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Abstract. With the rapid growth of energy costs and the constant promotion of environmental standards,

energy consumption has become a significant expenditure for the operating and maintaining of a cloud

data center. To improve the energy efficiency of cloud data centers, in this paper, we propose a Virtual

Machine (VM) scheduling strategy with a speed switch and a multi-sleep mode. In accordance with the

current traffic loads, a proportion of VMs operate at a low speed or a high speed, while the remaining VMs

either sleep or operate at a high speed. Commensurate with our proposal, we develop a continuous-time

queueing model with an adaptive service rate and a partial synchronous vacation. We construct a two

dimensional Markov chain based on the total number of requests in the system and the state of all the VMs.

Using a matrix geometric solution, we mathematically estimate the energy saving level and the response

performance of the system. Numerical experiments with analysis and simulation show that our proposed

VM scheduling strategy can effectively reduce the energy consumption without significant degradation

in response performance. Additionally, we establish a system utility function to trade off the different

performance measures. In order to determine the optimal sleep parameter and the maximum system

utility function, we develop an improved Firefly intelligent searching Algorithm.

Keywords: Cloud data center, virtual machine scheduling, speed switch, multi-sleep, matrix geometric

solution, utility function, improved Firefly Algorithm

1. Introduction

The rapid development of information technol-

ogy and the explosive growth in global data

have generated enormous demand for cloud

computing. Consequently, Cloud Data Cen-

ters (CDCs) are growing exponentially, both

in number and in size, to provide universal

service. International Data Corporation (IDC)

predicts that the total number of CDCs de-

ployed worldwide will peak at 8.6 million in

2017 (Hintemann et al. 2016). Currently, high

energy consumption and serious environmen-

tal pollution are significant factors restricting

the development of CDCs. One of the key

challenges in constructing green CDCs is re-

ducing energy consumption without seriously

degrading the Quality of Service (QoS).

In CDCs, besides the necessary energy con-

sumption produced by providing service for

cloud users, a large amount of energy is wasted

maintaining excess service capacity (Hameed

et al. 2016, Salimian et al. 2012). All the Virtual

Machines (VMs) in CDCs remain open waiting

for the arrivals of cloud users, even in the night

and early morning.

During those hours, the utilization of VMs

is merely 5 to 10 percent. However, the energy

consumption of an idle VM is 60 to 80 percent

of that of a busy VM (Duan et al. 2015). In ad-

dition, inappropriate VM scheduling can also

result in superfluous energy consumption. Re-

searchers have therefore directed their focus on

improving energy efficiency by reducing the

amount of wasted energy in CDCs.
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The energy consumption of a VM is approx-

imately in line with the CPU utilization, so the

most direct method of conserving energy is

to operate all the VMs at lower voltage and

frequency (Qavami et al. 2014, Farahnakian et

al. 2015). One of the common techniques for

optimizing energy consumption in CDCs is to

engage dynamic power management (DPM).

DPM refers to dynamic CPU energy consump-

tion and CPU processing speed adjustment ac-

cording to the current traffic load. In Li(2016),

Li proved that if the application environment

and average energy consumption are given,

there is an optimal speed scheme that mini-

mizes the average response time of requests.

In Wang et al.(2011), Wang et al. presented a

workload predictor based on online Bayes clas-

sifier and a novel DPM technique based on an

adaptive reinforcement learning algorithm to

reduce the energy consumption in stochastic

dynamic systems.

In Chen et al.(2016), Chen et al. pro-

posed a Dynamic Voltage and Frequency Scal-

ing (DVFS) scheme based on DPM technique,

by which the best fitting voltage and frequency

for a multi-core embedded system are dynam-

ically predicted. All the methods based on

DPM technique mentioned above can improve

energy efficiency from the perspective of re-

ducing the energy consumption of each VM in

CDCs. However, all the VMs in the CDCs re-

main open all the time, even though there are

no requests in CDCs. Even when operating at

low-speed and in low-voltage mode, the accu-

mulated energy consumption by thousands of

VMs in CDCs is significant.

In respect to the low utilization of VMs in

CDCs, inducing some VMs to enter a sleep

state or a power-off state during lower work-

load hours can also save energy (Shen et al.

2017, Dabbagh et al. 2015). In Chou et al.(2016),

Chou et al. proposed a DynSleep scheme.

DynSleep dynamically postpones the process-

ing of some requests, creating longer idle peri-

ods. It says that the use of a deep sleep mode

can save more energy. In Dabbagh et al.(2015),

Dabbagh et al. proposed an integrated energy-

aware resource provisioning framework for

CDCs. This framework first predicts the num-

ber of cloud users that will arrive at CDCs in

the near future, then estimates the number of

VMs that are needed to serve those cloud users.

In Liao et al.(2015), Liao et al. proposed an

energy-efficient strategy, which dynamically

switches two backup groups of servers on and

off according to different thresholds. Using

the methods above, energy can be conserved

by decreasing the number of VMs running in

the system. However, few methods can accu-

rately estimate the behavior of requests. Their

arrivals and departures are stochastic. Push-

ing VMs to enter a sleep state or a power-off

state based on only the predicted behavior of

requests is very risky, and might lead to a sig-

nificant sacrifice of the response performance.

Typically, if the traffic load is very heavy, all

the VMs in CDCs will operate at a high speed

so that cloud users can be served faster and the

average delay can be reduced. On the other

hand, if the traffic load is very light, some VMs

will operate at a low speed while the remain-

ing VMs go to sleep so that energy consump-

tion can be greatly reduced without significant

response performance degradation.

For these, in this paper, by applying a

DPM technique and introducing a sleep mode,

we propose a VM scheduling strategy with a

speed switch and a multi-sleep mode. Accord-

ingly, we establish a continuous-time queue-

ing model with an adaptive service rate and

a partial synchronous vacation to investigate

the behavior of cloud users and all the VMs in

CDCs with the proposed VM scheduling strat-

egy. From the perspective of the total num-

ber of cloud users in the CDC and the state of

all the VMs, we construct a two dimensional

Markov chain to analyze the queueing model.

Moreover, we mathematically and numerically
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evaluate the energy saving level of the system

and the average delay of requests. In order

to achieve a reasonable balance between dif-

ferent performance measures, we establish a

system utility function. Finally, we present an

improved Firefly Algorithm to search the opti-

mal sleep parameter and the maximum utility

function.

The remainder of this paper is organized as

follows. In Section 2, a VM scheduling strategy

with a speed switch and a multi-sleep mode is

proposed, and a system model is established.

In Section 3, the steady-state distribution of

the system model is analyzed. In Section 4, the

expressions for some important performance

measures in terms of the energy saving level of

the system and the average delay of requests

are derived. In Section 5, numerical results are

provided to evaluate the system performance

of the proposed VM scheduling strategy. An

intelligent optimization method is presented

to optimize the sleep parameter in Section 6.

Finally, conclusions are drawn in Section 7.

2. Virtual Machine Scheduling Strat-
egy and System Model

In this section, we first propose a Virtual Ma-

chine scheduling strategy for improving the

energy efficiency in cloud data centers (CDCs)

by using a speed switch and a multi-sleep

mode. Then, we develop a continuous-time

queueing model with an adaptive service rate

and a partial synchronous vacation.

2.1 VM Scheduling Strategy
In conventional CDCs, all the VMs remain

open regardless of traffic load. This results in

a large amount of energy being wasted, which

is referred to as idle energy consumption. Fur-

thermore, inappropriate VM scheduling also

generates additional energy consumption, re-

ferred to as luxury energy consumption. In or-

der to improve the energy efficiency of CDCs,

we propose a VM scheduling strategy with a

speed switch and a multi-sleep mode to reduce

both the idle energy consumption and the lux-

ury energy consumption.

In the proposed VM scheduling strategy,

all the VMs in the CDC are divided into one

of two modules, namely, a base-line module

or a reserve module. The VMs in the base-line

module are always active, and their processing

speed can be switched between a low speed

and a high speed in accordance with the traffic

load. The VMs in the reserve module can be

awakened from multiple sleeps.

Based on the stochastic behavior of cloud

users, as well as the operational characteristics

of sleep timers, the CDC will be converted in

the following three cases:

Case I : The VMs in the base-line module op-

erate at a low speed while the VMs in

the reserve module are asleep. The level

of energy-conservation in the CDC is the

most significant in this case.

Case II : The VMs in the base-line module op-

erate at a high speed while the VMs in the

reserve module are asleep. The level of

energy-conservation in the CDC is rela-

tively obvious in this case.

Case III : The VMs in the base-line module

operate at a high speed while the VMs in

the reserve module are awake and oper-

ate at a high speed. The response perfor-

mance in the CDC is most ideal in this

case.

To avoid frequently switching the process-

ing speed of VMs in the base-line module,

we use a dual-threshold, marked as θ1 (θ1 �

0, 1, 2, . . .) and θ2 (θ2 � 0, 1, 2, . . .), to jointly

control the VMs processing speed in the base-

line module, in which we set 0 < θ2 < θ1.

When the number of cloud users in the CDC

exceeds the threshold θ1, all the VMs in the

base-line module will operate at a high speed.

When the number of cloud users in the CDC

is less than the threshold θ2, all the VMs in the

base-line module will operate at a low speed.

To guarantee the QoS in the CDC even when
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Figure 1 The Transition in the Three CDC Cases

the traffic load is heavy, we use another thresh-

old, called the activation threshold θ3, to wake

up the VMs in the reserve module. If the num-

ber of cloud users waiting in the CDC buffer

exceeds the threshold θ3, all the VMs in the re-

serve module will be awakened and operate at

a high speed after the sleep timer expires. Oth-

erwise, the sleep timer will be restarted with

a random duration, and all the VMs in the re-

serve module will go to sleep again.

For convenience of presentation, we denote

the number of VMs in the base-line module

as n, and the number of VMs in the reserve

module as m. To avoid the appearance that

all the VMs in the reserve module are awake

while the VMs in the base-line module operate

at a low speed, we set (n − θ2) � m. To ensure

all the cloud users in the CDC buffer can be

served once the VMs in the reserve module are

awakened, we set 0 < θ3 < m.

According to the proposed VM scheduling

strategy, the transition among the three CDC

cases is illustrated in Fig. 1.

In Case I, each cloud user is served im-

mediately on a VM available in the base-line

module at a low speed. However, with the

arrivals of the cloud users, more VMs in the

base-line module will be occupied. Here, we

call the VMs being occupied by cloud users as

busy VMs. When the number of busy VMs

in the base-line module exceeds the threshold

θ1, all the VMs in the base-line module will

be switched to a high speed, i.e., the CDC will

be converted to the Case II state. The cloud

users that have not received service yet will be

served continuously on the same VM, but at

a high speed. In this CDC case, there are no

cloud users waiting in the CDC buffer. There-

fore, when the sleep timer expires, this sleep

timer will be restarted with a random duration,

and all the VMs in the reserve module will go

to sleep again.

In Case II, if there are idle VMs in the base-

line module, the incoming cloud users will be

served immediately in the base-line module at

a high speed. Otherwise, the cloud users have

to wait in the CDC buffer. On the one hand,

with the arrivals of cloud users, more cloud

users will queue in the CDC buffer. When

the sleep timer expires, if the number of cloud

users waiting in the CDC buffer exceeds the ac-

tivation threshold θ3, all the VMs in the reserve

module will be awakened and operate at a high

speed directly, i.e., the CDC will be converted

to the Case III state. Then all the cloud users

in the CDC buffer will be served immediately

in the reserve module at a high speed. Other-

wise, the CDC will remain in the Case II state.

As service continues, cloud users that have fin-

ished being served depart, so fewer VMs in
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the base-line module will be busy. When the

number of busy VMs in the base-line module

decreases below the threshold θ2, all the VMs

in the base-line module will be switched to a

low speed, i.e., the CDC will be converted to

the Case I state. The cloud users queueing in

the CDC buffer will be served continuously on

the same VM, but at a low speed.

In Case III, if there are idle VMs in either

the base-line module or the reserve module,

the incoming cloud users will be served imme-

diately at a high speed. Otherwise, the cloud

users will queue in the CDC buffer. However,

as cloud users that have finished being served

depart, fewer VMs in both the base-line mod-

ule and the reserve module will be busy. When

the number of idle VMs in the base-line mod-

ule is equal to the number of busy VMs in the

reserve module, the cloud users queueing in

the CDC buffer will be migrated to the idle

VMs in the base-line module and served at

a high speed. Then the sleep timer will be

restarted with a random duration, and all the

VMs in the reserve module will go to sleep

again, i.e., the CDC will be converted to the

Case II state.

2.2 System Model
In this subsection, we establish a continuous-

time queueing model with an adaptive service

rate and a partial synchronous vacation to cap-

ture the related performance measures of the

CDC using the proposed VM scheduling strat-

egy. In this queueing model, the requests from

cloud users are regarded as customers. Each

VM is regarded as an independent server that

can only serve one request at a time. A sleep is

abstracted as a vacation. The system buffer is

supposed to be infinite.

We assume that the arrival intervals of re-

quests follow an exponential distribution with

parameter λ (λ > 0). We assume that the ser-

vice time of a request when the system is in

the Case I state follows an exponential distri-

bution with parameter μl (μl > 0). The ser-

vice time of a request when the system is in

either the Case II state or the Case III state fol-

lows an exponential distribution with param-

eter μh (μh > μl). Furthermore, we assume

that the energy consumption of a VM during

the sleep state is Jv (Jv > 0), the energy con-

sumption of an idle VM is Jo (Jo > Jv), the

energy consumption of a busy VM operating

at the low speed and the high speed are Jl and

Jh (Jh > Jl), respectively. And, the additional

energy consumption of a VM switching to a

high speed from a low speed is Ja (Ja > 0), and

that of a VM being woken up from sleep state

is Jb (Jb > 0). In addition, we assume that the

time length of a sleep timer follows an expo-

nential distribution with parameter δ (δ > 0).
Here, we refer to the parameter δ as the sleep

parameter.

Let random variable N(t) � i , i ∈
{0, 1, 2, . . .} be the total number of requests in

the system at instant t, which is called the sys-

tem level. Let random variable C(t) � j, j ∈
{1, 2, 3} be the system case at instant t. j �

1, 2, 3 represents the system being in the state

of Case I, Case II and Case III, respectively.

{N(t), C(t), t � 0} constitutes a two dimen-

sional continuous-time Markov chain (CTMC)

(Tian and Zhang 2006). The state-space Ω of

the CTMC is given as follows:

Ω � {(i , j) | i ∈ {0, 1, 2, . . .}, j ∈ {1, 2, 3}} (1)

For the two dimensional CTMC, we define

πi , j as the steady-state probability when the

system level is i and the system case is j. πi , j

is given as follows:

πi , j � lim
t→∞ P{N(t) � i , C(t) � j},

i ∈ {0, 1, 2, . . .}, j ∈ {1, 2, 3} (2)

We define πi as the steady-state probability

vector when the system level is i. πi can be

given as follows:

πi �

{
(πi1 , πi2), i ∈ {0, 1, 2, . . . , n}
(πi2 , πi3), i ∈ {n + 1, n + 2, n + 3, . . .}

(3)
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Table 1 The Relation between the System Levels and the System Cases

System Initial system cases before Possible system cases after

levels one step transition one step transition

[0, θ2 − 1] Case I Case I
θ2 Case I Case I

Case II Case I or Case II
[θ2 + 1, θ1 − 1] Case I Case I

Case II Case II
θ1 Case I Case I or Case II

Case II Case II
[θ1 + 1, n] Case II Case II
n + 1 Case II Case II

Case III Case II or Case III
[n + 2, n + θ3] Case II Case II

Case III Case III
[n + θ3 + 1,∞) Case II Case II or Case III

Case III Case III

The steady-state probability distribution Π
of the CTMC is composed of πi (i ≥ 0). Π is

given as follows:

Π � (π0 , π1 , π2 , . . .) (4)

3. Model Analysis
In this section, we first discuss the transition

rate matrix of the two dimensional CTMC.

Then, we derive the steady-state probability

distribution of the system model.

3.1 Transition Rate Matrix
According to the proposed VM scheduling

strategy, the system case is related to the sys-

tem level. The relation between the system

level and the system case is illustrated in Table

1.

Based on Table 1, we illustrate the state tran-

sition of the system model in Fig. 2.

Let Q be the one-step state transition

rate matrix of the two-dimensional CTMC

{(N(t), C(t)), t ≥ 0}. As shown in Table 1,

each system level has at most two correspond-

ing system cases, so we separate Q into sub-

matrices of 2 × 2 structure. Let Qu ,v be the

one-step state transition rate sub-matrix for the

system level changing from u (u � 0, 1, 2, . . .)

Figure 2 The State Transition of the System Model

to v (v � 0, 1, 2, . . .). For clarity, Qu ,u−1, Qu ,u

and Qu ,u+1 are abbreviated as Bu , Au and Cu ,

respectively.

For the initial system level u � 0, A0 in-

dicates the state transition rates from (0, 1) to

(0, 1), (0, 1) to (0, 2), (0, 2) to (0, 1) and (0, 2)
to (0, 2). C0 indicates the state transition rates
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from (0, 1) to (1, 1), (0, 1) to (1, 2), (0, 2) to (1, 1)
and (0, 2) to (1, 2).

For the initial system level 1 ≤ u ≤ n−1, Bu

indicates the state transition rates from (u , 1) to

(u − 1, 1), (u , 1) to (u − 1, 2), (u , 2) to (u − 1, 1)
and (u , 2) to (u − 1, 2). Au indicates the state

transition rates from (u , 1) to (u , 1), (u , 1) to

(u , 2), (u , 2) to (u , 1) and (u , 2) to (u , 2). Cu

indicates the state transition rates from (u , 1)
to (u+1, 1), (u , 1) to (u+1, 2), (u , 2) to (u+1, 1)
and (u , 2) to (u + 1, 2).

For the initial system level u � n, Bn in-

dicates the state transition rates from (n , 1) to

(n−1, 1), (n , 1) to (n−1, 2), (n , 2) to (n−1, 1) and

(n , 2) to (n − 1, 2). An indicates the state tran-

sition rates from (n , 1) to (n , 1), (n , 1) to (n , 2),
(n , 2) to (n , 1) and (n , 2) to (n , 2). Cn indicates

the state transition rates from (n , 1) to (n+1, 2),
(n , 1) to (n + 1, 3), (n , 2) to (n + 1, 2) and (n , 2)
to (n + 1, 3).

For the initial system level u � n + 1, Bn+1

indicates the state transition rates from (n +

1, 2) to (n , 1), (n + 1, 2) to (n , 2), (n + 1, 3) to

(n , 1) and (n + 1, 3) to (n , 2). An+1 indicates the

state transition rates from (n+1, 2) to (n+1, 2),
(n + 1, 2) to (n + 1, 3), (n + 1, 3) to (n + 1, 2)
and (n + 1, 3) to (n + 1, 3). Cn+1 indicates the

state transition rates from (n+1, 2) to (n+2, 2),
(n + 1, 2) to (n + 2, 3), (n + 1, 3) to (n + 2, 2) and

(n + 1, 3) to (n + 1, 3).
For the initial system level n+2 ≤ u < ∞, Bu

indicates the state transition rates from (u , 2) to

(u − 1, 2), (u , 2) to (u − 1, 3), (u , 3) to (u − 1, 2)
and (u , 3) to (u − 1, 3). Au indicates the state

transition rates from (u , 2) to (u , 2), (u , 2) to

(u , 3), (u , 3) to (u , 2) and (u , 3) to (u , 3). Cu

indicates the state transition rates from (u , 2)
to (u+1, 2), (u , 2) to (u+1, 3), (u , 3) to (u+1, 2)
and (u , 3) to (u + 1, 3).

All the sub-matrices in Q can be addressed

according to the state transition rates shown in

Fig. 2. We find that starting from the system

level (n + m + 1), all the sub-matrices in Q are

repeated forever. Then, Q is given as follows:

Q �

���������������������

A0 C0

B1 A1 C1

. . .
. . .

. . .

Bn−1An−1Cn−1

Bn An Cn

Bn+1 An+1 Cn+1

. . .
. . .

. . .

Bn+m An+m Cn+m

. . .
. . .

. . .

���������������������

(5)

The block-tridiagonal structure of Q shows

that the state transitions occur only between

adjacent system levels. Hence, the two dimen-

sional CTMC {N(t), C(t), t ≥ 0} can be seen as

a type of Quasi Birth-and-Death (QBD) process

(Banik et al. 2007, Zhang and Hou 2011).

3.2 Steady-State Probability Distribution
For the CTMC {N(t), C(t), t ≥ 0} with the one

step-state transition rate matrix Q, the neces-

sary and sufficient conditions for positive re-

currence are that the matrix quadratic equa-

tion:

R2Bn+m + RAn+m + Cn+m � 0 (6)

has a minimal non-negative solution R and that

the spectral radius SP(R) < 1, where 0 is a zero

matrix of order 2 × 2.

We assume the rate matrix R �(
r11 r12

0 r22

)
, then substitute R, Bn+m , An+m ,

and Cn+m into Eq. (6), so we have(
nμh r2

11
(n + m)μh(r11 + r22)r12

0 (n + m)μh r2
22

)
+(

−(λ + nμh + δ)r11 r11δ − (λ + (n + m)μh)r12

0 −(λ + (n + m)μh)r22

)

+

(
λ 0

0 λ

)
�

(
0 0

0 0

)
(7)

By solving Eq. (7), we can derive r11, r22 and
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r12 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
r11 �

(λ + nμh + δ) −√(λ + nμh + δ)2 − 4nλμh
2nμh

r22 �
λ

(n + m)μh

r12 �
r11δ

λ + (n + m)(1 − r11 − r22)μh
(8)

The rate matrix R has been given in closed-

form. Note that SP(R) � max{r11 , r22} and

r11 can be proved mathematically to be less

than 1. Therefore, the necessary and sufficient

condition for positive recurrence of the CTMC

{N(t), C(t), t ≥ 0} is equivalent to r22 < 1, that

is, λ < (n + m)μh .

With the rate matrix R obtained, we con-

struct a square matrix B[R] as follows:

B[R]�

�����������������

A0 C0

B1 A1 C1

. . .
. . .

. . .

Bn−1An−1Cn−1

Bn An Cn

Bn+1 An+1 Cn+1

. . .
. . .

. . .

Bn+mRBn+m + An+m

�����������������
(9)

By using the matrix-geometric method (La-

touche and Ramaswami 2000, Neuts 1981),

we can give an equation set as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(π0 , π1 , . . . , πn+m)B[R] � (0, 0, . . . , 0︸�����︷︷�����︸

2(n+m+1)

)

(π0 , π1 , . . . , πn+m−1)e + πn+m(I − R)−1e1 � 1

(10)

where e is a 2(n + m) × 1 vector with ones, and

e1 is a 2 × 1 vector with ones.

We further construct an augmented matrix

as follows:

(π0 , π1 , . . . , πn+m)
(

B[R] e
(I − R)−1e1

)
� (0, 0, . . . , 0︸�����︷︷�����︸

2(n+m+1)

, 1) (11)

Applying the Gauss-Seidel method (Green-

baum 1997) to solve Eq. (11), we can obtain

π0, π1, . . . , πn+m .

From the structure of the transition rate ma-

trix Q, we know πi (i � n+m+1, n+m+2, n+

m + 3, . . .) satisfies the matrix geometric solu-

tion form as follows:

πi � πn+mRi−(n+m) , i ≥ (n + m) (12)

Substituting πn+m obtained in Eq. (11) into

Eq. (12), we can obtain πi (i � n + m + 1, n +

m + 2, n + m + 3, . . .). Then the steady-state

probability distributionΠ � (π0 , π1 , π2 , . . .) of

the system can be given mathematically.

4. Performance Measures
The energy saving level is defined as the ratio

of the difference between the energy consump-

tion of the conventional CDC and that of the

CDC with the proposed VM scheduling strat-

egy over the energy consumption of the con-

ventional CDC.

The energy consumption C of the CDC with

the proposed VM scheduling strategy is given

as follows:

C � C1 + C2 + C3 + C4 (13)

where C1, C2 and C3 are the average energy

consumption when the system is in the states

of Case I, Case II and Case III, respectively, C4

is the additional energy consumption caused

by speed switching and VM activation.

C1, C2, C3 and C4 are given as follows:

C1 �

θ1∑
i�0

πi ,1(i Jl + (n − i)Jo + m Jv),

C2 �

n∑
i�θ2

πi ,2(i Jh + (n − i)Jo + m Jv)

+

∞∑
i�n+1

πi ,2(n Jh + m Jv),

C3 �

n+m∑
i�n+1

πi ,3(i Jh + (n + m − i)Jo)

+

∞∑
i�n+m+1

πi ,3((n + m)Jh),
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Table 2 Experimental Parameters

Parameters Value

Total number (n + m) of VMs in the system 50

Service rate μl when VM operates at the low speed 0.01 ms−1

Service rate μh when VM operates at the high speed 0.02 ms−1

Dual-threshold θ1, θ2 20, 10

Activation threshold θ3 15

Energy consumption level Jv of a sleeping VM 0.2 mJ

Energy consumption level Jo of an idle VM 0.4 mJ

Energy consumption level Jl of a busy VM operating at the low speed 0.45 mJ

Energy consumption level Jh of a busy VM operating at the high speed 0.5 mJ

Additional energy consumption level Ja of a VM caused by speed switch 1.0 mJ

Additional energy consumption level Jb of a VM caused by activation 2.0 mJ

C4 �

∞∑
i�n+θ3+1

πi ,2δm Jb + πθ1 ,1λn Ja .

In the conventional CDC, the energy con-

sumption C′ is given as follows:

C′
� (n + m)Jh

(
λ

(n + m)μh

)
+(n + m)Jo

(
1 − λ

(n + m)μh

)
�
λ Jh

μh
+ Jo

(
n + m − λ

μh

)
(14)

Combining Eqs. (13) and (14), the energy

saving level S of the CDC with the proposed

VM scheduling strategy is given as follows:

S �
C′ − C

C′ (15)

We define the delay of a request as the du-

ration from the instant a request arrives at the

system to the instant this request is served.

Based on the steady-state probability distri-

bution obtained in Subsection 3.2, the average

number E[L] of requests waiting in the system

buffer is given as follows:

E[L] �
∞∑

i�n+1

(i−n)πi ,2+

∞∑
i�n+m+1

(i − (n + m)) πi ,3

(16)

Applying Little’s law, the average delay E[W]

of requests is given as follows:

E[W] � E[L]
λ

�
1

λ

( ∞∑
i�n+1

(i − n)πi ,2 +

∞∑
i�n+m+1

(i − (n + m)) πi ,3

)
(17)

5. Numerical Experiments
In order to evaluate the response performance

and the energy saving level of the CDC with

the proposed VM scheduling strategy, we pro-

vide numerical experiments with analysis and

simulation. The analysis results are obtained

based on Eq. (10) using Matlab 2011a. The sim-

ulation results are obtained by averaging over

10 independent runs using MyEclipse 2014.

With our proposed strategy, all the system pa-

rameters satisfy 0 < θ2 < θ1, 0 < θ3 < m �
n − θ2, 0 < Jv < Jo < Jl < Jh , 0 < Ja < Jb and

0 < λ < (n + m)μh . The parameters set in the

numerical experiments are shown in Table 2.

To elucidate the better energy saving effect

of the proposed VM scheduling strategy, we

carry out a numerical comparison between the

proposed VM scheduling strategy and the con-

ventional DPM strategy. In conventional DPM

strategy, all the VMs are open all the time,

but their processing speed can be switched be-

tween a low speed and a high speed according

to the traffic load of the system at that time.

By setting the number of VMs in the reserve

module m � 20 as an example, we examine the
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(a) m � 20

(b) δ � 0.05

Figure 3 Energy Saving Level S of the System

influence of the arrival rate λ of requests on the

energy saving level S of the system for different

sleep parameters δ in Fig. 3 (a). By setting

the sleep parameter δ � 0.05 as an example,

we examine the influence of the arrival rate

λ of requests on the energy saving level S of

the system for different numbers m of VMs in

the reserve module in Fig. 3 (b). In Fig. 3,

the solid line represents the analysis results

for the energy saving level with the proposed

VM scheduling strategy, and the dotted line

represents the analysis results for the energy

saving level when using the conventional DPM

strategy.

In Fig. 3, we observe that for the same sleep

parameter δ and the same number m of VMs

in the reserve module, the energy saving level

S of the system will initially decrease gradu-

ally then decrease sharply as the arrival rate

λ of requests increases. When λ is smaller

(such as λ < 0.5 for δ � 0.05 and m � 20), as

λ increases, it becomes more possible that the

number of requests in the system will exceed

the threshold θ1. That is, all the VMs in the

base-line module will be switched to the high

speed from the low speed. Since the energy

consumption of a VM operating at the high

speed is greater than that operating at the low

speed, the energy consumption will increase,

and the energy saving level will decrease as

the arrival rate of requests increases. When

λ is larger (such as λ > 0.5 for δ � 0.05 and

m � 20), all the VMs in the base-line mod-

ule will be busy, and the incoming requests

will wait in the system buffer. As λ increases,

the number of requests waiting in the system

buffer is more likely to exceed the activation

threshold θ3, so the VMs in the reserve module

will be awakened after the sleep timer expires.

Since the energy consumption of a VM operat-

ing at the high speed is greater than that of a

VM being asleep, the energy saving due to the

sleep mode is greater than that due to switch-

ing to the low speed from the high speed, the

energy saving level will decrease as the arrival

rate of requests increases.

In our proposed strategy, the energy con-

sumption from the highest to the lowest in se-

quence are: high speed mode, low speed mode

and sleep mode. We note that, for a VM, the

energy consumption difference between sleep

mode and high speed mode is greater than

that between low speed mode and high speed

mode. Moreover, the energy consumption of

a VM in the reserve module switching from

sleep mode to high speed mode is far greater

than that of a VM in the base-line module

switching from low speed mode to high speed

mode. Therefore, the downtrend of the en-

ergy savings level at the the preceding stage

is weaker than that at the following one, and

the energy savings level drops abruptly from

λ � 0.5.

From Fig. 3 (a), we notice that for the same
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arrival rate λ of requests, the energy saving

level S of the system decreases as the sleep pa-

rameter δ increases. The larger the value of

δ is, the more likely the VMs in the reserve

module will be awake. Thus, the energy con-

sumption of the system will increase, and the

energy saving level will decrease.

From Fig. 3 (b), we notice that for a smaller

arrival rate λ of requests (such as λ < 0.5 for

δ � 0.05), the energy saving level S of the sys-

tem increases as the number m of VMs in the

reserve module increases. When λ is smaller,

no matter how small the value of the number n
of VMs in the base-line module is, all the VMs

in the reserve module will be more likely to

go to sleep again after the sleep timer expires.

Thus, as the value of m increases, the energy

saving level of the system will increase.

On the other hand, for a larger arrival rate

λ of requests (such as λ > 0.55 for δ � 0.05),

the energy saving level S of the system will de-

crease as the number m of VMs in the reserve

module increases. When λ is larger, as the

number n of VMs in the base-line module de-

creases, the number of requests waiting in the

system buffer will increase, and more likely it

is that all the VMs in the reserve module will

awaken. Thus, as the value of m increases, the

energy saving level of the system will decrease.

By setting the number of VMs in the reserve

module m � 20 as an example, we examine the

influence of the arrival rate λ of requests on

the average delay E[W] of requests for differ-

ent sleep parameters δ in Fig. 4 (a). By setting

the sleep parameter δ � 0.05 as an example,

we examine the influence of the arrival rate λ

of requests on the average delay E[W] of re-

quests for different numbers m of VMs in the

reserve module in Fig. 4 (b). In Fig. 4, the

solid line represents the analysis results of the

average delay with the proposed VM schedul-

ing strategy, and the dotted line represents the

analysis results of average delay when using

the conventional DPM strategy.

(a) m � 20

(b) δ � 0.05

Figure 4 Average Delay E[W] of Requests

From Fig. 4, we observe that for the same

sleep parameter δ and the same number m of

VMs in the reserve module, the average de-

lay E[W] of requests initially increases from 0,

then decreases slightly before finally increas-

ing sharply as the arrival rate λ of requests

increases. When λ is relatively small (such as

0 < λ < 0.65 for δ � 0.05 and m � 20), the

VMs in the reserve module are more likely to

be asleep, only the VMs in the base-line module

will be available. If all the VMs in the base-line

module are busy, the incoming requests have

to wait in the system buffer. Thus, the aver-

age delay of requests will increase gradually.

When λ is moderate (such as 0.65 < λ < 0.85

for δ � 0.05 and m � 20), the VMs in the re-

serve module are more likely to be awakened

after the sleep timer expires, so all the requests

waiting in the system buffer can be served in

the reserve module.
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Furthermore, the larger the value of λ is,

the earlier the VMs in the reserve module will

be awakened. Thus, the average delay of re-

quests will decrease. When λ further increases

(such as λ > 0.85 for δ � 0.05 and m � 20),

the number of requests waiting in the system

buffer increases rapidly, even though all the

VMs in both the base-line module and the re-

serve module are busy. In this case, the system

tends to be unsteady, so the average delay of

requests will increase sharply.

From Fig. 4 (a), we notice that for the same

arrival rate λ of requests, the average delay

E[W] of requests will decrease as the sleep pa-

rameter δ increases. A larger δwill shorten the

average sleep time of VMs in the reserve mod-

ule. The requests waiting in the system buffer

can be served earlier in the reserve module.

That is, the requests will be waiting a shorter

time in the system buffer, so the average delay

of requests will decrease.

From Fig. 4 (b), we notice that for a smaller

arrival rate λ of requests (such as λ < 0.6), the

average delay E[W] of requests will increase as

the number m of VMs in the reserved module

increases. Note that the total number (n+m) of

VMs in the system is fixed. Hence, the increase

in the number m of VMs in the reserve module

means a decrease in the number n of VMs in

the base-line module. When λ is smaller, there

are fewer requests in the system, and the num-

ber of requests waiting in the system buffer is

more likely to be below the activation thresh-

old θ3 no matter how small the value of n is.

That is, the requests can only be served in the

base-line module, and the average waiting time

of requests will increase as the value of n de-

creases. Thus, in this situation, the average

delay of requests will increase as the value of

m increases.

On the other hand, for a larger arrival rate λ

of requests (such as λ > 0.65), the average de-

lay E[W] of requests will decrease as the num-

ber m of VMs in the reserve module increases.

When λ is large, there are many requests in the

system, and the number of requests waiting in

the system buffer is more likely to be higher

than the activation threshold θ3 no matter how

great the value of n is. Furthermore, the larger

the value of m is, the smaller the value of n
is, and the earlier the VMs in the reserve mod-

ule be awakened synchronously. That is, not

only will the VMs in the base-line module be

involved in the service, but also the VMs in

the reserve module will be involved in the ser-

vice. Thus, the average delay of requests will

decrease as the value of m increases.

Concluding with the experiment results

shown in Figs. 3-4, we find that, compared

with the conventional CDCs, the energy saving

level of CDCs using the proposed VM schedul-

ing strategy increases significantly, while the

average delay of requests increases slightly.

What’s more, the larger the value of the sleep

parameter is, the greater the difference is be-

tween the performance measures of the con-

ventional CDCs and those of the CDCs using

the proposed strategy. Therefore, a tradeoff

among the average delay of requests and the

energy saving level of the system should be

considered when setting the sleep parameter

in our proposed VM scheduling strategy.

6. Optimization of Sleep Parameter
By trading off different performance measures,

we establish a utility function (Chen et al.

2014) Fδ for the system as follows:

F(δ) � fsS − fwE[W] (18)

where fs and fw are the factors impacting on

the system utility, that being the energy saving

level of the system and the average delay of

requests, respectively on the system utility. S
and E[W] have been obtained in Eq. (15) and

Eq. (17).

Using the parameters given in Table 2, and

setting fs � 500 and fw � 1 as an example

in Fig. 5, we illustrate how the utility function
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(a) λ � 0.65

(b) λ � 0.75

(c) λ � 0.85

Figure 5 Change Trend for the Utility Function F(δ) of
the System

F(δ) of the system changes along with the sleep

parameter δ for different arrival rates λ of re-

quests and numbers m of VMs in the reserve

module.

As shown in Fig. 5, for all the combina-

tions of arrival rates λ of requests and num-

bers m of VMs in the reserve module, the util-

ity function F(δ) of the system firstly increases

and then decreases as the sleep parameter δ

increases. We recall that both of the average

delay of requests and the energy saving level

of the system will decrease as the sleep pa-

rameter increases. When the sleep parameter

is smaller, the downward trend of the average

delay of requests is bigger than that of the en-

ergy saving level of the system, and the average

delay of requests is a dominant impacting fac-

tor. Hence, there is an increasing stage in Fig.

5. When the sleep parameter is greater, the

downward trend of the energy saving level of

the system is bigger than that of the average

delay of requests, and the energy saving level

of the system is a dominant impacting factor.

Hence, there is a decreasing stage in Fig. 5.

Therefore, there is a maximum utility function

F(δ∗) when the sleep parameter is set to the

optimal value δ∗.

We note that mathematical expression of

the energy saving level S of the system and

the average delay E[W] of requests are difficult

to express in a closed-form. The monotonic-

ity of the system utility function is uncertain.

In order to obtain the exact value for the opti-

mal sleep parameter δ∗ with maximum system

utility function F(δ∗), we develop an improved

Firefly intelligent searching algorithm.

The Firefly Algorithm (Yu et al. 2015, Gan-

domi et al. 2011) is a population-based algo-

rithm to find the global optimal value of ob-

jective functions by imitating the collective be-

havior of fireflies. In the Firefly Algorithm, all

fireflies are randomly distributed in the search

space, then the less bright ones will move to-

wards the brighter ones because the attractive-

ness of fireflies is proportional to their bright-

ness. We note that the initial positions of fire-

flies have great influence on the searching abil-

ity of intelligent searching algorithms. In the

improved Firefly Algorithm, we use chaotic

equations to initialize the positions of fireflies

more diversely.The main steps of the improved

Firefly Algorithm are given in Table 3.
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Table 3 Improved Firefly Algorithm to Obtain δ∗ and F(δ∗)
Step 1: Initialize the number N of fireflies, the iteration number L of each firefly’s position,

the number K of best solutions, the chaotic factor ξ, the light absorption coefficient

γ, the maximum attractiveness β0, the step size α. Set the sequence number of the

best solutions as x � 1.

Step 2: Initialize the position of each firefly in the interval [0.01, 0.10] using chaotic

equations. δh is the position of the hth firefly, h ∈ {1, 2, . . . ,N}.
δ1 � 0.09 × rand + 0.01

% rand is the uniform random variable selected in the interval (0, 1). %

for h � 2 : N
δh � ξ × (δh−1 − 0.01) × (1 − (δh−1 − 0.01)/0.90) + 0.01

endfor
Step 3: Calculate the self-brightness I0(h) of each firefly, h ∈ {1, . . . ,N}:

I0(h) � F(δh) � fs S − fwE[W]
Step 4: For each firefly, update the position and the self brightness:

Initialize the current iteration as t � 1.

while t ≤ L
for i � 1 : N

for j � 1 : N
I( j, i) � I0( j) × e−γ×|δ j−δi |
% Calculate the relative brightness I( j, i) for the jth firefly to the ith firefly %

if I( j, i) > I0(i)
β( j, i) � β0 × e−γ×|δ j−δi |
% Calculate the attractiveness β( j, i) of the jth firefly to the ith firefly %

Δi � β( j, i) × (δ j − δi) + α × (rand − 1/2)
% Calculate the move distance Δi of the ith firefly to the jth firefly %

δi � δi + Δi

I0(i) � F(δi) � fs S − fwE[W]
% Update the position δi and the self brightness I0(i) of the ith firefly %

t � t + 1

endif
endfor

endfor
endwhile

Step 5: Select the maximum self-brightness and the best position of N fireflies as one of

the best solutions:

δ[x] � ar gmax
h∈{1,...,N}

{I0(h)}
x � x + 1

% δ[x] is an array that help to record K best solutions.%

Step 6: if x ≤ K
go to Step 4.

else
δ∗ � avera ge(δ[x])
F(δ∗) � fs S − fwE[W]

endif
Step 7: Output δ∗ and F(δ∗)
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Table 4 Optimal Sleep Parameter δ∗ of the Proposed Strategy

λ m δ∗ F(δ∗)

0.65

20 0.0550 53.9210

22 0.0340 46.9805

24 0.0230 38.2877

0.75

20 0.0390 26.3022

22 0.0280 19.8894

24 0.0230 13.5192

0.85

20 0.0490 7.0671

22 0.0390 3.8076

24 0.0350 1.3757

In the improved Firefly algorithm given in

Table 3, we set N � 104, L � 1012, K � 100,

γ � 1, β0 � 0.01, α � 0.20. Then, we obtain

the optimal sleep parameter δ∗ and the corre-

sponding maximum utility function F(δ∗) of

the system in Table 4. In Table 4, the estimates

of δ∗ and F(δ∗) are accurate to four decimal

places.

From Table 4, we observe that for the same

arrival rate λ of requests, both of the optimal

sleep parameter δ∗ and corresponding maxi-

mum utility function F(δ∗) will decrease as the

number m of VMs in the reserve module in-

creases. For the same number m of VMs in

the reserve module, as the arrival rate λ of re-

quests increases, the optimal sleep parameter

δ∗ firstly decreases and then increases, while

the corresponding maximum utility function

F(δ∗) continuously decreases.

7. Conclusions
In this paper, we proposed a novel VM schedul-

ing strategy with a speed switch and a multi-

sleep mode in cloud data centers. By apply-

ing DPM technology and introducing a sleep

mode, our proposed strategy is shown to im-

prove energy efficiency significantly by reduc-

ing both the luxury energy consumption and

the idle energy consumption. We established

a continuous-time queueing model with an

adaptive service rate and a partial synchronous

vacation, and derived the expressions for the

system performance measures in terms of the

energy saving level of the system and the av-

erage delay of requests. Numerical results

with analysis and simulation show that on the

premise of guaranteeing the QoS of CDCs, the

energy saving effect of CDCs with our pro-

posed VM scheduling strategy is remarkably

more efficient when compared with conven-

tional CDCs. We also established a system

utility function to achieve a trade off among

different performance measures and designed

an improved Firefly intelligent searching algo-

rithm to obtain the optimal sleep parameter
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