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Abstract. We propose a fluid model driven by the queue length process of a working vacation queue with

PH service distribution, which can be applied to the Ad Hoc network with every data group. We obtain

the stationary distribution of the queue length in driving process based on a quasi-birth-and-death process.

Then, we analyze the fluid model, and derive the differential equations satisfied by the stationary joint

distribution of the fluid queue based on the balance equation. Moreover, we obtain some performance

indices, such as, the average throughput, server utilization and the mean buffer content. These indices are

relevant to pack transmission in the network, and they can be obtained by using the Laplace Transform

(LT) and the Laplace-Stieltjes Transform (LST). Finally, some numerical examples have been discussed with

respect to the effect of several parameters on the system performance indices.

Keywords: Fluid model, M/PH/1 queue, average throughput, server utilization, buffer content, Ad Hoc

network

1. Introduction
Recently, with the development of science tech-

nology and the progress of the times, the stud-

ies of the discrete systems are being more and

more complex. It’s limited and inconvenient

to study the complicate system by using the

traditional discrete queue model. The fluid

model (fluid queue) is an input-output sys-

tem, in which continuous fluid flowing into

or out of a storage device, called a buffer. It is

not sensitive to the change of the fluid trans-

mission rate and the size of buffer in the sys-

tem. And, it is easy to handle problems in

the analysis of that system. Therefore, the

fluid model has attracted considerable atten-

tion of many researchers. Virtamo and Nor-

ros (1994) studied the fluid queue driven by

the M/M/1 queue using the spectral decom-

position method in the finite-state for the first

time. Adan and Resing (1996) presented an

embedded point method to analyzed the fluid

queue driven by the Markovian queue with

an alternating renewal process, and the sta-

tionary buffer content distribution was given.

Barbot and Sericola (2002) considered an infi-

nite capacity buffer depend on M/M/1 queue

by using generating function, and obtained

the expression for the joint stationary distri-

bution of the buffer level. Parthasarathy et al.

(2002) researched the fluid queue driven by

an M/M/1 queue using a continued fraction

method, and obtained the buffer content dis-

tribution. Li and Zhao (2005) analyzed block-

structured fluid model based on means of the

RG-factorization method, and the stationary

probability distribution of the buffer content

was expressed in terms of the R-measure. Mao

et al. (2011) discussed fluid model driven by an

M/G/1 queue with multiple exponential vaca-

tions, and the express of mean buffer content

was given by using Laplace transform method.

Xu et al. (2013) presented the fluid model

driven by the M/M/c queue with working va-

cation queue, the probability of empty buffer

content and the mean of the buffer content was

obtained. Ammar (2014) analyzed an M/M/1

driven fluid queue with multiple exponential

vacations, obtained the stationary distribution
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of the buffer content by modified Bessel func-

tion of first kind. Economou and Manou (2016)

considered the strategic behavior in an observ-

able fluid queue with an alternating service

process, and obtained symmetric equilibrium

strategy profiles. Xu et al. (2017) researched

the fluid model driven by a PH/M/1 queue,

the expected buffer content and the probabil-

ity of empty buffer content were obtained by

using the matrix function method.

Expected for the theoretical study, re-

searchers have applied fluid models to prac-

tical problems in the real life, such as, inven-

tory, communication networks, medical treat-

ment, transportation systems and so on. Yan

(2006) researched fluid models for production-

inventory system, and derived the limiting dis-

tribution of the bivariate process such as fluid

level, environment state. Barron (2016) con-

sidered a fluid production/inventory model

operating in a stochastic environment, and ex-

plicit formulas for the cost functions obtained

by using a matrix analytic approach. Irnich

and Stuckmann (2003) studied fluid-flow mod-

eling of internet traffic in GSM/GPRS net-

works, and calculated the mean equilibrium

buffer content and the sojourn time in the fluid-

flow model. Liu and Whitt (2013) presented

some algorithms to calculate the performance

functions for a time varying open network of

many-server fluid queues, and analyzed the

variety of these performance indices. Zhou et

al. (2015) proposed stability analysis of wire-

less network with improved fluid model, con-

ducted the classical fluid model and the convex

optimization model. They obtained WTFM in

the perspectives of delay, dropping probability,

throughput, sliding window size and queue

length. However, the model here is to provide

a matrix function method to research the fluid

model based on the M/PH/1 working vaca-

tion queue and its application in an Ad Hoc

network.

Ad Hoc network is a mobile network that is

quick organization network, and each packet

has a large amount of information to be pro-

cessed during the transmission. Thus, we can

consider the process of transmission of each

data group as a fluid queueing system, make

it more convenient for information processing.

The structure of this paper is presented as fol-

lows. In Section 2, we introduce the model

description. In Section 3, we analyze the ap-

plication based on the fluid model. In Sec-

tion 4, we show some numerical examples to

demonstrate the effect of some parameters on

the system performance indices. Finally, we

give some conclusions in Section 5.

2. External Stochastic Environment
Description

Assume that the external control environment

is the queue length process of an M/PH/1

queue with multiple working vacation. In

the system, the inter-arrival times of an cus-

tomer is based on a Poisson process with rate

λ. The server begins with a working vaca-

tion when the queue becomes empty, and the

vacation duration is an exponential distribu-

tion with parameter θ. In working vacation

period, the server not completely stop oper-

ate, but in a lower service rate μv to continue.

When a vacation is end, if there are customers

in the queue, the queue system will switch to

a regular busy period and the server rate will

be μb
(
μb > μv

)
. Moreover, the service time

follows a phase type distribution with repre-

sentation (α,T) of order m, and Te+T0 � 0,

where α� (α1 , α2 , ..., αm), T � (Tij) is invert-

ible matrix of order m, T0 �
(
T0

1
, T0

2
, ..., T0

m
)T

is a non-negative column vector. And, for

ease of notation, we assume that αm+1 � 0,

then αe � 1. Hereinafter, we suppose that e
is an appropriate dimensional vector of ones

and I is an appropriate order identity matrix.

Furthermore, the mean of the service time is

μ−1
b � −αT−1e. Otherwise, the server begins

with another working vacation.
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Let L (t) represents the number of cus-

tomers in the system at time t, J (t) denotes

the state in the system at time t, and we have

J (t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, the system is in a working

vacation period at time t
j, the system is in a busy

period and in the service

phase j
(
1 ≤ j ≤ m

)
at time t

Then{L (t) , J (t) , t ≥ 0} is a Markov process

with the state space

Ω� {(0, 0)} ∪ { (
k , j

)
, k ≥ 1, 0 ≤ j ≤ m

}
By using the lexicographical sequence for

the states, the infinitesimal generator of QBD

process can be written as follows

Q �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C0

B1 A C
B A C

B A C
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

A0 � −λ, C0 � (λ, 0) , B1 �
(
μv , T0

)T

B �

(
μv 0
0 T0α

)
, C �

(
λ 0
0 λI

)

A �

(
− (
λ + μv + θ

)
θα

0 −λI + T

)
If ρ�λ/μb < 1, let (L, J) represents the sta-

tionary random vector {L (t) , J (t) , t ≥ 0} , and

its distribution is

πk j � P
{

L � k , J � j
}

� lim
t→∞P

{
L (t) � k , J (t) � j

}
,
(
k , j

) ∈ Ω
Denote by πk � (πk1 , πk2 , ..., πkm) , k ≥ 1.

Similar to Yang (2008), we have the following

results

Lemma 1 If ρ�λ/μb < 1, the matrix equation
R2B + RA + C � 0 has the minimal non-negative
solution

R �

⎡⎢⎢⎢⎢⎣
r θr
λ (1 − r)αR0

0 R0

⎤⎥⎥⎥⎥⎦

where

r �
1

2μv

(
λ + θ + μv −

√(
λ + θ + μv

)2 − 4λμv

)
R0 � λ(λI − T − λeα)−1

Lemma 2 If ρ�λ/μb < 1, the stationary proba-
bility distribution of (L, J) is

⎧⎪⎪⎨⎪⎪⎩
πk0 � Krk , k ≥ 0

πk � K
θr

λ (1 − r)α
k−1∑
j�0

r jRk− j
0
, k ≥ 1

where

K �
(
1 − ρ) (1 − r)

(
1 − ρ + θr

μb (1 − r)
)−1

3. Analysis of the Fluid Model
In this section, we present the fluid model

and discuss the stationary distribution of fluid

model. And, we obtain some theoretical re-

sults, and some performance indices are de-

rived.

3.1 Fluid Queue Modeling
The customers are viewed as fluid deposited

in a buffer in a first-in-first-out fashion. Let

X (t) represents the content of buffer with in-

finity room at time t, and X (t) is a non-negative

random vector. We suppose that the effective

input rate of fluid (i.e., the input rate minus

the output rate) to the buffer is a function of

stochastic process { (X (t) , L (t) , J (t)) , t ≥ 0} ,

that is

η [L (t) , J (t) ,X (t)] � d

dt
X (t)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, (L (t) , J (t)) � (0, 0) ,X (t) � 0

σ, (L (t) , J (t)) � (0, 0) ,X (t) > 0

σ0 , (L (t) , J (t)) � (k , 0) , k ≥ 1

σ1 , (L (t) , J (t)) �
(
k , j

)
, k ≥ 1,

1 ≤ j ≤ m

(1)

where σ < 0, σ1 > σ0 > 0 . This means that,

when there are customers in the external driv-

ing system during working vacations period,

the effective input rate of the buffer content is

linear increasing at the rate of σ0. In regu-

lar busy period, the effective input rate of the
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buffer content is linear increasing at the rate of

σ1, and σ1 > σ0 > 0. Moreover, the buffer con-

tent is linear decreasing at the rate of σ0 when

the driving system is empty, and the buffer

content decrease with empty driving system.

And, the model is involved to a 3-dimensional

Markov process {L (t) , J (t) ,X (t) , t ≥ 0} with

the effective input rate η [L (t) , J (t) ,X (t)].
3.2 Stationary Distribution of the Fluid

Model
Next, we present a matrix function method us-

ing Laplace Transform, and research the sta-

tionary joint distribution of the fluid queue.

Compared with the general Markov-Modulate

fluid model, the calculation here is explicit and

the results are elegant.

Note that Eq.(1) and consider Lemma 2, we

can derive the mean drift of the fluid model as

follows

d � σπ00 + σ0

∞∑
k�1
πk0 + σ1

∞∑
k�1
πke

� K

(
σ + σ0

∞∑
k�1

rk +
σ1θr
λ (1 − r)

∞∑
k�1
α

k−1∑
j�0

r jRk− j
0

e

)

� K

(
σ + σ0

r
1 − r

+ σ1
θr

μb
(
1 − ρ) (1 − r)2

)

If d < 0, ρ < 1, it can be proved that the

fluid model is stable (Kulkarni 1997). We de-

note the stationary random vector of stochastic

process {L (t) , J (t) ,X (t) , t ≥ 0} as (L, J,X),
where X represents the stationary content of

buffer. The stationary joint distribution of fluid

model and the stationary probability distribu-

tion of the buffer content are as follows, respec-

tively.

Fk j (x) � P
{

L � k , J � j,X ≤ x
}

� lim
t→∞P

{
L (t) � k , J (t) � j,X (t) ≤ x

}
,

x ≥ 0,
(
k , j

) ∈ Ω
F (x) � P {X ≤ x} � F00 (x) +

∞∑
k�1

m∑
j�0

Fk j (x)

For convenience, we introduce the follow-

ing vectors

Fk (x) � (Fk0 (x) , Fk1 (x) , ..., Fkm (x)) , k ≥ 1

F (x) � (F00 (x) , F1 (x) , F2 (x) , ...)
From the balance equation, we can prove

that F (x) is satisfied with the following matrix

differential equation and the boundary condi-

tion
d

dt
F (x)Λ � F (x)Q (2)

with initial condition

F (0) � (a, 0, 0, 0...)
where

a � F00 (0)�P {L � 0, J � 0,X � 0}
Λ � diag (σ,Σ,Σ, ...) , Σ � diag (σ0 , σ1I)
Then, introducing the Laplace Transform of

the stationary joint distribution of fluid model

and the stationary probability distribution of

the buffer content, we have

F̂k j (s) �
∫ ∞

0

e−sxFk j (x)dx , s > 0,
(
k , j

) ∈ Ω
F̂ (s) �

∫ ∞

0

e−sxF (x)dx , s > 0

Similar, we introduce the following vectors

F̂k (s) �
(
F̂k0 (s) , F̂k1 (s) , ..., F̂km (s)

)
, k ≥ 1

F̂ (s) � (
F̂00 (s) , F̂1 (s) , F̂2 (s) , ...

)
Taking the LT on both sides in Eq.(2) and

using the boundary conditions, we obtain the

equation as follows

F̂ (s) (Q − sΛ) � −F (0)Λ � (−aσ, 0, 0, ...) (3)

Then, we have the following conclusions from

the above analysis.

Theorem 1 For any s > 0, the quadratic matrix
equation

R2 (s)B + R (s) (A − sΣ) + C � 0 (4)

has the minimal non-negative solution

R (s) �
⎡⎢⎢⎢⎢⎣

r0 (s) r0 (s) θα
λR−1

22
(s) − r0 (s)T0α

0 R22 (s)

⎤⎥⎥⎥⎥⎦
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where

r0 (s) � 1

2μv

(
λ + θ + μv + sσ0

) −
1

2μv

√(
λ + θ + μv + sσ0

)2 − 4λμv

and R22 (s) is decided by

R2
22 (s)T0α+R22 (s) [− (λ + sσ1) I + T]+ λI � 0

Proof. Note that the matrix B, A−sΣ and C are

all upper triangular matrices, we suppose that

the solution R (s) of has the same structure. It’s

given by

R (s) �
[

R11 (s) R12 (s)
0 R22 (s)

]
, s > 0

Then, Eq.(4) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μvR2
11
(s) − (

λ + μv
)
R11 (s) −

(θ + sσ0)R11 (s) + λ � 0

R2
22
(s)T0α + λI+

R22 (s) [− (λ + sσ1) I + T] � 0
R11 (s) θα − R12 (s) (λ + sσ1) I+

R12 (s)T + R12 (s)R11 (s)T0α+

R12 (s)R22 (s)T0α � 0

(5)

Solving the first equation of Eq.(5), we ob-

tain two different roots r0 (s) and r1 (s), and

r0 (s) � 1

2μv

(
λ + θ + μv + sσ0

) −
1

2μv

√(
λ + θ + μv + sσ0

)2 − 4λμv

r1 (s) � 1

2μv

(
λ + θ + μv + sσ0

)
+

1

2μv

√(
λ + θ + μv + sσ0

)2 − 4λμv

(6)

and 0 < r0 (s) < 1, r1 (s) > 1, so we have

R11 (s) � r0 (s).
From the second equation of Eq.(5), we ob-

tain

R−1
22 (s) � λ−1

[(λ + sσ1) I − T − R22 (s)T0α
]

Substituting R11 (s) � r0 (s) and R−1
22
(s) into

the third equation of Eq.(5), we obtain R12 (s).
The conclusion is proved. �

Theorem 2 If d < 0 and ρ < 1, the LT of the joint
distributions sequence is

⎧⎪⎪⎨⎪⎪⎩
F̂00 (s) � aσ

λ + sσ − μv r0 (s) − R12 (s)T0

F̂k (s) � F̂00 (s) e1Rk (s) , k ≥ 1

(7)

where e1 is the m + 1 dimensional vector, that is
e1 � (1, 0m).
Proof. According to Eq.(3), we obtain the fol-

lowing equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F̂00 (s) (A0 − sσ) + F̂1 (s)B1 � −aσ
F̂00 (s)C0 + F̂1 (s) (A − sΣ)+

F̂2 (s)B � 0
F̂k−1 (s)C + F̂k (s) (A − sΣ)+

F̂k+1 (s)B � 0, k ≥ 2

(8)

If d < 0, ρ < 1, the fluid queue

has unique stationary probability distribution{
Fk j (x) ,

(
k , j

) ∈ Ω}, there exists unique solu-

tion in Eq.(8). Therefore, we only need to tes-

tify that Eq.(7) is the solution of Eq.(8).

For k ≥ 2, consider the second formula of

Eq.(7), we have

F̂k−1 (s)C + F̂k (s) (A − sΣ) + F̂k+1 (s)B
� F̂00 (s) e1Rk−1 (s) [C + R (s) (A − sΣ) + R2 (s)B]
� 0

Substituting F̂1 (s) � F̂00 (s) e1R (s) and F̂2 (s) �
F̂00 (s) e1R2 (s) into the second formula of

Eq.(8), we obtain

F̂00 (s)C0 + F̂1 (s) (A − sΣ) + F̂2 (s)B
� F̂00 (s) e1

[
C + R (s) (A − sΣ) + R2 (s)B] � 0

Considering F̂1 (s) � F̂00 (s) e1R (s), we obtain

F̂00 (s). The theorem 2 is proved.

From the theorem 2, the LT can be ex-

pressed as the stationary probability distribu-

tion of the buffer content. Then, we have

F̂ (s) � ∫ ∞
0

e−sxF (x)dx

� F̂00 (s) +
∞∑

k�1

F̂k (s) e
� F̂00 (s) e1(I − R (s))−1e

(9)
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Moreover, notice that

(I − R (s))−1
�⎡⎢⎢⎢⎢⎣

1

1 − r0 (s)
R12 (s) (I − R22 (s))−1

1 − r0 (s)
0 (I − R22 (s))−1

⎤⎥⎥⎥⎥⎦
Substituting (I − R (s))−1 and F̂00 (s) into

Eq.(9), we obtain

F̂ (s) � aσ
m

(
1 + R12 (s) (I − R22 (s))−1e

)
(10)

where

m � (1 − r0 (s)) (λ + sσ − μv r0 (s) − R12 (s)T0
)
�

3.3 Performance Indices
To compute the performance indices in steady

state, we introduce the LST of the distributions

Fk j (s) and F (s), respectively

F∗k j (s) �
∫

+∞

0

e−sx
dFk j (x) , s > 0,

(
k , j

) ∈ Ω
F∗ (s) �

∫
+∞

0

e−sx
dF (x) , s > 0

From the relational expression

F∗ (s) �
∫

+∞

0

e−sx
dF (x) � sF̂ (s)

and Eq.(10), we obtain

F∗ (s) � saσ
m

(
1 + R12 (s) (I − R22 (s))−1e

)
(11)

In addition, according to the nor-

malization condition lim
s→0

F∗ (s) � 1

and L’Hospital rule, taking notice of

r′
0
(0) � − rσ0

μv (r1 − r) , R12 (0) (I − R22 (0))−1e �

θrρ

λ (1 − r) (1 − ρ) , R12 (0)T0 � λ − rμv . We

obtain the probability of empty buffer as

follows

a �
ξ (1 − r) rσ0

σ (r1 − r) +

ξ (1 − r) (r1 − r) (σ − R′
12 (0)T0

)
σ (r1 − r)

(12)

where r1 � r1 (0) is decided by Eq.(6),

ξ �
λ (1 − r) (1 − ρ)

λ (1 − r) (1 − ρ) + θrρ

Besides, based on Eq.(12) and Eq.(11), we ob-

tain

F∗ (s) � ξ (1 − r) rσ0

r1 − r
×

s
(
1 + R12 (s) (I − R22 (s))−1e

)
m

×
ξ (1 − r) (r1 − r) (σ − R′

12 (0)T0
)

r1 − r

(13)

Then, taking the derivatives on both sides

of Eq.(13) with respect to s, let s → 0 and

using L’Hospital rule, we obtain expression of

the mean buffer content in steady state

E (X) � rσ0

μv(r1 − r)2 − ξ
(
R′

12 (0) (I − R0)−1e
)
−

ξ
(
R12 (0) (I − R0)−1R′

22 (0) (I − R0)−1e
)
+

(r − 1)
(
2rr1σ2

0
+ μv(r1 − r)3R′′

12 (0)T0
)

2μv(r1 − r)3 ((r1 − r) (σ − R′
12 (0)T0) + rσ0)

4. Numerical Analysis
In this section, we apply the M/PH/1 fluid

queue to analyze the network system of Ad

Hoc, and get the system performance indices.

And, we demonstrate the effect of several pa-

rameters on the system performance indices,

such as, the average throughput, the server

utilization and the mean buffer content in the

steady state.

Assuming that all nodes in the network sys-

tem have infinite buffer room, and the trans-

mission of data packets follow the rules that

first come, first out. The information flow

transmitted by the data group in the network

system can be regarded as a fluid with effec-

tive input rate η [L (t) , J (t) ,X (t)] . The inter-

arrival time of each group of data arriving sys-

tem is based on a Poisson process with rate λ.

The channel is in idle period when the system is

no date transmission, and the idle period is an

exponential distribution with parameter θ. In
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the idle period, the transmission of each data

group is not completely stop, but in a lower

transmission rate μv to continue. When an

idle period is end, if there are data groups in

the system, the channel will switch to a busy

period, and the transmission rate follow that a

phase type distribution with parameter (α,T) .
Moreover, the mean of the transmission time

with μ−1
b � −αT−1e, and μb > μv . Otherwise,

the channel begins the idle period.

In Ad Hoc network, the average throughput

as follows

E (T) � σ0

∞∑
k�1

πk0 + σ1

∞∑
k�1

πke

� K

(
σ0

r
1 − r

+ σ1
θr

μb
(
1 − ρ) (1 − r)2

)

Obviously, the average throughput is equal

to the arrival rate when the system is in equi-

librium.

The server utilization is

p � 1 − a

� 1 − ξ (1 − r) [(r1 − r) (σ − R′
12 (0)T0

)
+ rσ0

]
σ (r1 − r)

We assume that the transmission of each

data group in busy period follows a PH dis-

tribution, and there are two stochastic phases,

that is,α � (0.2, 0.6) ,

T �

[
−4 2

0 −3

]
, T0

�

[
2

3

]

Then μb �
60
17 .

At the beginning, we assume that μv �

2, σ1 � 3, σ0 � 1.5, and research the variation

of the server utilization p in regard to arrival

rate λ, idle times θ and the effective input rate

σ. In Fig.1, we can see that when we have a

certain σ, the server utilization is increasing

about arrive rate λ. When we have a given

λ, the server utilization is an increase function



Xu and Wang: Analysis of Fluid Model Modulated by an M/PH/1 Working Vacation Queue 139

about parameter σ. In Fig.2, we can find the

server utilization is going up about the growth

of the effective input rate σ, when we have a

certain θ. The server utilization is an declin-

ing function with respect to the idle times θ

when we have a fixed parameter σ. Evidently,

the server utilization increases with the growth

of arrival rate λ, idle times θ and the effective

input rate σ. Thus, we can improve the server

utilization of network by adjusting the system

parameters, which can reduce energy loss in

ad hoc network.

Besides, we supposed that λ � 0.5, σ1 � 3,

σ0 � 1.5, and study the change trend of the

mean buffer content E (X) with respect to idle

times θ, the transmission rate μv and the ef-

fective input rate σ. In Fig.3, the mean buffer

content is going up with the growth of the ef-

fective input rate σ, when we have a fixed pa-

rameter θ. Supposing that given σ, the mean

buffer content is falling with respect to the idle

times θ. From Fig.4, we can know the mean

buffer content is a growing function with the

growth of the effective input rate σ. The mean

buffer content is a declining function with the

growth of server rate μv . Obviously, the mean

of the buffer content various with the variation

of parameters. Therefore, we can increase the

energy efficiency of network by adjusting the

system parameters.

5. Conclusion
This paper is concentrated on the analysis of

the fluid model driven by M/PH/1 queue and

its application in ad hoc network. We intro-

duce fluid queue to the network. The buffer

content of fluid queue can be used to effec-

tively control input and output of data groups

in ad hoc network. Thus, the signal intensity of

network tends to be stable. Then, we propose

a matrix function method by using LT method.

And, we obtain the average throughput, the

server utilization and the mean buffer content

in steady state. Finally, we analyze the perfor-

mance indices of the network with parameters

change. From this analysis, we can see that if

we want to improve the utilization of the chan-

nel and reduce the energy consumption, we

have to set the appropriate node arrival rate,

transmission rate and so on. Moreover, fluid

queue can be applied to transportation, medi-

cal and other fields. The results of fluid queue

also bring a certain theoretical basis for other

fields in real life, and the model proves a cer-

tain basis for us to extend the distribution of

vacation period to a PH distribution in the fu-

ture research.
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