighted tar-

diness as the efficiency measure. After disrup-

tion occurrence, a reactive schedule is gener-

ated, measuring simultaneously the efficiency

and the stability, where the schedule stability

is measured by the absolute deviation of com-

pletion time between the initial and the new

schedule. For other related papers, the reader

may refer to Table 1, which presents a bibliog-

raphy on flowshop rescheduling problems.

To fill the void in existing literature, this

work investigates a new performance measure.

Firstly, in terms of schedule efficiency, the To-

tal Weighted Waiting Times (TWWT) is con-

sidered as a criterion. On scheduling litera-

ture, the waiting time is the total period of

job’s waiting in the system Jurcisin and Sebo

(2015). Guo et al. (2013) is among the first

works that studied the waiting time on a sin-

gle machine rescheduling problem. The au-

thors considered the sum of waiting times of

rework jobs and the original loads as a crite-

rion, they proved that the problem is NP-hard,

and proposed a dynamic insert heuristic al-

gorithm of polynomial-time to solve it. They

considered then a rescheduling problem with

maximum waiting time as an efficiency objec-

tive Guo et al. (2016). Their problem is in-

spired from quartz manufacturing industry, in

which waiting times represent the waiting for

certain materials before the reheating step in

oven. Thus, the authors proved the complex-

ity of the rescheduling problem on a single ma-

chine and developed a methodology to decide

where to insert the rework jobs in an initial se-

quence of regular jobs. Guo et al. (2017) formu-

lated two mixed integer programming mod-

els for a single machine rescheduling problem

with the total waiting time as an objective. The

studied problem came also from a quartz glass

factory, describing the waiting of materials be-

fore the welding step, where the waiting min-

imization saves the energy consumption. In

our work, the TWWT is considered for the first

time as an efficiency measure, it could be a

very helpful and significant, either in hospital

or industrial environments. For instance, in

production systems, it can be regarded as the

waiting period of a job in front of a worksta-

tion, considering the job priority as a weight.

In hospital systems, it can represent the de-

lay between a patient’s arrival and his actual

treatment, considering the emergency level as

a weight. Kan (2012) is among the first works

that defined the TWWT and classified it as NP-

hard problem for a single machine. To the best

of our knowledge, there is not any flowshop

rescheduling problem in the literature which

discussed this criterion.

Secondly, in terms of schedule stability, the

Total Weighted Completion Time Deviation

(TWCTD) is considered as a criterion. Indeed,

the stability measures are used to assess the

impact of the jobs deviation (Wu et al. 1993,

Pfeiffer et al. 2007, Zhang et al. 2013). In fact,

when the schedule is deviated, this matter may

generate supplementary costs, such as raw-

materials reordering costs, reallocation costs.

Rahmani and Ramezanian (2016). He et al.

(2020) studied a hybrid flowshop reschedul-
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Table 1 Bibliography on Flowshop Rescheduling Problems

Reference Problem Disruption

type

Performance measure Resolution

method

Efficiency Stability Robustness

Lodree et al.

(2004)

FSRP with

due date and

release date

JA Number of

tardy jobs

No No EADD based

on Moore

Hodgson

algorithm

Yan-hai et al.

(2005)

FSRP JA Weighted

mean flow

time of rush

orders and

the original

jobs

No No Ant colony

optimization

Chaari et al.

(2011)

HFSRP JPV Makespan No Makespan

devia-

tion

Genetic

Algorithm

Chiu and

Shih (2012)

FSRP with

preventive

maintenance

JA Makespan No No Johnson rule

El-Bouri

(2012)

FSRP with

due date

JA Mean

tardiness

No No Cooperative

Dispatching

Kianfar et al.

(2012)

DFFS with

SDST

JA Average

tardiness

No No Hybrid

genetic

algorithm

Weng et al.

(2012)

HFSRP with

due date

JA Total earliness

and tardiness

No Checked

by

simu-

lation

Routing

strategy

Rahmani et al.

(2013)

DFFS JA Weighted

flow time

The

sum of

com-

pletion

times

devia-

tion

TCO Solved by

GAMS

Rahmani and

Heydari

(2014)

FSRP JA, JPV Makespan The

sum of

com-

pletion

times

devia-

tion

Makespan

devia-

tion

FIFO, M-SPT,

M-LPT,

Johnson rule
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Tokola et al.

(2014)

FSRP with

release date

JA Tardiness No No Solved by

CPLEX

Katragjini et

al. (2015)

Permutation

FSRP

MB,

JA,

JRV,

JC,

JPV,

JSM,

JDDV,

JWV

Makespan,

Total

weighted

tardiness

Number

of de-

viated

jobs

No Iterated

Greedy, Local

search

Li et al.

(2015)

Permutation

FSRP

MB,

JA, JC,

JPV,

JRV

Makespan Number

of de-

viated

jobs

No Discrete

teaching

learning-

based

optimization

Li et al.

(2015)

HFSRP MB,

JPV

The average

sojourn time,

earliness,

tardiness, the

cast-break

penalty

Number

of

altered

jobs

No Hybrid fruit

fly

optimization

algorithm

Nagasawa et

al. (2015)

FSRP with

setup time

JPV Peak power

consumption

and inventory

cost

No Peak

power

devia-

tion

Solved by

Gurobi

Optimizer

Tang et al.

(2016)

DFFS with

unrelated

parallel

machine

MB, JA Makespan

and energy

consumption

No No Particle

swarm

optimization

Han et al.

(2017)

Blocking lot

streaming

FSRP

MB Makespan

and tardiness

The

sum of

com-

pletion

times

devia-

tion

Objective

func-

tion

devia-

tion

Robust EMO

Liu et al.

(2017)

Permutation

FSRP

MB, JA Total flow

time

Manager’s,

cus-

tomer’s,

and

Shopfloor

Opera-

tor’s

dissat-

isfac-

tion

Ex-

pected

sched-

ule

perfor-

mance

Hybridized

EMO method
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Liu et al.

(2017)

Permutation

FSRP with

common due

date

JA Makespan,

maximum

tardiness

No No Heuristic

based on

Match-up

and

Real-time

strategy

Qin et al.

(2018)

HFSRP with

unrelated

parallel

machine

JPV Delivary

deviation

No No Ant

colony

algorithm

Liu (2019) Outsourcing

FSRP

JA Makespan

and

outsourcing

cost

Number

of dis-

rupted

jobs

No Hybrid

variable

neighbor-

hood

search

Peng et al.

(2019)

HFSRP MB, JA,

JRV

Makespan Number

of de-

viated

jobs

No Multi-

Start

Variable

Neigh-

bourhood

Descent

MB: Machine breakdowns, JA: Jobs arrivals, JC: Jobs cancellation, JPV: Job processing variation, JRV: Job release

variation, JSM: Job Sequence Modification, JDDV: Job Due Date Variation, JWV: Job Weight Variation, FSRP: Flowshop

Rescheduling problem, HFSRP: Hybrid Flowshop Rescheduling problem, DFFS: Dynamic Flexible Flow-shop Scheduling,

SDST: Sequence Dependent Setup Times, FIFO: First Input First Output, M-SPT: Modified Shortest Processing Time,

M-LPT: Modified Longest Processing Time, EADD: Earliest Adjusted Due Date, EMO: Evolutionary Multiobjective

Optimization, TCO: Total change in order of jobs

ing problem with job insertion considering the

makespan and total the transportation time as

an efficiency measure. They also evaluated the

system stability by the alteration of job between

the initial chosen machine, and the machine

chosen after the disruption. Pfeiffer et al.

(2007) proposed a new stability measure, com-

bining the starting time deviation which is the

difference between the job starting time in the

initial sequence and the new one, as well as

the actuality penalty related to the deviation

of the job starting time from the current time.

This stability criterion is also used by Valledor

et al. (2018). Furthermore, other related mea-

sures have been found, such as: starting time

deviation and total deviation penalty Rangsar-

itratsamee et al. (2004), the amount of op-

erations and starting times operations which

have been altered Peng et al. (2018), the abso-

lute positional disruption, the positional dis-

ruption and absolute completion time disrup-

tion Hoogeveen et al. (2012), the total sequence

disruption Yuan and Mu (2007), the maximum

time disruption (the delivery times of jobs to

customers changes) Liu and Ro (2014). Differ-

ently from previous works, this one considers

the TWCTD as a stability criterion, which con-

sists in evaluating the deviation between the

job’s completion times in the original sched-

ule and the new one, associating for each job a

weight. Thereby, when a job has a high weight

(more priority) it will be difficult to disrupt it.

This new approach is closer to the operating

rooms scheduling in a hospital environment,

where the emergency operations has more pri-

ority than others Bakker and Tsui (2017).

Vieira et al. (2003) and Herrmann (2006)

classified the rescheduling strategies in two ba-

sic categories. The first is the dynamic schedul-

ing strategy, which is based on the jobs dis-
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patching when it is necessary using the avail-

able information at the moment of dispatching.

This strategy uses dispatching rules and other

heuristics to choose the sequence of jobs that

will be proceeded on the machine (El-Bouri

2012, Nurre and Sharkey 2018, Jun et al.

2019). The second is the predictive-reactive

rescheduling strategy, which is based on the

generation of an initial schedule in a first step,

then, updating the schedule at each disrup-

tion apparition (Vieira et al. 2003, Duenas and

Petrovic 2008, Nouiri et al. 2020). Yang and

Geunes (2008) implemented a predictivereac-

tive scheduling strategy on a single machine

with uncertain future jobs. They determined

the amount of planned idle time for uncertain

jobs and their positions in the predictive sched-

ule. Then, the schedule reacts when a disrup-

tion occurs, through including the new jobs in

the idle times. Gürel et al. (2010) proposed an

anticipative scheduling approach, based on a

predictive-reactive strategy for a parallel non-

identical machines’ environment with control-

lable processing times. Firstly, an initial sched-

ule is generated for minimizing the total man-

ufacturing costs of the jobs. After a disruption

caused by machines breakdowns, a reactive

schedule is created, and the remaining sched-

ule is repaired. In our study, the predictive-

reactive rescheduling strategy is adopted. It

is consisting in generating firstly an initial

schedule with the objective of minimizing the

TWWT. After the disruption apparition, a sec-

ond schedule is generated with the objective

of simultaneously minimizing the TWWT and

TWCTD. Both parts of the objective function

are associated by a coefficient α (α efficiency +

(1–α) stability), denoted by efficiency-stability co-
efficient. The impact of this coefficient on the

system is analyzed hereafter. As the second

objective function considers the association of

the efficiency and the stability criterion, it plays

a more significant role for reducing the actual

costs in real life industrial systems. Although

some models of flowshop with rescheduling

assumption determine new schedules, but they

are only based on the classical measures, they

may disregard several costs.

This paper addresses a flowshop reschedul-

ing problem under two disruption types,

namely: jobs arrival and jobs cancellation.

The choice of flowshop environment is justi-

fied by its relevance, it is still an important

problem from an optimization point of view,

as complicated application of flowshop, such

as robotic flowshops that have recently stud-

ied (Foumani et al. 2020, Foumani and Jenab

2013). A MILP model is developed to describe

this problem, as well as an iterative predictive-

reactive rescheduling strategy for dealing with

the online part. The problem resolution pro-

vides, for each solving step, an optimal solu-

tion. This rescheduling problem has not been

considered in the research literature before,

and contributes to operations research area by:

• Studying a new performance measure in-

spired from real life system, where the

TWWT measures the system efficiency,

and the TWCTD evaluates the system sta-

bility.

• Developing for this problem a MILP

model and an iterative predictive-

reactive strategy for dealing with the on-

line part, under two types of disruption.

• Proposing two heuristic methods, which

allow to browse even more jobs in a rea-

sonable time.

The rest of paper is organized as follows.

In section 2, the problem is described, as well

as the proposed methodology. In section 3,

the MILP formulation is provided. In section

4, the proposed heuristics are presented and

evaluated. Finally, we conclude and propose

some perspectives in section 5.

2. Problem Description and Methodol-
ogy



Tighazoui et al.: Predictive-reactive Strategy for Flowshop Rescheduling Problem: Minimizing the Total Weighted Waiting Times and Instability 259

Figure 1 The Waiting Time of Job j

2.1 Problem Description
We study a flowshop rescheduling problem,

without blocking constraints, under two types

of disruptions, new jobs arrival and jobs can-

cellation. For each job j, is associated a release

date r j , a weight w j , and a processing time of

job j in the machine m, p jm . When a job j starts

the execution on the machine m, it is processed

to completion time CT jm without interruption.

Buffer space capacity between the machines is

unlimited. Indeed, there is no blocking con-

straints in this system. So, each machine will

be immediately available to execute an oper-

ation, after its previous operation is achieved

and the next job is available for treatment.

Efficiency criterion: The waiting time W j of

job j is defined as the total period of job’s j
waiting in the system Jurcisin and Sebo (2015)

(See Figure 1).

The periods during which the job has

waited are shown by the red periods in Fig-

ure 1. These ones represent the waiting peri-

ods before the starting of job on each machine.

Thus, we define the waiting time W j of job j by:

W j = CT jM – r j –
∑M

m�1 pjm , where CT jM is the

completion time of job j on the last machine.

Before the disruptions, we supposed that

we have a set of jobs, N = {1, 2, · · · , n},
which are already available to be scheduled

at the time t=0 in the set of machines F=

{1, 2, · · · ,M}, an initial schedule should be

established with the objective of minimizing

the TWWT,
∑n

j�1 wjWj . Thus, a mathemati-

cal model is implemented to solve this clas-

sical flowshop problem. This initial problem

can be represented in standard notation by

F |ri |∑ wiWi . During the execution of jobs, the

initial schedule can be disrupted. In the case

of new job arrival, the set of jobs is updated.

N′ = {1, 2, · · · , n′} is the new set of jobs, it

contains the already existing jobs, as well as

new arrival one. Then, a new reactive sched-

ule is established updating the existing one.

The jobs that have been already initiated by

the machine before the disruption date, will

keep the same position. However, after the

disruption apparition, the objective function

will be simultaneously consider the schedule

efficiency measured by the TWWT,
∑n′

j�1 wjWj

and the schedule stability measured by the de-

viation from the initial schedule, as described

hereafter.

Stability criterion: Let CTo jm to be the orig-

inal completion time of job j at the machine

m, it is the completion time when the job j is

scheduled for the first time, and considered as

the due date communicated to the customer.

However, when a disruption occurs, the sched-

ule may change, and a new sequence is estab-

lished. Hence, the job j actually finishes in

the real completion time CT jm . Accordingly,

the difference between CTo jm and CT jm can be

used to estimate the completion time devia-

tion. Furthermore, a weight w j is associated

to each job j, to penalize more largely the im-

portant jobs. In the real system, the associ-

ation of the weights to the stability criterion

makes difficult to deviate the important or-

ders. Thus, the stability objective is defined

as 1
M
∑n′−nj

j�1

∑M
m�1 wj(CTjm − CTojm), referred
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to as the Total Weighted Completion Times Devi-
ation (TWCTD). As can be seen, the stability

is measured for only for the jobs existing in

the previous schedule (n’–n j), where n j is the

number of new jobs. Once the new jobs are

scheduled in their first sequence, they will be

concerned by the stability measure in the ul-

terior schedules. The stability criterion is di-

vided by M to normalize it with respect to the

efficiency criterion.

Besides, for associating both parts of the

objective function, the coefficient α efficiency-
stability coefficient is integrated. Thus, α is the

weight of efficiency part and (1–α) the one

of stability part, where α is a real number

between 0 and 1. The influence of this pa-

rameter on the system performance will be

studied in the numerical results section. Ul-

timately, we define the new objective func-

tion that simultaneously considers the sched-

ule efficiency and the schedule stability as

α
∑n′

j�1 wjWj +(1−α) 1
M
∑n′−nj

j�1

∑M
m�1 wj(CTjm −

CTojm), this function is used at each disruption

apparition. The flowshop rescheduling prob-

lem can be denoted in standard notation by:

F |ri |α∑i wiWi+(1−α) 1
M
∑

i
∑

m wi(Cim−Coim).
In the case of jobs cancellation, the same ap-

proach is adopted, considering N’ as the set of

remaining jobs. In the following, the adopted

predictive-reactive strategy is detailed, ex-

plaining the rescheduling policy.

2.2 Proposed Predictive-Reactive
Rescheduling Strategy

The adopted predictive-reactive rescheduling

strategy consists in the predictive phase to

solve an initial scheduling problem, assuming

that all the jobs’ information is available. This

initial problem consists in reducing the TWWT
of the jobs which is considered as a measure

of the schedule efficiency. After establishing

an initial schedule, the reactive phase starts, it

consists of going through the simulation hori-

zon step by step. At each step, the schedule

is updated in response to a disruption. In this

reactive phase, the methodology measures not

only the schedule efficiency, but also the sched-

ule stability through a combination of two cri-

teria, TWWT and TWCTD. Through this strat-

egy, the decisions are taken locally, which al-

lows to obtain at each rescheduling step an op-

timal solution, unlike other approaches which

use proactive methods consisting in predicting

the disruptions occurrences and take them into

consideration in the initial schedule formula-

tion Rahmani and Ramezanian (2016).

At each rescheduling step, the schedule can

be disturbed by a maximum of two events: the

arrival of one job and the cancellation of one

job. These two cases can simultaneously or

separately appear. In the case of new job ar-

rival, the new arrived job will be combined

with the set of uninitiated jobs for reschedul-

ing. In the case of job cancelation, the con-

cerned job is omitted from the set of uniniti-

ated jobs. The set of uninitiated jobs is the set

of existing jobs, except the jobs that have al-

ready been initiated by the machine before the

disruption date. To handle, at each step, the

disruptions, we have firstly discretized the fi-

nite time horizon [0, T], into periods Δt (see

Figure 2). Indeed, Δt is the time period length

which represents the time step. The occur-

rence of disruptions may be possible only at

these times. In fact, when a job occurs at time

t, this date will be its release date. In order to

simplify the calculations, it is assumed that Δt
= 1 unit of time, the same time unit that we

used for the jobs data p jm and r j .

Figure 2 Time Discretization

To simultaneously handle both types of dis-

ruptions, the two-hereafter binary variables

are introduced, they define the disruption

types.
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Algorithm 1: handle both types of disruptions

Solve the initial problem;

Obtain a LIST � { J1 , · · · , Jn};
Memorize solution;

for (t in 1 to T) do
if β(t) � 1 then

Cancel the concerned job f rom the LIST;

Solve the new problem;

end
if θ(t) � 1 then

Add the new job to the LIST;

Solve the new problem , with Constraint 15;

end
Memorize solution;

end

θ(t) �

{
1, if a new job is occurred

0, otherwise
(1)

β(t) �

{
1, if a job is cancelled

0, otherwise
(2)

In each step, the state of θ(t) and β(t) is ran-

domly generated. It is assumed that one job

arrives when θ(t) =1, and one job is canceled

when β(t)=1. Algorithm 1 describes the strat-

egy for handling both types of disruptions.

This algorithm traverses the time horizon

step by step, and checks whether a job arrives

or a job is canceled, thanks to the state of θ(t)
and β(t). If the state of one of these variables

is equal to one, this means that a disruption

occurs. Consequently, the algorithm updates

the set of jobs (LIST) and reschedules the new

set of jobs. If, at the same time, a job is can-

celed and another job arrives, the methodology

solves the cancellation problem. Then, with-

out increment the time, it adds the new job

and solves the problem. Constraint 15 is used

in the case of job arriving. It consists of having

the completion time bigger than the original

one. This is explained in detail in the MILP

formulation section. Figure 3 summarizes the

implemented predictive-reactive strategy.

Figure 3 The Proposed Predictive-reactive Strategy

3. MILP Formulation
A MILP model is implemented in this section.

This model is based on the predictive-reactive

strategy previously described. It is formulated

in two phases, the first one is the offline phase,

it presents the mathematical model before the

occurrence of disruptions, the second one is

the online phase, it presents the mathematical

model generated after the occurrence of dis-

ruptions. In Section 3.3, the numerical results

of the MILP resolution are presented.
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3.1 Offline Mathematical Model
To build our offline mathematical model, we

adapted a flowshop environment model with

mixed blocking constraints presented in Tra-

belsi et al. (2012), in which they minimized the

makespan, to consider now the total weighted

waiting times as the objective, without block-

ing constraints. The parameters, variables and

constraints are given below:

Parameters:

N: set of jobs {1, 2, · · · , n}
K: set of positions {1, 2, · · · , n}
F: set of machines {1, 2, · · · ,M}
j: index of job, j � 1, 2, · · · , n
k: index of position, k � 1, 2, · · · , n
m: index of machine, m � 1, 2, · · · ,M
w j : weight of job j
r j : release date of job j
p jm : processing time of the job j on the

machine m
bigM: Big value.

Decision variables:

Xjk �

{
1, if the job j is assigned to kth position

0, otherwise

Skm : Starting time of the job in kth position on the

machine m.

Ckm : Completion time of the job in kth position on

the machinem.

CT jm : Completion time of job j on the machine m.

W j : Waiting time of job j.

Objective function:

min
∑n

j�1 wjWj s.t.

n∑
k�1

Xjk � 1, ∀j ∈ N (3)

n∑
j�1

Xjk � 1, ∀k ∈ K (4)

Ckm � Skm +

n∑
j�1

pjmXjk , ∀k ∈ K, ∀m ∈ F (5)

Skm ≥ Ckm−1 , ∀k ∈ K, ∀m ∈ {2, · · · ,M} (6)

Skm ≥ Ck−1m , ∀k ∈ {2, · · · , n},∀m ∈ F (7)

Skm ≥
n∑

j�1

rjXjk , ∀k ∈ K, ∀m ∈ F (8)

CTjm ≥ Ckm − bi gM(1 − Xjk),
∀j ∈ N, ∀k ∈ K, ∀m ∈ F (9)

CTjm ≤ Ckm + bi gM(1 − Xjk),
∀j ∈ N, ∀k ∈ K, ∀m ∈ F (10)

Wj � CTjM − rj −
M∑

m�1

pjm , ∀j ∈ N (11)

Xjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈ K (12)

Skm , Ckm , CTjm ,Wj ≥ 0, ∀j ∈ N, ∀k ∈ K, ∀m ∈ F
(13)

Constraint (3) specifies that each job is af-

fected to only one position. Constraint (4) spec-

ifies that each position is occupied by only one

job. Constraint (5) specifies that, for all ma-

chines, the completion time of kth position is

equal to the starting time of kth position plus

the assigned processing time. Constraint (6)

consists in making the starting time of kth po-

sition greater than or equal to its completion

time in the previous machine. Constraint (7)

consists in having, for all machines, the start-

ing time of kth position greater than or equal to

the previous position completion time. Con-

straint (8) consists in making, for all machines,

the starting time of kth position greater than or

equal to its assigned release date. Constraint

(9) defines, for all machines, the completion

time of job j, which is greater than or equal

to the completion time of its assigned posi-

tion, where bigM must be sufficiently large. In

this model, it is assumed that the value of the

bigM corresponds to the Makespan obtained

through sequencing jobs in the ascending or-

der of the release dates. It is an upper bound

for the jobs’ completion time. Inspired by Guo

et al. (2017), constraint (10) is included, it is a
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cut that allows reducing the computing time.

When X jk =1, this constraint helps the system

to provide one possible solution which is CT jm

= Ckm . Constraint (11) defines the waiting

time of job j, it is depending on the comple-

tion time in the last machine, release date, and

processing time. Constraint (12) constraints

the variable X jk to be a binary decision vari-

able. Constraints (13) are non-negativity con-

straints, making all decision variables greater

than or equal to zero.

3.2 Online Mathematical Model
The second model is generated after occur-

rence of disruptions. the new objective

function will consider the efficiency measure

"TWWT" combined with the stability measure

"TWCTD". This combination plays a more sig-

nificant role for reducing the actual costs in real

life industrial systems. Although some models

of flowshop with rescheduling assumption de-

termine new schedules, but they are only based

on the classical measures, they may disregard

several costs. Thereby, in the case of new jobs

arrival, the parameters r j , w j , and p jm are used

in the formulation, as well as nj the number of

arrived jobs. The new formulation becomes:

New parameters:

n’=n+nj
N’: set of jobs {1, 2, · · · , n′}
K’: set of positions {1, 2, · · · , n′}
j: index of job, j � 1, 2, · · · , n′

k: index of position, k � 1, 2, · · · , n′

CTo jm : original completion time of job j on the

machine m (obtained by the resolution of the

initial problem).

α: efficiency-stability coefficient.

The decision variables X jk , CT jm , Skm , Ckm ,

and W j are also used for this new formulation.

Thus, the new objective function is:

min α
∑n′

j�1 wjWj + (1 − α) 1
M

∑n′−n j
j�1

∑M
m�1 wj (CTjm − CTojm )

The constraints (3) until (13) are also used

for this online model. As well, the constraint

(14), which allows saving the in-course se-

quence:

i f Sk1 < td ,Xjk � Xojk , ∀j ∈ N, ∀k ∈ K (14)

In fact, the disruption occurs while the ma-

chine executes a job. Thus, it is noted by td

the current time when a disruption occurs (see

Figure 4).

Then, all the jobs which have begun their

treatment on the flowshop system before td ,

must keep the same position until the end. It

is also noted by Xo jk , the variable assigning job

j to position k in the original schedule. The

values of Xo jk are memorized when the jobs

are scheduled for the first time. So, constraint

(14) specifies that, if the starting time of a posi-

tion is less than td , the position keeps the same

job. On each machine, the jobs have the same

sequencing. Thus, the starting times of jobs

on the first machine are sufficient to indicate

the jobs positions. Therefore, constraint (14) is

applied only for the first machine. In addition,

the preemption is not authorised.

Considering only the efficiency measure,

CTo jm is obtained when the job is scheduled

for the first time. In this case, the job is posi-

tioned in an ideal position, and it will not be

moved backward after a rescheduling. Thus,

in all rescheduling steps, it is assumed that:

CTjm ≥ CTojm , ∀j ∈ N, ∀m ∈ F (15)

In the case of jobs cancellation, we have used

the same formulation, without constraint (15).

In fact, when a job is canceled, its position will

be occupied by one of its previously following

jobs. Therefore, the jobs will be moved back-

ward. In this case, we can actually have CT jm ≤
CTo jm . On the other hand, the jobs can be can-

celed, only if the sequence is being executed.

Therefore, the condition max (Sk1) > td is also

considered in the job’s cancellation case.

3.3 Numerical Results
The proposed MILP model has been written

on FICO Xpress IVE and the simulations have
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Figure 4 Disruption Occurrence and Disruption Time Definition

been performed on a Core i5 2.40GHz laptop.

According to Anand et al. (2017), Xpress solver

is considered among the three well-known op-

timization solvers, it can solve very large op-

timization problems especially mixed integer.

The model implementation has been devel-

oped accordingly to the chart presented in Fig-

ure 3. The simulations have been tested on the

instances described hereafter, and it allowed

giving, at each rescheduling step, the optimal

solution.

In this subsection, we present the numeri-

cal results obtained through the model appli-

cation on a flowshop problem composed of 5

machines. The data used in this section are

presented in Table 2.

Table 2 Parameter Values

Parameters Values

wj ∼U(1,5)

p jm ∼U(1,4) (ut)

T 48 (ut)

The data that we have chosen is adapted for

real cases, either in a hospital or in an indus-

trial environment. The simulation will be over

an 8-hours’ time horizon (480 min) represent-

ing a hospital or a factory opening time. The

weight values can represent the 5-emergency

levels or 5 priority levels of customers. It is

assumed also that Δt =1 unit of time (ut), and

1 ut is equivalent to 10 minutes. Thus, T= 8 h =

480 min = 48 ut. The processing times can rep-

resent the durations of operations or a product

manufacturing time and follow a discrete uni-

form distribution with values between 1 and

4, obtaining durations of operations between 1

ut (10 minutes) and 4 ut (40 minutes). The val-

ues of the variable θ(t) (respectively β(t)) are

randomly generated with the Bernoulli distri-

bution which gives, at each time t, the value

1 with probability pθ (respectively pβ), and 0

with probability 1–pθ (respectively 1–pβ). We

first fixed pβ in 0.1 (small cancellation proba-

bility), we tested then different values of pθ.

On the presented results, we tested on 10

different instances the computing time (CPU
time) for the execution of all iterations. The sets

of tested instances contain respectively 5 initial

jobs. They will be disrupted by disruptions

over a horizon of T = 48 ut. The appearance

probability pθ is varied for different values (0.2;

0.5; 0.8) to analyze its impact on the CPU time.

Then, we calculated the minimum, maximum,

average, and standard deviation of CPU time

in second. The obtained results are presented

in Table 3.

The computing time depends on the ap-

pearance frequency of jobs. When pθ in-

creases, the average and the standard deviation

of CPU time increase also, which makes diffi-

cult to estimate the computing time for solving

the problem. Indeed, when pθ exceeds 0.5, the
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Table 3 Computing Time Study with Different Values of pθ

α pθ (ANAJ) Min CPU Max CPU Avg CPU Std dev CPU
0.2 (10 jobs) 1.66 6.68 2.47 1.48

1 0.5 (24 jobs) 45.82 1710 348.84 491.09

0.8 (39 jobs) 9049 > 12h 14772 5303

0.2 (10 jobs) 1.81 5.47 2.31 1.11

0.75 0.5 (24 jobs) 36.97 4198 850.8 1321

0.8 (39 jobs) 10153 > 12h 16195 6720

0.2 (10 jobs) 1.81 7.01 2.49 1.59

0.5 0.5 (24 jobs) 25.14 1188 374.1 387.43

0.8 (39 jobs) 9014 > 12h 14062 5341

ANAJ: The Average Number of Appearing Jobs

set of jobs that must be executed at each itera-

tion increases too much, as well as CPU time

average values. Thus, when the number of

jobs concerned by rescheduling is bigger, the

problem resolution is more difficult to obtain

in a reasonable time. Indeed, when pθ = 0.8,

the MILP software failed to constantly provide

solutions. Only six among the ten tested in-

stances gave solutions in a reasonable time. For

the rest, the simulation has been interrupted

after 12 hours. The average and standard de-

viation of CPU time is then calculated for the

instances in which the solution is obtained.

In fact, when a job with a long process-

ing time occupies the machine and disruptions

still appear, the set of jobs concerned by the

rescheduling process increases, because it con-

tains a lot of unexecuted jobs that are a waiting

since the machine is busy. This explains the big

values of the average and standard deviation

of CPU time when pθ = 0.8.

The variation of pβ is also studied to inter-

pret its impact on the computing time. pθ is

actually fixed in 0.8, and different values of pβ
are tested. We start by pβ = 0.5, assuming that

the order cancellation probability is 50%, pβ =

0.3 is then tested, until pβ = 0.1, the last case

which has already been tested in the variation

of pθ. The obtained results are presented in

Table 4.

When pβ increases, the number of canceled

jobs increases also. Although there are many

arriving jobs since pθ=0.8, but when pβ is large,

many jobs are canceled also. This makes a

diminution of the set of jobs to reschedule at

each iteration, helping the MILP to solve the

problem in a reasonable time. However, when

pβ decreases, the set of jobs to reschedule in-

creases, making difficult the resolution in a rea-

sonable time. This confirms the conclusion de-

duced from Table 3.Therefore, two heuristics

are proposed hereafter to fasten the comput-

ing time of the MILP resolution.

4. Heuristic Methods
In this section, two heuristic methods are pro-

posed and evaluated. Accordingly, two sub-

sections are hereafter presented.

4.1 Description of the Heuristic Methods
When a disruption occurs, all the jobs which

have begun their treatment on the flowshop

system before td , must keep the same position.

Accordingly, the set of jobs is divided in two

parts, the part to fix containing the already ini-

tiated jobs by the machine, and the rest of jobs

constituting the part to reschedule (see Figure

5).

As concluded in Tables 3 and 4, it is diffi-

cult to solve the problem in a reasonable time

when the part to reschedule is large. Thus, the

larger part to reschedule, the longer computing

time becomes. Therefore, to design an efficient

heuristic method, the part to reschedule must

be reduced, so as to have just a reduced num-
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Table 4 Computing Time Study with Different Values of pβ

α pβ (ANCJ) Min CPU Max CPU Avg CPU Std dev CPU
0.5 (24 jobs) 32.94 42.42 37.99 3.01

1 0.3 (15 jobs) 50.54 633.02 178.91 236.37

0.1 (5 jobs) 9049 >12h 14772 5303

0.5 (24 jobs) 33.07 44.81 40.17 3.52

0.75 0.3 (15 jobs) 47.45 329.29 119.56 89.11

0.1 (5 jobs) 10153 >12h 16195 6720

0.5 (24 jobs) 25.03 45.89 36.74 6.43

0.5 0.3 (15 jobs) 45.03 396.27 121.71 107.47

0.1 (5 jobs) 9014 >12h 14062 5341

ANCJ: The Average Number of Canceled Jobs

Figure 5 Flowshop System Divided in Two Parts

Figure 6 Flowshop System Divided in Three Parts

Figure 7 The New Divided Flowshop System when Nr is Shifted
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ber of jobs that can be solved in a reasonable

time. The aim is to act on this part, by reducing

the number of jobs to reschedule.

Let Nr be the number of jobs that can be

solved in a reasonable time by the MILP model.

Following that, the flowshop system will be

divided in three parts, the part to fix, the new

part to fix and Nr the part to reschedule which

includes also the new arrived job (see Figure 6).

Now, the part to reschedule contains only

Nr jobs, the rest of jobs will be fixed. Thus, the

reduced problem is solved.

After the resolution, the position of the new

arrived job is checked, if this one is placed in

the left position (1st position in Nr), it means

that it is possible that this job could be placed

earlier in the optimal solution. In a such case,

the set of Nr jobs will be shifted to the left,

fixing the last Nr–1 jobs (see Figure 7).

After shifting the Nr jobs, the problem is

resolved and the position of the new arrived

job is rechecked, if this one still in the left posi-

tion, the methodology is repeated again, until

either the new job is placed on a position dif-

ferent from the left or the heuristic arrives at td .

Algorithm 2 describes the proposed method-

ology.

Two starting positions for choosing the Nr
jobs to reschedule are possible, either at the be-

ginning or at the end of the sequence. Hence,

we denoted by Heuristic 1 the method which

traverses the positions from the end of the se-

quence to the beginning (as described in the

algorithm), and Heuristic 2 the reverse, from

the beginning to the end of the sequence.

4.2 Evaluation of the Heuristic Methods
As observed in Table 3, when pθ tends towards

0.8, solutions are more hardly obtained in a

reasonable time with the MILP software, in

particular when pβ is small. For this special

case, the proposed heuristics are tested and

evaluated, both in terms of solution quality and

computing time, with respect to the solutions

obtained with the MILP.

The two heuristics are firstly compared

with the MILP solution when pθ=0.2 and

pθ=0.5. For an appropriate comparison, the

original completion times CTojm obtained by

the MILP solution, are used by the heuris-

tics in constraint 15, in order to have at each

rescheduling step, the same problem to solve.

However, with the high disruptions’ probabil-

ities (pθ=0.8 and pθ=1), the MILP software is

not always able to provide a solution in a rea-

sonable time. WSPT (Weighted Shortest Process-
ing Time) method consists in scheduling the

jobs in ascending order of
∑M

m�1 pjm/wj , it is

considered as an approximate method for this

problem, it is used for obtaining the original

completion times CTojm . The aim is to have,

at each rescheduling step, the same problem

to solve, for comparing the heuristics between

them.

4.2.1 Variation of Appearance Frequency
The appearance frequency is varied for study-

ing its impact on solution quality and comput-

ing time. Four values of pθ (0.2; 0.5; 0.8; 1)

and three values of α(0.5; 0.75; 1) are tested.

The number of improvements established by

each heuristic before providing the final solu-

tion have also been calculated. It is assumed

in this subsection that Nr=5 and Step=4. 10

different instances are tested, and the averages

are presented in Table 5.

In the low disruptions (pθ = 0.2), the clas-

sical method and the proposed heuristics pro-

vide the same results in terms of time and so-

lution quality. Thus, both heuristics do not

need to make improvements for providing a

solution.

With medium disruptions probability (pθ =

0.5), the heuristics provide, in a short time, so-

lutions close to the MILP. Heuristic 2 provides

better solutions than Heuristic 1. Heuristic 2

acts from the left to the right position. The

left positions contain high weight jobs, their

rescheduling has a great impact on the solution

efficiency. Hence, Heuristic 2 is more effective
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Figure 8 Illustration of the Used Parameters

Algorithm 2: The proposed methodology

Input data: Optimal schedule, New arrived job, Np: Total number of positions, td :

disruption date, kt: position from which we reschedule, Nt: Total number of jobs that

have to be rescheduled, Nr: Number of jobs to reschedule at each step, Step: The number

of positions to skip.

Initialization: p � 0, lp , Step , Nr;

if Nt ≤ Nr then
for ( j, k in 1 to Np − 1) do

if So(k , 1) ≤ t then
X( j, k) � Xo( j, k) � ! save the same position ;

end
end

Reschedule the new problem;

Print the solution;

else
while (Np − lp − p ≥ kt) do

for ( j, k in 1 to Np | k not in {Np − lp − p..Np − p}) do
X( j, k) = Xo( j, k) � ! save the same position ;

end

Reschedule the new problem;

Print the solution;

if (X(new job ,Np − lp − p) � 0 or X(new job , kt) � 1) then
Break

else
Memorize the actual positions;

if (Np − lp − p − Step ≥ kt) then
p � p + Step;

else
Step � Np − lp − p − kt;

p � p + Step;

end
end

end
end
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Table 5 Comparison of the Heuristics for Different Values of pθ
(a) For pθ=0.2 and pθ=0.5

pθ=0.2(10jobs) pθ=0.5(24jobs)

H1 H2 MILP H1 H2 MILP
Time (s) 2.47 2.46 2.53 98.56 61.12 348.09

α=1 Solution 223 223 223 836.67 814.44 803.33

N◦Imprv 0 0 - 15.00 12.29 -

Time (s) 2.51 2.47 2.49 71.89 71.29 932.17

α=0.75 Solution 175.54 175.54 175.54 672.12 655.91 653.95

N◦Imprv 0 0 - 13.89 13.67 -

Time (s) 2.51 2.49 2.55 44.82 71.47 387.89

α=0.5 Solution 129.58 129.58 129.58 658.59 577.23 558.52

N◦Imprv 0 0 - 13.44 16.44 -

(b) For pθ=0.8 and pθ=1

pθ=0.8(39jobs) pθ=1(48jobs)

H1 H2 WSPT H1 H2 WSPT
Time (s) 941 785 0.53 1954 2871 0.76

α=1 Solution 2657.11 2566.89 2590.89 3988.67 3648.67 3931.56

N◦Imprv 45.67 51.00 - 58.56 69.78 -

Time (s) 706 948 0.56 1545 2956 0.90

α=0.75 Solution 2374.03 2218.73 2221.46 3768.04 3187.79 3421.61

N◦Imprv 41.33 52.56 - 56.44 72.00 -

Time (s) 337 1082 0.52 750 4142 0.73

α=0.5 Solution 2335.80 1893.93 1852.02 3839.41 2745.88 2911.66

N◦Imprv 34.78 55.78 - 47.44 72.25 -

H1: Heuristic 1, H2: Heuristic 2, WSPT: Weighted Shortest Processing Time, N◦Imprv: Number of Improvements.

than Heuristic 1.

As observed in Table 3, With high disrup-

tions probability, the MILP fails to solve the

problem in a reasonable time. Meanwhile,

WSPT method quickly provides a solution,

and was used in Table 5 to generate the orig-

inal completion times (CTojm), later used by

the heuristics. The aim is to have, at each

rescheduling step, the same problem to solve,

to compare the heuristics between them. As

WSPT is an approximate method for this prob-

lem, the heuristics can provide, in most of

cases, better results than WSPT, but Heuristic

2 remains still better than Heuristic 1.

As explained in the heuristics’ description,

Heuristic 1 improves the obtained solution

only if the new job is placed in the left posi-

tion (1st position in Nr). Hence, when α de-

creases, the stability is more considered, and

the left position will already be occupied by

an existing job so as not to disturb the estab-

lished sequence. Therefore, when α decreases,

Heuristic 1 makes less improvements and takes

less time. Contrarily, Heuristic 2 makes more

improvements and takes more time when α

decreases.

On the other hand, when pθ increases,

the number of improvements increases too, as

there are more disruptions in the system.

It can also be observed that the positions of

some existing jobs can switch after a disrup-

tion. In fact, when a new job is included in

a sequence, the existing jobs will not only be

shifted but they can also switch their positions.
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To illustrate this phenomenon, an example is

presented hereafter.

Example of jobs switching after a disrup-
tion

In this example, the processing times pjm ,

the release dates rj and the weights wj for 8

jobs are given in Table 6. The first 5 jobs are

considered in the initial schedule (in offline), for

which all information is available, then jobs 6, 7

and 8 arrive dynamically during the execution

(in online).

Table 6 Initial Problem Data, with Additional Jobs

offline online
jobj 1 2 3 4 5 6 7 8

M1 3 5 2 5 2 2 1 3

p jm M2 2 2 4 2 3 1 1 1

M3 3 2 3 4 1 1 2 5

rj 0 1 0 1 2 2 3 4

wj 2 1 3 2 1 2 1 4

The optimal sequences obtained by the

MILP are given in Table 7, it is assumed that

α � 1, to have more disturbance in the system.

In Step 3, the job 8 is appearing with a

weight of 4. This high weight forces the MILP

to insert the job 8 in an early date (between the

jobs 6 and 1). However, the following jobs are

switched. Thus, the optimal solution is given

by the sequence 3-6-8-1-5-4-7-2 instead of 3-6-

8-1-7-4-5-2, where the objective function value

is 107. This is a result of switching Job 5 with

Job 7. Figure 9 illustrates the Gantt chart for

the optimal solutions in Steps 2 and 3.

As can be observed, it is possible for any job

to move forward after a disruption, but not less

than its original completion time. This is the

case of job 5 in this example, which deviates

from CT51 � 15 to CT51 � 12. The present phe-

nomenon is a result of changing the flowshop

structure after each disruption on account of

the durations changes. This is also valid in the

case of jobs cancellation.

Conclusion: The jobs switching phe-

nomenon shows that the heuristics can, in

some cases, miss optimal solutions by fixing

a part of the jobs which must be rescheduled.

4.2.2 Variation of Nr and Step
In this subsection, the values of Nr and Step
are varied to evaluate their impact on solution

quality and computing time. Three values of

α are tested (0.5; 0.75; 1). It is assumed that

pθ � 0.8 in order to have more disruptions in

the system. Thus, WSPT is used to get origi-

nal completion times (CTojm) to compare the

heuristics between them. 10 different instances

are tested, and the averages are presented in

Table 8. For each problem range, the average

total time, the solution and the number of im-

provements proposed by each heuristic (H1,

H2 and WSPT) are given, in order to give an

idea of the solutions quality, both in terms of

accuracy, computing time and existing solution

digging.

When Nr increases, the number of jobs to

be rescheduled increases also. In this case, the

system considers more jobs to reschedule at

each improvement step. Consequently, the so-

lution quality is better as the research space

is larger, but the computing time increases.

However, the heuristics use less improvements

steps to give a solution. In addition, the solu-

tion values are improving for both heuristics.

In this case, Heuristic 1 and Heuristic 2 con-

verge towards the optimal solution.

When Step increases, the number of posi-

tions to skip increases. So, the system can find

a solution with less iterations. However, the

solution quality is improved as the research

space is large, and the new arrived job has the

possibility to be compared with more jobs. So,

the more Step increases, the more we reach a

better solution with less improvements. How-

ever, Step cannot be greater than or equal to

Nr, because in this case, the new job will not

be included in the set of Nr jobs. Hence, the

optimal case will be when Step=Nr–1.

The best solutions written in bold are ob-

tained with Heuristic 2 when Nr=7, which con-
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Table 7 The Optimal Solutions Given by the MILP

Sequence Objective function

Step 0: Initial optimal sequence 3-1-4-5-2 36

Step 1: Optimal sequence after occurrence of job 6 3-6-1-4-5-2 54

Step 2: Optimal sequence after occurrence of job 7 3-6-1-7-4-5-2 66

Step 3: Optimal sequence after occurrence of job 8 3-6-8-1-5-4-7-2 104

Figure 9 Gantt Chart for the Optimal Solution in Step 2 and 3

Table 8 Comparison of the Heuristics According to the Variation of Nr and Step

(a)

Nr= 5, Step= 3 Nr= 5, Step= 4 Nr= 6, Step= 3
H1 H2 WSPT H1 H2 WSPT H1 H2 WSPT

Time (s) 847 856 0.56 984 825 0.56 933 1011 0.56

α=1 Solution 2581 2469 2497 2573 2463 2497 2491 2490 2497

N◦Imprv 48.57 45.71 - 46.43 52.43 - 43.57 38.29 -

Time (s) 814 1230 0.59 724 1019 0.59 987.23 1265 0.59

α=0.75 Solution 2324 2134 2133 2310 2132 2133 2266 2113 2133

N◦Imprv 45.86 57.29 - 42.71 54.29 - 31.57 38.71 -

Time (s) 697 1580 0.54 345 1124 0.54 756 1883 0.54

α=0.5 Solution 2292 1835 1768 2275 1792 1768 2213 1789 1768

N◦Imprv 36.71 60.29 - 35.43 57.00 - 16.51 52.43 -

(b)

Nr= 6, Step= 4 Nr= 6, Step= 5 Nr= 7, Step= 3
H1 H2 WSPT H1 H2 WSPT H1 H2 WSPT

Time (s) 865 649 0.56 720 593 0.56 1350 1070 0.56

α=1 Solution 2479 2471 2497 2471 2468 2497 2468 2440 2497

N◦Imprv 32.00 31.10 - 28.00 25.86 - 33.43 30.29 -

Time (s) 620 857 0.59 517 681 0.59 1246 1308 0.59

α=0.75 Solution 2217 2107 2133 2214 2106 2133 2254 2104 2133

N◦Imprv 28.00 31.14 - 23.86 28.00 - 22.29 31.29 -

Time (s) 443 1293 0.54 436 981 0.54 804 1898 0.54

α=0.5 Solution 2099 1780 1768 2094 1778 1768 2098 1771 1768

N◦Imprv 14.71 39.43 - 12.00 35.86 - 8.71 40.86 -

H1: Heuristic 1, H2: Heuristic 2, WSPT: Weighted Shortest Processing Time, N◦Imprv: Number of Improvements.
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firms that Heuristic 2 is still better than Heuris-

tic 1, and the increase of Nr allows improving

the solution quality. However, as WSPT is an

approximate method for this problem, in most

of cases, Heuristic 2 gives better solutions than

WSPT.

In this study, we also concluded that

Heuristic 2 is still better than Heuristic 1. As

well, α still impacts the computing times of the

heuristics, as explained in the last subsection.

5. Conclusion and Perspectives
This paper proposed a new optimization cri-

terion to evaluate the performance of a flow-

shop rescheduling problem. The proposed

measure combines simultaneously the sched-

ule efficiency represented by the total weighted

waiting times, and the schedule stability by

the total weighted completion times deviation.

This association of criteria has never been stud-

ied in the flowshop rescheduling literature be-

fore, and it could be a very helpful and signifi-

cant measure for real life industrial systems. A

MILP model is implemented, as well as an it-

erative predictive-reactive strategy for dealing

with the online part, under two types of dis-

ruption: jobs arrival and jobs cancellation. Nu-

merical results show that the model resolution

is limited when the set of jobs to reschedule

is large. Accordingly, two heuristic methods

have been developed to improve the comput-

ing time. The heuristics evaluation allows us

to observe that:

• Heuristic 2 divides the part to reschedule

into subparts. Then, it starts the improve-

ments from the left of the sequence to the

right. This one provides better solutions

in terms of efficiency than its twin, start-

ing from the right of the schedule back to

the left.

• The smaller the part to reschedule, the

faster computing time. However, the so-

lution quality reduces.

• The efficiency-stability coefficient α im-

pacts the computing time of the heuris-

tic’s resolution. As the stability con-

sists in fixing the already existing jobs,

Heuristic 1 makes less improvements

when α decreases, contrary to Heuristic

2 that makes more improvements in the

same case.

• The jobs switching phenomenon shows

that when a new job is included inside a

sequence, the existing jobs will not only

be shifted, but they can also switch their

positions. This is a result of changing the

flowshop structure after each disruption

on account of the durations changes.

This research can be of great interest, not

only for the researchers working in the field of

production and operations management fac-

ing with flowshop rescheduling problems, but

also for a broader audience, such as industrial

actors or hospital decision makers. In the fur-

ther works, we intend to improve the proposed

method, by combining both heuristics, choos-

ing at each disruption which heuristics to apply

depending on the weight and the job duration.

We will also consider a flowshop rescheduling

problem with blocking constraints.
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