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Abstract. Disaster relief logistics is a significant element in the management of disaster relief operations. In

this paper, the operational decisions of relief logistics are considered in the distribution of resources to the

affected areas to include scheduling, routing, and allocation decisions. The proposed mathematical model

simultaneously captures many aspects relevant to real life to face the challenging situation of disasters.

Characteristics such as multiple uses of vehicles and split delivery allow for better use of vehicles as one

of the primary resources of disaster response. A multi-period multi-criteria mixed-integer programming

model is introduced to evaluate and address these features. The model utilizes a rolling horizon method

that provides possibilities to adjust plans as more information becomes available. Three objectives of

efficiency, effectiveness, and equity are jointly considered. The augmented epsilon constraint method is

applied to solve the model, and a case study is presented to illustrate the potential applicability of our

model. Computational results show that the model is capable of generating efficient solutions.

Keywords: Disaster management, relief logistics, vehicle routing problem, multi-trip, rolling horizon

1. Introduction
From 1998 to 2019, more than 4.4 billion people

were affected by disasters, 1.3 million people

died, and $2 trillion of economic damage was

reported only by natural disasters around the

world. The 2004 Indian Ocean tsunami, the

2010 earthquake in Chile, and the 2011 earth-

quake in Japan have been the largest reported

earthquakes since 2011 (Centre for Research on

the Epidemiology of Disasters CRED 2019).

As a part of disaster management activities,

logistics include "the process of planning, im-

plementing, and controlling the efficient and

effective flow of goods, material, and relevant

information from source to destination to re-

duce the suffering of affected people" (Thomas

and Kopczak 2005). Humanitarian logistics in-

clude several difficult optimization problems

such as warehouse location, allocation, trans-

portation, and vehicle routing. In this paper,

we will focus on the operations of transporta-

tion and the distribution of aid commodities

in humanitarian logistics. These operations in-

volve the assignment of relief items, the selec-

tion of distribution path, and scheduling path.

Despite the similarity between this and

commercial logistics problem, the post-

disaster situation imposes challenging charac-

teristics that make these two problems quite

different. As argued by Balcik et al. (2008),

these characteristics include the limited avail-

ability of resources, lack of knowledge of

data, high stakes associated with delivering

supplies, damaged transportation and com-

munication infrastructure, temporary network

structure that can only be set up after a disaster

strikes, and non-profit objectives.

As already mentioned, a major challenge

of disaster relief operations is the lack of ac-

cess to accurate and reliable data and their evo-

lution (Yi and Ozdamar 2007, Ozdamar et al.

2004). For example, the closure or repair of
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roads changes demands and travel times. As

a result, solutions generated based on static

models may significantly deviate from real sit-

uations and are, thus, impractical. Therefore,

to guarantee efficient and effective response

plans, a dynamic case must be considered in

which information is revealed gradually over

time, and projects are adjusted based on these

changes.

In last-mile distribution operations, vehi-

cles are usually small. However, in post-

disaster situations, the volume of demands

may be bigger than the vehicle’s capacity in the

affected areas. Therefore, an affected area can

be served more than once by different vehicles.

This feature is called split delivery in the rel-

evant literature which was first introduced by

Dror and Trudeau (1989). On the other hand,

Split deliveries in last-mile relief distribution

quickly serve demands using limited vehicles

(Huang et al. 2012).

In the classic vehicle routing problem

(VRP), only a single trip was performed by

each vehicle. However, in many cases where

a fast response is important, and the number

of vehicles is limited, it may be feasible for

each vehicle to make multiple trips. Not only

does the efficacy of the source which is used

increases, but also this attribute is the unique

practical alternative for applications such as

home delivery of perishable goods, the col-

lection of livestock or humanitarian logistics

where either vehicle routes are short with re-

spect to the planning horizon or the vehicle

capacity is small , and the total demand ex-

ceeds the capacity of the vehicle (Molina et al.

2018). This problem is known as the multi-

trip vehicle routing problem (MTVRP) which

is an extension of the classical capacitated ve-

hicle routing problem (CVRP) , and it was in-

troduced by Fleischmann (1990). Cattaruzza

et al. (2016) presented a survey on the MTVRP

and stated that, despite the benefits which can

be obtained by performing multiple trips, this

attribute had been neglected in the literature.

A major challenge of humanitarian relief

operations is the presence of various stake-

holders such as local governments, military,

and NGOs. In this multifunctional environ-

ment, each of these actors might have differ-

ent objectives and priorities, leading to con-

flicts and inefficiencies in practice (Ergun et al.

2010). Therefore, the best decisions are made

when these goals are taken into account simul-

taneously. In order to do so, multi-objective

models must be developed.

The need to address these features moti-

vated us to study a multi-criteria optimization

model for an extension of the vehicle schedul-

ing and routing problem in humanitarian last-

mile distribution. This problem is known as

the multi-objective multi-period multi-trip ve-

hicle scheduling and routing problem and in-

corporates decisions related to last-mile dis-

tribution such as transport quantities, deliv-

ery quantities, scheduling, and delivery routes.

The offered model takes into account various

assumptions in which a set of vehicles de-

part from a multi-depot, and each vehicle may

make many trips. It does not restrict the num-

ber of times a customer can be visited and, thus,

split deliveries are allowed. As more informa-

tion becomes available, decisions are updated

over a multi-period horizon. We consider three

objectives of response time, meeting demand,

and fair distribution of resources.

The rest of the article is organized as fol-

lows: section 2 provides a review of the rele-

vant literature. The general problem descrip-

tion statement and model are given in sec-

tion 3. section 4 introduces the proposed solu-

tion approach to the problem. In section 5, we

present a case study for potential earthquakes

in Tehran, and numerical results are presented

in section 6. Finally, we provide conclusions

and recommendations for future studies in sec-

tion 7.
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2. Literature Review
This paper will not review all decision mod-

els for humanitarian relief logistics, and we

will only focus on last-mile distribution, the

distribution of supplies from the storage point

to final beneficiaries, based on detailed path

planning and vehicle routing in a humanitar-

ian supply chain. Several in-depth literature

reviews exist covering the VRP in the post-

disaster response phase (DelaTorre et al. 2012,

Pillac et al. 2013, Ozdamar and Ertem 2015).

Reviewing the literature in this area reveals

that most of the pertinent studies assume each

vehicle performs a single trip (Haghani and Oh

1996, Barbaroso and Arda 2004, Ozdamar et

al. 2004, Yi and Kumar 2007, Balcik et al. 2008,

Campbell et al. 2008, Ozdamar and Yi 2008,

Shen et al. 2009, Najafi et al. 2014, Talebian and

Salari 2015, Wang et al. 2015, Al and Murray

2017). Whilst the models in which vehicles

are permitted to have plenty of trips, are more

realistic than a single trip model in disaster sit-

uations (Smilowitz and Dolinskaya 2011). Few

works have studied the MTVRP. For example,

(Ozdamar et al. 2002) proposed a deterministic

single period model as a two-stage program-

ming framework to involve helicopter routing,

pilot allocation, and transportation decisions

in disaster relief operations, and developed an

interactive heuristic method. The model was

solved using very small instances with relief

networks of up to 10 nodes and 3 helicopters.

Assignment costs were minimized during the

top level, and makespan was considered as the

base level related goal. More recently, Mar-

tinezSalazar et al. (2015) and Rivera et al. (2016)

have presented MTCVRP that minimizes the

sum of arrival times. MartinezSalazar et al.

(2015) have developed two mixed- integer for-

mulations based on a multi-level network. In-

stances with up to 30 nodes are solved opti-

mally. They applied a GRASP metaheuristic al-

gorithm for the solution of large-size test prob-

lems. Two flow-based and set partitioning-

based models have been developed by Rivera

et al. Rivera et al. (2016) for MTCVRP. An exact

algorithm is introduced that reformulates the

problem as a shortest path problem for larger

cases. The results of the comparison between

the two models with the exact method rep-

resent the good performance of the proposed

method. In the latter two, the authors consid-

ered only a single vehicle and depot for per-

forming delivery, and a multi-period planning

situation is not taken into consideration.

The presence of various stakeholders with

conflict criteria in humanitarian relief opera-

tions makes the problem a multi-criteria prob-

lem. Gutjahr and Nolz (2016) reviewed multi-

criteria optimization models and classified op-

timization criteria in humanitarian aid in seven

groups: cost, response time, travel distance,

coverage, reliability, security, and equity. A

few publications meet the attribute of multi-

objective as the problem. Lin et al. (2011)

formulated a multi-item, multi-vehicle, and

multi-period logistics model for the distribu-

tion of prioritized relief goods. They allowed

split delivery strategies. The objective was to

combine total travel time, unsatisfied demand,

and equity in service among nodes. Equity was

calculated by measuring the deviation in ser-

vice level across nodes. The scalarization ap-

proach was utilized to solve the multi-criteria

model. Huang et al. (2012) presented a vehicle

routing model to deliver a single type of sup-

ply from a depot for one single period. In their

proposed model, each vehicle had to perform

a single trip. The authors considered three ob-

jectives, i.e., time, demand satisfaction, and eq-

uity. They also showed how the different objec-

tive functions influenced the overall behaviour

of their proposed model. Using the scalar-

ization approach, the authors converted the

multi-objective problem into a single-objective

problem. Ferrer et al. (2018) introduced a

model based on deterministic multi-criteria

transportation that attempted at last-mile dis-
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tribution of humanitarian aids, which consti-

tuted some objectives as time, cost, equity, pri-

ority, security, and reliability. Regarding secu-

rity, all vehicles must traverse an arc at the same

time for forming convoys. They introduced a

compromise programming model for solving

the multi-criteria optimization problem.

Given the literature reviewed above, it can

be concluded that some features that make the

problem closer to the real emergency situation

have not received much attention in the liter-

ature. In most previous works, for instance,

each vehicle performed a single trip, and the

number of vehicles was supposed to be unlim-

ited. Yet, these assumptions are unrealistic in

the disaster context. For example, when vehi-

cle routes are shorter than the planning hori-

zon or when the vehicle fleet is small, some ve-

hicles may take several routes on the same day.

Another commonly made assumption in the

literature is that each demand point is served

once and only once. However, in post-disaster

situations, the volume of demands can be big-

ger than the vehicle’s capacity in the affected

areas and, therefore, an affected area can be

served more than once by different vehicles.

This feature is called split delivery in the rel-

evant literature and was first introduced by

Dror and Trudeau (1989). Nevertheless, some

complexities have limited its use. Most pre-

vious works addressed static planning prob-

lems. Since the situation after a disaster is very

dynamic, and information continually varies

over time, it is unreasonable to solve response

decisions for a single period. To this end, a

multi-period model could be more suitable

than a single-period model (Mahootchi and

Golmmhammadi 2017). In single-period mod-

els, there is no difference between demands oc-

curring in the first hours and those requested

in later days of the disaster. Henceforward,

while satisfying demands in-time seems very

vital in the disaster situation.

According to the literature review on the

routing of relief operations in last-mile distri-

bution and the mentioned research gaps, the

present research proffers a multi-period multi-

trip vehicle routing problem with split deliv-

ery (MTVRPSD), which is more realistic for

real emergency situations. Split delivery and

multi-trip attributes in the model can result

in serving large demands using fewer vehicles

(Huang et al. 2012). Since the situation after a

disaster is very dynamic, and information con-

stantly varies over time, it is unreasonable to

solve the first response decisions for a single

period. We use a rolling horizon planning ap-

proach to cope with the dynamic nature of the

problem. The major objective of disaster man-

agement is to reduce loss. In order to reduce

human loss, unsatisfied demands are mini-

mized on the entire planning horizon. Since

the losses in affected areas increase proportion-

ately with time, minimizing the response time

is considered as another objective. Given the

high volume of needs and limited resources, it

is important that those resources be allocated

fairly. Therefore, the fair distribution of relief

items is considered as the third objective of the

problem.

The main contributions of this research are:

1) Presenting a comprehensive model that

simultaneously captures many aspects

relevant to real-life problems, such as

multiple depots, split delivery, multi-

trips, and multiple periods;

2) Applying a rolling-horizon approach so

that a disaster management center can

probably update programs as new in-

formation becomes available during our

planning horizon and increases the effec-

tiveness of the programs;

3) Considering the important objectives of

efficiency, effectiveness, and equity; and

4) Applying the model to a real-world deci-

sion problem.
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3. Problem Description and Formula-
tion

In this study, we consider a post-disaster sit-

uation in which one of the most important

actions is dispatching different kinds of relief

commodities such as food, water, medical sup-

plies, and so forth from relief centers to affected

people in order to save lives and reduce human

suffering. In this problem, the relief logistics

network involves two members, suppliers or

distribution centers, and affected areas as de-

mand nodes. Several relevant decisions will

be made regarding transportation quantities,

delivery quantities, scheduling, and delivery

routes.

It is assumed that the location of distribu-

tion centers is predetermined, and their acces-

sibility of commodity is limited. Several types

of goods with different degrees of importance

are utilized as a response to the disaster. In the

situation post-disaster, individuals have differ-

ent conditions so the amount of one resource

unit may have a different effect on different in-

dividuals. For example, the value of a resource

unit for rescuing a severely injured individ-

ual is greater than its value for rescuing a less

injured individual. Therefore for considering

this effect, different demand points and com-

modities have been given different priorities.

These priorities can e.g. be determined based

on several external criteria such as the type,

severity, or magnitude of the disaster, profile

of damaged location, and response strategies

and etc. We assume that these priorities can be

devised by subject matter experts or disaster

planners. Furthermore, this fact is considered

that the vehicle fleet is limited to volume and

weight constraints, and each vehicle can trans-

port any type of commodities. Each vehicle

can execute multiple trips in a single period,

and each demand location can be visited mul-

tiple times by the same or different vehicles in

the same planning period. A vehicle in a trip

visits a sequence of demand locations and re-

turns to the depot after completing its trip un-

til the next order is specified. The information

related to supply, demand, and network struc-

ture is obtained from the assessments made by

relief agencies in the affected regions after the

disaster occurs.

To cope with the dynamic nature of the

problem, the rolling-horizon method pre-

sented by Wang, Kopfer, and Kopfer (2013) is

applied. Figure 1 depicts the related approach.

The entire time of the relief distribution process

is subdivided into a series of stages (planning

horizons). Each planning horizon consists of

p � 1, 2, · · · , T planning periods. First, an ini-

tial plan for the first planning horizon, includ-

ing p, the first period, is designed. The plan for

the first planning period in which forecasts are

typically more reliable is fixed and only imple-

mented for this period. The plan for the fol-

lowing planning periods p � 2, · · · , T will be

actualized in the forthcoming plans as new in-

formation , and reliable forecasts become avail-

able.

According to these explanations, this sec-

tion provides a multi-objective mixed-integer

linear programming formulation for the pro-

posed MTVRPSD.

3.1 Sets, Parameters, and Variables
3.1.1 Sets/Indices

NS:
Set of all nodes indexed by i , j ∈ NS,
N � |NS |

DN :
Set of demand nodes indexed by k , k
∈ DN, K � |DN |

DC:
Set of distribution centres indexed by

d , d ∈ DC,D � |DC |
VS:

Set of vehicles indexed by v ∈ VS,V
� |VS |

CS:
Set of commodity types indexed by b
∈ CS, C � |CS |

TS:
Set of periods indexed by t , t ∈ TS,
T � |TS |

RS:
Set of trips any vehicle makes indexed

by r ∈ R, R � |RS |
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A Planning horizon 
 

Figure 1 The Rolling Horizon Approach with Fixed Interval (Wang and Kopfer 2013).

3.1.2 Parameters

dbkt :
The amount of demand for commodity

b in node k in period t

Sbdt :
The amount of commodity b in node d
in period t

ti jt :
Travel time from node i to node j in

period t
CC: Volume capacity of the vehicle

CW : Weight capacity of the vehicle

Cb : Unit volume of commodity type b
Wb : Unit weight of commodity type b
Pkt : Priority of node k in period t

Pbkt :
Priority of commodity b in node k in

period t

δi jt :
Zero and one matrix that indicates

accessibility to arcs i and j in period t

tmax :
Maximum working hours per vehicle

per period

Mbi g : A large positive number

3.2 Sets, Parameters, and Variables

3.2.1 Sets/Indices

NS:
Set of all nodes indexed by i , j ∈ NS,
N � |NS |

DN :
Set of demand nodes indexed by k , k
∈ DN, K � |DN |

DC:
Set of distribution centres indexed by

d , d ∈ DC,D � |DC |
VS:

Set of vehicles indexed by v ∈ VS,V
� |VS |

CS:
Set of commodity types indexed by b
∈ CS, C � |CS |

TS:
Set of periods indexed by t , t ∈ TS,
T � |TS |

RS:
Set of trips any vehicle makes indexed

by r ∈ R, R � |RS |

3.2.2 Parameters

dbkt :
The amount of demand for commodity

b in node k in period t

Sbdt :
The amount of commodity b in node d
in period t

ti jt :
Travel time from node i to node j in

period t
CC: Volume capacity of the vehicle

CW : Weight capacity of the vehicle

Cb : Unit volume of commodity type b
Wb : Unit weight of commodity type b
Pkt : Priority of node k in period t

Pbkt :
Priority of commodity b in node k in

period t

δi jt :
Zero and one matrix that indicates

accessibility to arcs i and j in period t
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tmax :
Maximum working hours per vehicle

per period

Mbi g : A large positive number

3.2.3 Decision Variables

Qbdvrt :

The amount of commodity type b
from node d loaded on vehicle v in

trip r in period t

Zvri jt :
1 if vehicle v in trip r in period t
traverse arc i and j, 0 otherwise

Ybkvrt :

The amount of commodity type b
that vehicle v in trip r in period t
assigns to node k

Udbkt :

The amount of unsatisfied demand

of commodity type b in node k in

period t

fbkt :

Fraction of unsatisfied demand

of commodity type b in node k in

period t

strvt :
Start time of trip r for vehicle v in

period t

etrvt :
End time of trip r for vehicle v in

period t

sntivrt :
Arrival time of vehicle v in trip r in

period t in node i
3.2.4 Mathematical Model

Min Z1 �

C∑
b�1

K∑
k�1

T∑
t�1

Pkt .Pbkt .Udbkt (1)

Min Z2 �

T∑
t�1

R∑
r�1

V∑
v�1

N∑
i�1

N∑
j�1

ti jt .Zvri jt (2)

Min Z3 �

T∑
t�1

K∑
k�1

K∑
k ,�1

C∑
b�1

�� fbkt − fbk , t
�� (3)

V∑
v�1

R∑
r�1

Qbdvrt ≤ Sbdt ,

∀ b ∈ CS, d ∈ DC, t ∈ TS (4)

C∑
b�1

Cb .Qbdvrt ≤ CC,

∀d ∈ DC, r ∈ RS, v ∈ VS, t ∈ TS (5)

C∑
b�1

Wb .Qbdvrt ≤ CW,

∀d ∈ DC, r ∈ RS, v ∈ VS, t ∈ TS (6)

Qbdvrt ≤ Mbi g

K∑
k�1

Zvrdkt ,

∀b ∈ CS, d ∈ DC, r ∈ RS, v ∈ VS, t ∈ TS
(7)

Zvri jt ≤ Mbi g .δi jt ,

∀i , j ∈ NS, v ∈ VS, r ∈ RS, t ∈ TS (8)

N∑
i�1

Zvrikt −
N∑

i�1

Zvrkit � 0,

∀k ∈ DN, r ∈ R, v ∈ VS, t ∈ T (9)

K∑
k�1

Zvrdkt ≤ 1,

∀d ∈ DC, r ∈ RS, v ∈ VS, t ∈ TS (10)

N∑
j�1

N∑
i�1

R∑
r�1

ti jt .Zvri jt ≤ tmax ,

∀v ∈ VS, t ∈ TS (11)

Zvri jt ≤ Mbi g

K∑
k�1

Zvrdkt ,

∀i , j ∈ NS, d ∈ DC, r ∈ RS, v ∈ VS, t ∈ TS
(12)

Zvrdd , t � 0, ∀d � d , ∈ DC, r ∈ RS, v ∈ VS,

t ∈ TS (13)

V∑
v�1

R∑
r�1

Ybkvrt + Udbkt � dbkt , ∀b ∈ CS,

k ∈ DN, t ∈ TS (14)

Ybkvrt ≤ Mbi g

N∑
j�1

Zvr jkt , ∀b ∈ CS, k ∈ DN,

r ∈ RS, v ∈ VS, t ∈ TS (15)

K∑
k�1

Ybkvrt � Qbdvrt , ∀ d ∈ DC, b ∈ CS,

r ∈ RS, v ∈ VS, t ∈ TS (16)

fbkt �
Udbkt

dbkt
, ∀ k ∈ DN, b ∈ CS, t ∈ TS

(17)

sntkvrt ≥ strvt + tdkt − Mbi g .(1 − Zvrdkt),
∀d ∈ DC, k ∈ DN, r ∈ RS, v ∈ VS, t ∈ TS

(18)
sntkvrt ≤ strvt + tdkt + Mbi g . (1− Zvrdkt),
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∀d ∈ DC, k ∈ DN, r ∈ RS, v ∈ VS, t ∈ TS
(19)

sntk ,vrt ≥ sntkvrt+ tkk , t −Mbi g . (1−Zvrkk , t),
∀k � k , ∈ DN, r ∈ RS, v ∈ VS, t ∈ TS (20)

sntk ,vrt ≤ sntkvrt+ tkk , t+Mbi g . (1−Zvrkk , t),
∀k � k , ∈ DN, r ∈ RS, v ∈ VS, t ∈ TS (21)

sntkvrt ≥ Mbi g
���1 −

N∑
j�1

Zvr jkt
��	 , ∀k ∈ DN,

r ∈ RS, v ∈ VS, t ∈ TS (22)

st1vt � 0, ∀v ∈ VS, t ∈ TS (23)

sntdvrt � strvt ,

∀d ∈ DC, r ∈ RS, v ∈ VS, t ∈ TS (24)

etr−1vt � strvt , ∀r ∈ RS, v ∈ VS, t ∈ TS
(25)

etrvt � strvt +

N∑
i�1

N∑
j�1

ti jt .Zvri jt ,

∀r ∈ RS, v ∈ VS, t ∈ TS (26)

Y, Q , Ud ≥ 0 &Inte ger; snt , st , et , f ≥ 0;

Z ∈ {0, 1} (27)

The first objective function (1) minimizes

the total amount of unsatisfied demand

weighted by the priorities assigned to each

node and commodity. The second objective

function (2) attempts to minimize the total

travel time to ship commodities to demand

points. The third objective function (3) min-

imizes the sum of the absolute deviations of

a fraction of unsatisfied demands between de-

mand points to fairly allocate recourses. This

objective is nonlinear, and the equivalent linear

equations can be formulated as follows:

Min Z3 � ( rbkk , t + sbkk , t) (28)

s.t.

fbkt − fbk , t � rbkk , t − sbkk , t , ∀ k , k , ∈ DN,

b ∈ CS, t ∈ TS (29)

rbkk , t ≥ 0, sbkk , t ≥ 0 (30)

Constraint (4) ensures that the amount of

dispatched goods from each distribution cen-

ter does not exceed the commodities available

at the distribution center. Constraints (5) and

(6) are related to the vehicle capacity and en-

sure that the commodity assigned for transport

does not exceed the vehicle volume and weight

capacity. Constraint (7) indicates that if vehi-

cle v in trip r in period t does not leave the

depot, i.e.
∑K

k�1 Zvrdkt � 0, then the amount of

commodity b loaded on vehicle v will be zero.

Constraint (8) restricts the travel of each vehicle

to existing arcs. Constraint (9) states that the

vehicle that has arrived at each demand node

must also leave this node. Constraint (10) im-

plies that it is possible for the vehicle not to

leave the depot. Constraint (11) expresses that

the total travel time of all trips assigned to any

vehicle in this period cannot exceed the avail-

able working hours in a period. Constraint (12)

indicates that the vehicle will meet nodes if it is

left depot. Constraint (13) forbids the vehicle to

dispatch from one depot to another. Constraint

(14) determines the unsatisfied demand of any

commodity type at each demand node in a pe-

riod of time. Constraint (15) denotes that only

nodes visited by vehicle v in trip r in period t
can receive the commodity. Constraint (16) in-

dicates that the amount of assigned commod-

ity to demand points must be equal to the load

of the vehicle. Constraint (17) finds the fraction

of unsatisfied demand in each demand node.

Constrains (18)-(22) concern the arrival time at

demand nodes. Constrains (18) and (19) define

the arrival time at node k if the vehicle arrives

from the distribution center whereas the con-

straints (20) and (21) define this amount if the

vehicle arrives from the demand point. Con-

straint (23) indicates that the start time of the

first trip of each vehicle is assumed to be zero.

Constraint (24) states the arrival time at DC

(depot). Constraint (25) expresses the start of

the next trip when a previous trip ends. Con-
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straint (26) calculates the end time of each trip.

Finally, feasible regions for variables are de-

fined by Constraint (27).

The value of Mbi g should be adequately

large, but not so larger to avoid potential round

off error. On the other hand, too small val-

ues for the coefficients can result in infeasibil-

ity of their respective constraints, and making

the entire model infeasible. Therefore, finding

a bound for Mbi g is essential for solving the

model.

In constraint (7), Qbdvrt ≤
Mbi g

∑K
k�1 Zvrdkt , that compute the amount

of commodity loaded on vehicle, we

have
Qbdvrt∑K

k�1 Zvrdkt
≤ Mbi g . According to

0 ≤ Qbdvrt ≤ Q , (Q is the maximum quantity

of a commodity that can be loaded on each

vehicle, depending on the volume and weight

capacity of the vehicle) so it suffices to take

Q ≤ Mbi g . Since Zvri jt ∈ {0, 1}, therefore Mbi g

take at most the value of 1 in constraints (8)

and (12). According to constraints (16), Ybkvrt

denote the amount of commodity type b that

vehicle v in trip r in period t assigns to node k
so they are non-negative and less than or equal

to the maximum value of nodes demand. So

max {dbkt} ≤ Mbi g .

Rearranging constraints (18), we have

sntkvrt ≥ strvt + tdkt − Mbi g .(1−Zvrdkt).When

Zvri jt � 0 we have Mbi g ≥ strvt + tdkt − sntkvrt .

We know that 0 ≤ strvt , sntkvrt ≤ t, therefore

Mbi g ≥ t + max
{

ti jt
}
. For constraints (19-22),

we may derive similar bounds for Mbi g . Max-

imum of upper bounds calculated for Mbi g is

selected as bound of Mbi g .

4. Solution Procedure
The multi-objective mathematical program-

ming consists of a number of objectives that

are supposed to be optimized, and there is

no single optimal solution that is able to op-

timize all the objective functions simultane-

ously. In this type of problem, the optimal

solution is replaced with efficient (Pareto op-

timal) solutions. Effective solutions are those

which cannot be improved by any of the objec-

tive functions without deteriorating other ob-

jective functions. The set of Pareto optimal

solutions is referred to as a Pareto set.

An appropriate method for finding the

Pareto set is the ε-constraint method. In this

method, an objective function is optimized

while other functions are considered as con-

straints. The problem is stated as follows:

min f1(x̄)
subject to f2 (x̄) ≤ e2 , f3 (x̄) ≤ e3 ,

. . . , fp (x̄) ≤ ep (31)

Where subscript p indicates, the number of

competing objectives functions of the problem

and x̄ refers to the vector of decision variables.

In (31), it is assumed that all p objective func-

tions should be minimized. Values ei are cal-

culated according to two points in the objec-

tive space: Utopia point, where all objectives

are simultaneously at their best possible val-

ues, and Nadir point is a point in the objective

space where all objective functions are simul-

taneously at their worst values.

Although the ε-constraint method has sev-

eral advantages, there are some problems. One

problem is the proper selection of ε so that its

proper value would not be specified before the

run. If the value of ε increases, the number of

steps to implement the model increases signif-

icantly. Therefore, this method requires more

input from the user (Aghajani et al. 2020).

Mavrotas has introduced an improved ε-

constraint method called the “augmented ε-

constraint method” (AUGMECON) that gen-

erates only efficient Pareto optimal solutions

and avoids inefficient ones (Mavrotas 2009).

In order to better explain and apply the

AUGMECON method, the following steps

should be followed:

i. Calculating the Pay-off table using Lexi-
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cographic optimization:

Φ �

�����
f ∗
1
(x̄∗

1
) · · · fp(x̄∗

1
)

...
. . .

...

f1(x̄∗
p) · · · f ∗p (x̄∗

p)

����	 (32)

The payoff table is calculated as follows:

The objective function with a higher pri-

ority is selected and optimized accord-

ingly. For example, let f ∗
1
(x̄∗

1
) be the op-

timal solution of the objective function

with a higher priority. In the next step,

the objective function f2 is minimized by

adding the constraint f1 � f ∗
1
(x̄∗

1
) to the

initial constraints of the model. If the

problem has the third objective function,

then this objective function is optimized

by adding two constraints f1 � f ∗
1
(x̄∗

1
)

and f2 � f ∗
2
(x̄∗

2
). This process continues

until the optimization of the last objective

function.

ii. Determining the range of objective func-

tions:

f U
i ≤ fp (x̄) ≤ f SN

i

f SN
i � max

{
fi
(
x̄∗

1

)
, · · · , f ∗i

(
x̄∗

i %
)
, fi

(
x̄∗

p

) }
f U
i � f ∗i

(
x̄∗

i

)
(33)

iii. Dividing the range of objective functions:

ei ,ni � f SN
i −

(
f SN
i − f U

i

qi

)
× ni

ni � 0, 1, · · · , qi (34)

where qi is the number of intervals used

to divide the range of ith objective func-

tion.

iv. Solving single objective optimization on

the base of ei ,ni :

Min F (x) � f1 (x)
− r1 ∗ eps ∗ ( s2

r2
+

s3

r3
+, · · · , sp

rp
) (35)

subject to fi (x) + si � ei ,ni

i � 2, · · · , p (36)

si ∈ R+ (37)

where s2 , · · · , sp are the introduced slack

variables for Constraint (36) of the prob-

lem and ri is the range of the ith objec-

tive function calculated from the payoff

table (the difference between the best and

worst ith objective functions). The value

of eps is a small number, usually between

10−6 and 10−3. Interested readers are re-

ferred to (Mavrotas 2009) for more details

on this method.

5. Case Description
The proposed model is applied to a real-world

case for earthquakes in Tehran. Tehran, the

capital city of Iran, has been affected by strong

earthquakes throughout its history, the last one

occurring in 1830. The city is now known as

one of the most vulnerable urban areas to po-

tential earthquakes. Tehran has become the

political, cultural, and commercial centre of

Iran. Now, it has nearly 9-million population

(about 12 million in the daytime) and is the

most populated city in Iran. Figure 2 shows the

22 regions of the Tehran municipality. Region

4, located in Northeastern Tehran, has been se-

lected for the case study of this research. This

region that includes nine districts covers 10%

of the total area of Tehran (61,288,367 m2), with

about 11% of the population of Tehran (919,001

people) inhabiting there. This region is threat-

ened by two faults: Shian-Kousar and Narmak.

Demand nodes and distribution centers in this

case study are mapped in Figure 3.

In 2000, the Japan International Coopera-

tion Agency (JICA) conducted a comprehen-

sive study on Tehran seismic disaster preven-

tion and management (JICA 2000). In the

JICA report, damage estimations and refugee

populations are provided for each district.

With regard to this report and available online
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Figure 2 The 22 Regions of Tehran

Figure 3 Region 4 of Tehran City along with the Location of Demand Nodes and Distribution Centers

data on population, the demand for commodi-

ties at each district based on the number of

refugees is determined, as shown in Table 2.

Travel times on network links have been com-

puted using the Tehran Navigation Website

(http://map.tehran.ir/). Without loss of gen-

erality, a package of relief items, including wa-

ter, food, and medicine, is assumed to be sent

to demand points. Needs for demand points,

at which the distribution center that located is

supplied by the same distribution center. The

weight and volume details for the package and

weight and volume capacity for the vehicle are

demonstrated in Table 3. Table 4 presents the

inventory of commodities in distribution cen-

ters in different time periods. There are five ve-

hicles in distribution centers to transport com-

modities to demand nodes.

Table 2 Relief Commodity Demand in Each District

district t � 1 t � 2-9

1 510 450

2 630 520

3 570 600

4 1320 1000

5 520 420

6 420 390

7 720 650

8 720 650

9 250 250

The entire time horizon is set to the first

three days (the first 72 h of a disaster relief

effort). The working time for each day is set
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Table 3 Parameters Related to Weight and Volume

Volume (m3) Weight (kg)
package 0.13 4.18

vehicle 80 15000

Table 4 The Amounts of Commodities Provided by Dis-
tribution Centers

district t=1 t=2-9

3 2000 3000

9 3000 4000

to be 18 hours. According to the rolling hori-

zon approach, the entire time horizon is sub-

divided into eight planning horizons (stages),

and each planning horizon consists of two peri-

ods. The unit length of a time interval is given

by 6 hours (i.e., three periods in a day). The

maximum number of routes that a vehicle can

take by period is limited to 2. Also, the maxi-

mum working time of a vehicle in each period

is considered 360 minutes.

6. Numerical Results
This section presents the numerical results and

behavior of the proposed model. The mathe-

matical model was solved by GAMS/Cplex on

a laptop computer with a processing speed of

2.6 GHz and 6 GB of RAM under Windows 8

Professional.

To solve the multi-objective problem pro-

posed in this study, we used the augmented ep-

silon constraint method. The Pareto solutions

generated by AUGMECON and ε-constraint

method are presented in Figure 4. The com-

parison of these solutions shows that the Pareto

front obtained from AUGMECON is more effi-

cient.

In each stage of the rolling horizon-based

system, the model is solved based on the in-

put data. Tables 5 and 6 indicate the optimal

model decisions in the first stage of the rolling

horizon. Table 5 shows the amount of com-

modity loaded on vehicles over different trips

in each period. The distribution plan includes

routes, delivery amounts, and schedules of dis-

tribution for this stage present in Table 6. For

example, the first row of Table 6 shows that V1

in the first period takes two trips. In the first

trip, the vehicle departed from depot located at

node 3, arrived at node 2 within 14 min to de-

liver 10 commodities, arrived at node 4 after 27

min to deliver 270 commodities, then reached

at node 5 after 39 min to deliver 310 commodi-

ties, arrived at node 7 after 52 min to deliver

10 commodities, and finally returned to node

3 after 68 min. The distribution plan of vehi-

cle 1 for the first period is depicted in Figure 5.

The dual placed under each node represent the

amounts of goods being delivered and the ar-

rival time to them.

According to the distribution plan in Ta-

ble 6, the arcs priority used in the transporta-

tion network is reported in Table 7 based on

the weight percent of the commodities passing

through these arcs. Results show that all arcs

of network are not similarly important in the

response because some arcs are used more for

the commodity transportation. For instance,

more than 58% commodities are transported

through the three arcs 4-5, 8-9 and 3-7. In

this way, relief organizations can identify emer-

gency roads in the network and make them

resistant.

Figure 6 shows the unsatisfied demand ra-

tion for each demand node belonging to three

models as follows: the proposed model (case

I), the proposed model without split delivery

(case II), and the model in which each vehicle

performs a single trip (case III). It is evident

that the value of this criterion in the model

expressed for all nodes is minimal.

The effect of the number of vehicles on un-

satisfied demand in these three models is il-

lustrated in Figure 7. As expected, with the

increase in the number of vehicles, the amount

of unsatisfied demand is reduced. In case I

and II, after V � 4, the amount of unsatis-

fied demand does not decrease significantly.

Since hiring a new vehicle requires consider-
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Figure 4 Comparison of the Pareto front of AUGMECON and ε-Constraint Method

Table 5 The Amount of Commodity Loaded on Vehicles on the First Stage

V1 V2 V3 V4

r1 r2 r1 r2 r1 r2 r1 r2

t � 1 600 460 560 380 510 600

t � 2 600 600 600 600 600 450 600

Table 6 Optimal Distribution Plan on the First Stage

Vehicle Trip
Routes Delivery amounts Arrival times

t � 1 t � 2 t � 1 t � 2 t � 1 t � 2

V1

r � 1 3-2-4-5-7-3 3-7-3 10-270-310-10 600 0-14-27-39-52-68 0-16-32

r � 2 3-2-3 3-7-5-4-2-3 460 10-10-260-320 68-82-96 32-48-61-73-86-100

V2

r � 1 3-7-3 3-2-4-5-7-3 560 10-90-490-10 0-16-32 0-14-27-39-52-68

r � 2 3-2-1-3 170-430 68-82-91-107

V3 r � 1 3-1-3 3-7-5-4-2-3 380 10-10-570-10 0-16-32 0-16-29-41-54-68

V4

r � 1 9-8-9 9-8-9 510 450 0-18-36 0-18-36

r � 2 9-8-6-9 9-8-6-9 210-390 180-420 36-54-66-77 36-54-66-77

Figure 5 The Distribution Plan of V1 for t � 1

Table 7 The Most Important Roads in the Network

Rank 1 2 3 4 5 6 7 8 9

Arc 4-5 8-9 3-7 6-8 2-4 2-3 1-2 1-3 5-7

% Commodity 22.76 18.86 16.49 11.31 9.65 9.07 6 5.3 0.56
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Figure 6 Unsatisfied Demand Ration in Each Node

Figure 7 Impact of the Number of Relief Vehicles on the Unsatisfied Demand

able costs, decision-maker would decide to hire

a new vehicle only if there is a high benefit of

hiring another vehicle in terms of the amount

of unsatisfied demand.

In Figure 7, we also observe that the unmet

demand in the model expressed in this paper

is less than that of the other two models for a

specific number of vehicles. Therefore, when

each vehicle performs multiple trips and each

demand node can be served more than once,

more demand can be met with a smaller num-

ber of vehicles. Such a model can be very useful

in disaster situations where resources such as

vehicles are limited, and the aim is providing

the greatest service to affected individuals.

We investigate the effect of increasing the

inventory compared to the current situation

on the percentage of increase in the satisfied

demand. Figure 8 illustrates the change in

%satisfied demand for inventory increase =

10%, 20%, · · · , 60%for cases I, II and III. Ac-

cording to Figure 8, while having more inven-

tories increases the percentage of demand cov-

ered in all cases, after inventory increase = 40%,

%satisfied demand does not increase signifi-

cantly. Based on this analysis, managers can

effectively plan for sufficient inventory. In Fig-

ure 8, we also observe that in the case I, i.e., the

proposed model in this paper, the percentage

of increasing demand coverage is considerably

more than cases II and III (by nearly 20% even

for inventory increase = 30%).

Figure 9 highlights the effect of equity on

the distribution of relief supplies. To this end,
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Figure 8 Impact of the Inventory on Satisfied Demand

two cases are designed, and their outcomes are

compared. The first case (Model I) includes the

model proposed in this study, and the second

case (Model II) neglects the objective of equity.

The total unsatisfied demand in both models

is 435 units, and all of the DNs have the same

priority in receiving relief items. It is clear that

in Case B, the unsatisfied demand ratio varies

significantly between regions. Some districts

that are far away from the distribution centres,

such as District 4, receive no goods or a small

percentage of its demand is met, while districts

near distribution centres, such as the Districts

7 and 8, have a higher chance to be satisfied in

each period. In Model I, demand satisfaction

is almost the same in all districts. The largest

difference is 0.01% between different regions,

while this value is 1 for Model II. Comparing

the results of these two models demonstrates

that the outputs of the model significantly de-

pend on the equity objective. Since there are

great demands for various relief supplies once

disasters occur and relief agencies are con-

fronted with limited resources, it is typically

very difficult, if not impossible, to satisfy the

entire relief demand immediately. Unfair al-

location policies may cause social chaos, such

as ransack and even robbery of relief supplies.

In these situations, it is important to consider

fairness alongside the goals of efficiency and

effectiveness.

7. Conclusion and Future Research
In this study, we presented a model for

MTVRPSD that simultaneously tackles more

realistic aspects such as multi-depot, possible

of several trips by one vehicle, servicing each

disaster area more than once (split-delivery),

multi-period, and using multiple conflicting

goals. A new multi-objective mixed-integer

linear programming model is proposed to for-

mulate the problem. Our model includes ef-

ficiency, effectiveness, and equity as the ob-

jective functions for emergency logistics man-

agement. We employ the augmented epsilon

method for multi-objective optimization and

the efficient construction of the Pareto curve.

To capture the dynamic aspects of the prob-

lem, we utilized a rolling horizon approach

that can receive updated data and adjust the

logistics plan during the response. A practical

case study is also presented. The numerical

results indicate that the simultaneous consid-

eration of these attributes will improve the ef-

fectiveness of distribution efforts. Based on the

results, attributes in the model can serve large

demands using fewer vehicles. This feature in

the disaster situation is highly beneficial due

to resource constraints. Similarly, the results

highlight the influence of the equity objective

on the fair distribution of resources.

Finally, we suggest the following directions

for future studies: 1) To solve large-scale prob-

lems within a reasonable time; a suitable so-

lution procedure should be designed to obtain

high-quality solutions within short run times;
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Figure 9 Effect of Equity on the Distribution of Relief Supplies

2) in the real world, some parameters of the

model may not be deterministic. Therefore,

parameters and data should consider uncer-

tainty; 3) Further operations such as evacu-

ation problem (in which people need to be

quickly transported to safe areas or medical fa-

cilities) as well as the determination of the loca-

tion of distribution centers and the required in-

ventory quantities considering various factors

(such as safety and transportation infrastruc-

ture) can be incorporated; and 4) other goals

such as reliability routes and social costs can

be considered.
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