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Abstract 
Efficient staff rostering and patient scheduling to meet outpatient demand is a very complex and 

dynamic task. Due to fluctuations in demand and specialist availability, specialist allocation must be 
very flexible and non-myopic. Medical specialists are typically restricted in sub-specialization, serve 
several patient groups and are the key resource in a chain of patient visits to the clinic and operating 
room (OR). To overcome a myopic view of once-off appointment scheduling, we address the patient 
flow through a chain of patient appointments when allocating key resources to different patient groups. 
We present a new, data-driven algorithmic approach to automatic allocation of specialists to roster 
activities and patient groups. By their very nature, simplified mathematical models cannot capture the 
complexity that is characteristic to the system being modeled. In our approach, the allocation of 
specialists to their day-to-day activities is flexible and responsive to past and present key resource 
availability, as well as to past resource allocation. Variability in roster activities is actively minimized, 
in order to enhance the supply chain flow. With discrete-event simulation of the application case using 
empirical data, we illustrate how our approach improves patient Service Level (SL, percentage of 
patients served on-time) as well as Wait Time (days), without change in resource capacity. 
Keywords: Patient scheduling, dynamic rostering, patient care path, discrete-event simulation 
 

1. Introduction 
High patient service levels are becoming 

increasingly important to hospitals. At the same 
time, health care demand is increasing as a result 
of aging populations, and because more and more 
treatment options become available, due to 
technological and medical advances. Yet capacity 
and budgets are limited, which pressures 
hospitals to increase efficiency for all levels of 
hospital operations (Vermeulen et al. 2009, 
Vissers and Beech 2005). Numerous studies have 

investigated efficiency related problems in 
hospitals, such as appointment/ outpatient 
scheduling, patient admission scheduling, 
operating room (OR) scheduling, accident and 
emergency room optimization, and so forth. 
Almost all of these studies focus on optimizing a 
single process step, i.e. single patient episodes, 
rather than taking a supply chain perspective on a 
patient’s first, second, and other appointments 
including surgery. Or the focus is on a single 
clinic/OR session, and/or a homogeneous patient 
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group (Cardoen et al. 2010, Cayirli and Veral 
2003). White et al. (2011) identify complexity as 
the main reason that more holistic, integrated 
approaches are still very rare in health care 
operations research. But despite its complexity, 
we have to address the interactions and 
interdependencies between the planning and 
scheduling of the different patient groups and 
different types of activities that involve the same 
key resources, such as a medical specialist. Only 
in this way can we optimize planning and 
scheduling of the system as a whole. Any key 
resource is typically used by multiple patient 
groups (Ma and Demeulemeester 2013, Mǎruşter 
et al. 2002, Vermeulen et al. 2009) and 
optimizing the resource for all patient groups 
simultaneously is a complex problem. Demand 
and resource availability vary differently per 
patient group, and any kind of variability is 
generally known to hamper the patient flow. 
Resource allocation must thus be dynamic to 
meet demand variability, and aimed at keeping 
variability in rosters as low as possible. 

We study the case of specialist rostering and 
patient scheduling at the General Surgery 
department of a medium-sized hospital in the 
Netherlands. The specialists are key to the 
process of patients visiting the outpatient clinic 
for a first, second, and other appointments, before 
possibly being scheduled for elective surgery and 
one or more follow-up appointments. Long 
access times to outpatient clinics have 
historically been a point of critical concern to 
hospitals. In the Netherlands, hospitals are 
mandated to adhere to government-set admission 
wait time limits, ranging from four weeks for 
non-urgent patients, to only five work days for 
cancer-suspicious patients. Specialists are still 

manually allocated to different activities a long 
time in advance, generally in accordance with a 
cyclic schedule. But variability in specialist 
availability drastically distorts the cyclic pattern. 
Irregular activities in rosters lead to an irregular 
in-flow of patient groups, causing long 
appointment wait times for some of these patient 
groups. This fact is well known from queueing 
theory in operations management: high 
variability in the number of parts, products, or 
orders sent into the system will propagate 
downstream, hampering a swift, even flow 
through all process steps. This phenomenon is the 
cornerstone of the Theory of Swift, Even Flow, 
formulated by Schmenner and Swink (1998), and 
is an important theory that we depart from in our 
case study. According to this theory, variability 
will in some way cause ‘items’ (here patients) to 
flow less swiftly and evenly through the process. 
It thus induces long patient lead times and many 
patients waiting somewhere in the care path.  At 
our case hospital, in order to adhere to the 
government-set limits of appointment wait times, 
the nurses will either schedule patients into 
‘wrong’ activity sessions, or they will overbook 
by scheduling two patients into one time slot. The 
former causes a mismatch of appointment 
duration and supporting resources (e.g., medical 
equipment such as a blood pressure gauge), to the 
confusion and annoyance of the specialists. The 
latter causes congestion and long wait times in 
the waiting room, along with increased work 
pressure and session end time delays.  

The main contribution is our minimal- 
variation approach to automatic specialist 
resource calendar optimization. With this 
approach, we construct what we label the 
Dynamic Resource Calendar (RC), and compare 
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this to the Cyclic RC and the Real 2011 RC. The 
Cyclic RC is the 4-week template that the case 
hospital uses, which repeats itself for the full year. 
The Real 2011 RC is the actual one that was used 
at the case hospital in 2011; it is the Cyclic RC, 
but with many changes made to it throughout the 
year, in order to cope with absence of specialists 
and other ad-hoc constraints. In our approach, the 
allocation of specialists to certain activities, and 
hence indirectly to certain (combinations of) 
patient groups, is flexible and keeps the variation 
in the number of sessions per activity as low as 
possible, as it adapts to specialist availability. 
This smooths the in-flow of patients per group, 
promoting a swift, even flow of patients through 
their sequence of appointments, including 
surgery. We evaluate the Dynamic RC through a 
simulation study that compares our approach to 
the traditional cyclic approach and to the real RC 
of 2011 at our case hospital. The simulation 
model and its parameter values are determined 
from an extensive case analysis. Sources include 
historical data and discussion with case experts: 
head planning, the specialists, nurses, and 
management. Similar to Vermeulen et al. (2009), 
the complexity of our process model does not 
allow for queuing theory to provide analytical 
answers, and modeling the problem as a Markov 
decision problem results in a state space of 
unsolvable size. Our model development was 
also motivated by the fact that a multi-objective 
implementation of a Genetic Algorithm (in 
Matlab R2015a) could not solve the problem, or 
even find Pareto-solutions, within adequate time. 
No solutions from the GA were found after 
running the program for over an hour on a 
3.30GHz Intel i5 64-bit Windows 7 personal 
computer with 3.5 GB usable memory. In the 

next section, we discuss the problem and case 
data in more detail. In Section 3 we present the 
simulation model and scenario testing, with our 
results presented in Section 4. We give a 
discussion with conclusions and limitations in 
Section 5.  

2. Model Formulation 
In this section, we define our General 

Surgery Department (GSD) resource allocation 
model, along with the patient scheduling model 
of the department’s outpatient clinic. We have 
collected complete outpatient and surgery 
appointment data of patients who visited the 
GSD outpatient clinic from January 1st until 
December 31st 2011. This includes emergency 
visits and emergency surgery, which are treated 
as such in our model. The department employs a 
partnership of 6 surgeon specialists. The data 
consists of 9380 patients who are grouped into 
20 groups. This is the grouping that the nurses 
adhere to when they schedule the patients into 
half-day sessions (AM and PM) and time slots 
(5–30 minutes). This is labeled patient 
scheduling: the process of assigning patients to 
timeslots on the calendar (Vermeulen et al. 2009). 
New patients’ initial appointment requests arrive 
by referral from the patient’s general practitioner, 
either by telephone or via online request forms. 
Subsequent appointments are usually made at 
the front desk right after the initial appointment 
has taken place. The sub-specialization and thus 
activity type in the RC dictates into which 
session, with which specialist, a patient can be 
scheduled. For example, new patients suspicious 
of breast cancer can be scheduled into an 
oncology session with specialist A, B, or D. Any 
repeat visit will have preference for the same 
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A, B, E 

A, D, E, F 
(B very rare) 

A, B, D, E: oncology (subdivided) 
C, F: vascular 

A, B, C, D, E, F 

C, F 

A, B, C, D, E, F 

A, B, C, D, E, F 

A, B, C, D, E, F 

specialist as the previous appointment(s). Figure 
1 gives a network view of patients’ linkages 

between activities, along with letters indicating 
which of the specialists can be involved.

 

 
As in many hospitals, the actual scheduling 

of appointments is done manually at our case 
hospital. The nurses use a documented structure 
that dictates the activities into which the 
different types of patients must be scheduled, 
and with which of the six specialists. They look 
for a suitable appointment in the electronic 
calendar system (Chipsoft©). They can either 
select a week or day, and look at all available 
slots during that day/week; or they can use the 
search function to find the first available slots 
that meet the criteria. They can also take the 
patient’s preference for a specific day or time 
into account, by offering him/her several options, 

but in practice this rarely happens because the 
schedule is usually rather full and the nurse will 
try to complete the appointment scheduling 
process as quickly as possible. If the required 
specialist is on holiday, his ‘buddy’ can see his 
patients, but this is not preferred. This will only 
happen for patient appointments that cannot wait. 
The system allows appointments up to 2.5 years 
in the future. For an elective surgical procedure, 
patients are added to a wait list with an urgency 
indicator, and scheduled into a surgery session 
accordingly. In our model, patient preference is 
not taken into account. The scheduler searches 
for an available time slot in the patient’s time 

Figure 1 Patient care path network diagram 
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window, starting in the middle of the time 
window and hopping back and forth, continuing 
after the time window if no available slot is 
found in the window. If the wait time exceeds 
one week, the patient will also try the buddy 
specialist, and the specialist with the shortest 
wait time will be selected. In the model, patients 
are scheduled 6 weeks in advance, because the 
dynamic RC is created 6 weeks in advance, and 
no cyclic template exists to schedule patients 
further into the future. In practice, about a year 
in advance, the hospital allocates surgery 
sessions to the GSD, based on surgery quotas 
agreed with insurance companies. Then the 
department’s experienced head planner 
distributes these sessions among the specialists 
about six weeks in advance, based on the 
specialists’ availability and their patient wait 
lists and urgency levels. The next step is to 
allocate the specialists to the outpatient activities, 
e.g., Fractures, Endoscopy, etc. This is done by 
an experienced head nurse, in collaboration with 
the head planner, following a cyclic RC template. 
The template includes one specialist who has a 
standard half day ‘free’ to substitute for an 
absent colleague. The problem is that although 
the RC follows a cyclic pattern, due to all sorts 
of specialist availability restrictions, in the end a 
pattern is hardly recognizable. In addition, on 
national holidays, or during quality inspection 
(full day), or when specialist(s) are away at 
conferences, it is left to chance which sessions 
fall on that day and are thus cancelled. These 
effects are often felt closer to the day, and to 
cope with demand-supply imbalances, the 
planner and head nurse will sometimes try to 
switch sessions around, leading to a time- 
consuming process of patient rescheduling. Or 

they will try to let another available specialist 
take over his colleague’s session. This too is not 
ideal, because patients generally prefer the 
specialist they already know, and the specialists 
each know their own patients’ histories. 

3. Minimal-variability Resource 
Allocation Model 

The goal of our minimal-variability resource 
allocation model is to promote a swifter, 
more-even flow of patients into the system, and 
through their chains of  1st, 2nd,  , nth 
appointments and/or surgeries. This kind of 
smoothing can accomplish significant gains both 
economically and in terms of service quality. 
Viccellio and Litvak (2015) give an excellent 
illustration for the case of admission scheduling. 
In the outpatient setting, we expect that in a 
similar way smoothing will improve patient flow, 
reduce peaks and troughs, and reduce wait times 
between care stages.  

 The allocation of specialists to activities by 
specific day-and-time happens in a three-stage 
process; Table 1 provides notations. In order to 
initialize the allocation procedure, we start with 
a number of typical weeks (6 weeks) in the RC. 
In the Cyclic and Dynamic RC we have blocked 
national holidays and an annual inspection day 
(we chose the real-life days of 2011 and 
onwards), annual leave, and conference leave. In 
general, each specialist is available 10 half days 
every week (Monday to Friday) and has up to 36 
work days of annual leave, plus an arbitrary 
number of days for conference leave. We 
randomly allocated the following annual leave 
periods for each specialist each year: one 3-week  
period, two 2-week periods, two 1-week periods, 
seven single days, and two half days. This 
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resembles the real-life holiday patterns, and we 
adhered to official restrictions with regard to 
holiday overlap (no more than three specialists 
can have annual leave at the same time, and no 
specialist can have annual leave at the same time 
as his buddy). We did this in Microsoft VBA 

(Visual Basic for Applications), using Excel’s 
built-in RAND() function to randomly select and 
block the cells in the RC corresponding to the 
annual leave periods. After all annual leave, 
national holidays, and inspection have been 
blocked, allocation of activities can begin.  

 
3.1 Stage 1 

The first stage is the allocation of candidate 
activities to the planspan period for each 
specialist j J∈ . In our case the planspan period 
equals one week and will from here on simply 
be referred to as planspan. The allocation of 
candidates is done by adhering to the cyclic RC 
average instances per activity and per specialist. 
These averages are adjusted for the number of 
activities cancelled due to national holidays, 
inspection and annual leave, with a multiplier <1. 
We label this type of adjustment by CEAA 
(cyclic empirical averages adjusted). For the low 
frequency activities, 4, 5, and 6, there are 
weekly minimum and maximum restrictions. If 
these restrictions are not met after the temporary 
allocation stage, the model will ‘force’ them in 

or out of the definitive frequency arrays. For all 
eligible specialists, we check which specialist 
will need the activity soonest, comparing to 
CEAA, and add an instance of activity 4, 5 or 6; 
and if the maximum is exceeded we remove an 
instance from the busiest specialist’s candidate 
allocation array, i.e., the specialist who has the 
fewest half days available after the candidates 
allocation (which can be negative). 

3.2 Stage 2 
In the second stage, we check for each j   

whether the sum of his candidate activities and 
definitive activities does not exceed the number 
of available half days in that week. Note that any 
national holidays are taken into account, and we 
assume that any conference leave, annual leave, 

Table 1 Resource Calendar parameter descriptions 
Parameter Description 

{ }1,2, ,6j J∈   Specialists 

{ }1,2, ,8a A∈   Activities  

{ }1,2, ,i N  Index for each period equal in length to planspan, planspan is period N. 

jo   Number of half days available in planspan to which a can be allocated. 

, ,j a in  Number of instances of a in the schedule for each j, in period i (periods indexed by i 
being equal in length to planspan). 

,j aµ   Mean number of instances of a for each j over period 1i = to i I= . 

,j ax  Decision variable: number of instances of activity a  per j in the planspan.  

,j aD  Definitive number of instances of a allocated to planspan for each j . 

,j aCV  Coefficient of variation in the number of instances of a per j , taken over all periods 
i in the planning horizon. 
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or other unavailability (except short-notice sick 
leave) has been submitted for the planspan week, 
as per the GSD’s regulations (requirement of 
six-week notice). If the sum of candidates does 
not exceed availability, then the candidates 
become definitive allocations. If, however, the 
sum of candidates exceeds availability, then we 
follow a prioritizing Deletion Algorithm (DA), 
which is presented later in this section. All 
allocated activities’ durations are in accordance 
with empirical durations per activity per 
specialist (allocated randomly, rounded up or 
down to the nearest 5 minutes, as this is the 
smallest patient appointment slot; and totals are 
matched with the cyclic RC totals for fair 
comparison). Note that the allocations of 
candidates ,j ax and the definitive allocation 

,j aD  are dynamic arrays. As item instances are 

removed from ,j ax  they are added to ,j aD . 

The Deletion Algorithm (DA) prioritizes a if we 
have more candidates than half days available in 
planspan. The standard deviation of the number 
of instances of each a per week is given by: 

( )2, , , ,
1

,
1 .

N
j a j a i j a

i
a A Jn j

N
σ µ

=
= − ∈ ∈∑  (1) 

Where , ,j a in  is specialist j’s number of 

instances of activity a in week i, and , ,j a Nn  is 

the number of instances of activity a in the 
planspan period, i.e., the decision variable, also 
denoted by , .j ax Furthermore, ,j aµ is the average 

number of instances of activity a, specialist j, so 
far in the RC. When prioritizing a, our objective 
is to minimize the coefficient of variation (CV) 
for every a, which is the standard deviation 
divided by the mean, hence,  

min  CVj,a =
,

,

     j a

j a

σ
µ

         (2) 

 s.t.  ,
1

A

j a j
a

D O
=

≤∑          (3) 

Our goal is to always minimize the CV for 
each activity and each specialist separately. 
Minimizing e.g. the sum of all CVa or the 
average CV of all a together, would not suffice, 
because imbalances could exist between the 
specialists, and between activities. However, the 
number of instances to allocate, of each activity, 
depends on the number of instances of other 
activities already allocated.  This makes the 
allocation problem on hand complex. We cannot 
simply select combinations of activities out of 
the candidates of each j , because then we 

cannot accurately evaluate the individual CVs. 
In our approach, we solve the problem of 
activity allocation by using an elimination 
technique in the form of an algorithm, DA, that 
is initialized every time ,1

A
j a ja x O

=
>∑ . This 

algorithm is described next.  
The goal of our DA is to prioritize as follows. 

When ,1
A

j a ja x O
=

>∑ , identify and accept the 

activities for which inclusion as definitive 
activity, versus exclusion, has the most 
detrimental effect on ,j aCV .  

 
Deletion Algorithm:    For j J∀ ∈ , 

1: Compare all ,j ax within specialist j . Let

1 2, , , ... , rj a j a j a j ax x x x≤ ≤ ≤ , hence ,j ax  is 

ordered, and
rax is the largest number of 

candidate instances among all activities, for a 
particular specialist. 

2: While
1, ,r rj a j ax x
−

> , one instance of 

candidate activity ra  is accepted and becomes 
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a definite allocation. Hence, , rj ax  becomes 

, 1
rj ax −  and ,j aD  becomes , 1j aD + . 

3: If 
1, ,r rj a j ax x
−

= , that means that there is a 

tie. Then for all ,j ax equal to , rj ax , calculate 

the CV including ,j ax  for the planspan period. 

We label this ,j aCCV : the coefficient of variation 
when the candidate allocations ,j ax are 

included. 
4: For all ,j ax equal to , rj ax , calculate the 

CV over all i  periods in the planning horizon, 
but this time include 0 for the planspan period. 
This effectively represents the worst-case 
scenario, i.e., what would the activity’s CV be if 
no activities of this type were to be accepted in 
the planspan. We label this ,0 j aCV . 

5: Calculate the degradation ,j aDeg  = 
, ,0j a j aTCV CV− . That is, for each a in the tie, 

we check how much worse off it is if 0 instances 
are accepted for planspan, versus if all 
candidates instances are accepted.  

6: For { },max j aDeg , allocate one instance 

of ,j ax to ,j aD , and remove that instance from 

the candidates ,j ax ; hence, ,j ax  becomes 

, 1j ax −  and ,j aD  becomes , 1j aD + . In case 

of a tie, give priority to surgery activities ( 8,a =
then 7, , 1a a= = ) since these activities in 

general have a higher priority at the case 
hospital. 

7:  Repeat from step 1 while ,j a jD O< . 

8:  Once ,j a jD O= , go to the third stage 

(detailed below) to ‘write’ the activities into the 
RC by allocating ,j aD to the half days that are 

available, according to each specialist’s priority 
list. 

 

3.3 Stage 3 
The third and final stage is the allocation of 

the definitive activities to the days of the week, 
and to AM or PM. This is done according to a 
preference list for each ( ,j a ) combination. For 
example, specialist j has a list for activity a=2 
in order of preference: (1) MonAM, (2) FriPM, 
(3) MonPM, (4) WedAM, (5) WedPM, (6) 
ThuAM, (7) TueAM, (8) FriAM (9) ThuPM, and 
(10) TuePM. Each preference list has all 10 half 
days listed. The algorithm takes same-half-day 
minimum and maximum restrictions into 
account, e.g. only one specialist can have 
activity 2 on a single half day, and no more than 
2 specialists can have activity 2 or 3 on a single 
half day. The allocation happens in a random 
order of specialists every time (i.e., every week), 
and if any specialist’s half day preference would 
violate these restrictions, his next half day 
preference is tried. 

4. Results 
Based on the case study, we have 

implemented a patient scheduling simulation. As 
in Vermeulen et al. (2009), we use this 
simulation to evaluate different  capacity 
allocation approaches. Similarly, the case inputs 
of our simulation model are based on the case 
described in the previous section. These 
elements together with our resource allocation 
model are the inputs of our simulation. At the 
beginning of a simulation run, the simulation 
reads-in the entire cyclic RC, as well as all 
empirical patient appointment data. Well aware 
of the trade-off of using empirical data rather 
than theoretical distributions (Kelton et al. 2015), 
we have chosen to use the empirical patient 
appointment data and feed it directly into the 
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simulation. By using the historical data directly, 
no values other than those recorded can be 
experienced; but if we sample for a fitted 
probability distribution, it is possible to lose 
important characteristics such as sequential 
appointment patterns. Maintaining sequential 
patterns was our main concern, since we 
approach the scheduling problem from a care 
chain perspective. We therefore chose not to fit 
distributions to each patient appointment 
separately. In addition, due to data limitations, 
some patient groups were relatively small, with 
n smaller than 30, making distribution fitting 
risky. We chose not to combine small patient 
groups into larger groups, because their 
scheduling rules and patient group 
characteristics differ for scheduling purposes. 
Furthermore, generally used goodness-of-fit 
tests, such as chi-square and Kolmogorov- 
Smirnov, have notoriously low power (Bratley et 
al. 1987). This means that even if your data does 
not in fact come from the theoretical distribution 
fitted, the probability of rejecting the fit is small, 
except in those rare cases where there is a huge 
amount of data available. 

A patient arrival is the first request for an 
appointment. Patients arrive one-by-one during 
operating hours: Monday till Friday, not on 
national holidays. Only emergency patients 
arrive during weekends and holidays, who 
require no scheduling and are served 
immediately either by the Accident and 
Emergency department (outpatients) or by our 
department’s specialist on-call. Their follow-up 
appointments are however scheduled. We 
randomize patient arrivals by using a uniform 
distribution unif(1, 3980) to select empirical 
arrival dates for all patients from the list. Upon 

arrival, new patients (first appointment) are 
given an appointment by searching for the first 
available slot within their urgency-related time 
windows, for the activity and specialist they 
require. Repeat patients (not first appointment) 
are given an appointment by searching for an 
available slot within their given time windows 
too, but the search starts in the middle of the 
time window and then hops back and forth until 
an available time slot is found for the activity 
and specialist required. 

We use Service Level (SL) and Wait Time 
(WT) as performance measures. The former 
expresses that patients’ need to be scheduled 
within their planning windows. Similar to 
Vermeulen et al. (2009), we take the percentage 
of patients scheduled on time, i.e., within their 
time windows, as performance measure, per 
patient group (new, return, and surgery). At the 
case hospital, and especially in accordance with 
government regulations for new patients, it is 
determined what kind of planning windows 
different patients have, and this should be 
adhered to as much as possible, across all patient 
groups. Therefore, it is equally important for all 
patient groups to be served within their planning 
windows. SL is weighted according to the 
patient’s appointment duration. This means that 
serving a long-appointment patient on time is 
weighted according to the longer duration. This 
way a scenario in which more long-appointment 
(e.g., surgery) patients are served can be 
compared fairly to a scenario with relatively few 
long-appointment patients. WT is the time (days) 
the patient has to wait from the end of his/her 
time window until his/her appointment, if the 
appointment is booked after his/her time window. 
If the appointment falls in the time window, WT 
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= 0. We present SL and WT for three patient 
groups: new-patient appointments, repeat-patient 
appointments, and surgery, and we give the total 
for all patients grouped together. We compare 
the Dynamic RC with the Cyclic RC and with 
the Real 2011 RC. All three RCs start out with 
the exact same amount of total capacity. This has 
been made possible by fine-tuning the (random) 
allocation of annual leave and conference leave. 

We follow the guidelines of Robinson, using 
Welch’s method, in order to determine the 
minimal simulation run length (Robinson 2004). 
The cumulative means and convergence of the 

main performance indicators SL and WT are 
calculated and convergence remains well below 
5% after about 24 and 112 weeks respectively, in 
the Cyclic RC scenario. In the Dynamic RC 
scenario it converges faster. We round up to a 
run length of 208 weeks, or 4 years. Although 
the GSD department model is a non-terminating 
simulation, we choose to do 5 replications where 
a rule-of-thumb is to use at least 3-5 replications 
and more if data is noisy. With 5 replications our 
cum. mean average gives a 0.71% deviation for 
the Cyclic RC and 2.57% for the Dynamic RC, 
both well below the aim of 95% C.I.  

Table 2 RC characteristics and results for Service Level (SL), Wait Time (WT), and Capacity Used. 
 Standard deviations* in brackets. 

 Dynamic RC Cyclic  RC Real 2011 RC 
RC Characteristics    
   Patient-Rel. Activities 14,008 14,008 14,008 
   Total minutes avail. 1,225,915 1,225,915 1,225,915 
   No. of runs of DA p/y 392 ---- ---- 
Performance    
   SL (%)     
   All app. 39 (0.01) 35 (0.00) 34 (0.01) 
   New-Patient app. 47 (0.01) 57 (0.00) 43 (0.01) 
   Repeat Patient app. 44 (0.00) 48 (0.01) 42 (0.01) 
   Surgery app. 31 (0.01) 14 (0.01) 23 (0.01) 
WT (days)      

   All app. 7.4 (13.1) 10.4 (29.0) 8.7 (13.3) 

   New-Patient app. 6.6  (9.8) 5.8  (8.9) 8.5 (10.8) 

   Repeat Patient app. 6.5  (9.4) 5.4  (8.7) 7.2 (10.0) 

   Surgery app. 45.8 (29.4) 122.5 (75.6) 49.5 (26.4) 

AppMinsUsed 1,147,275 1,116,277 1,134,494 

Capacity Used (%) 93.6% 91.1% 92.5%  
*Stdev. is between runs for SL (n=5), and between patients within their groups for WT (New-patient appointments  

n≈77,000, Repeat-patient appointments n≈300,000, Surgeries n≈38,000, All n≈400,000). 
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The first two rows in Table 2 show that all 
three RCs start out with an equal total amount of 
capacity. In the dynamic approach we have 
fine-tuned the algorithm in order to produce the 
exact same total amount of activities per year, 
which allows fair comparison of scenarios. The 
third row indicates on average, how many times 
the DA is run, prioritizing activities when the 
number of candidate activities exceeds specialist 
availability. 

The differences in performance between the 
Dynamic, Cyclic and Real 2011 RCs are 
substantial, and significant at a 99% confidence 
level. The Dynamic RC outperforms the Cyclic 
and Real 2011 RC in terms of SL with a 
difference of 4% and 5% respectively, for all 
patients together. The increase from 35% SL for 
the Cyclic RC and 39% SL for Dynamic, means 
that a 10% increase is attained for the Dynamic 
RC over the Cyclic one. The Cyclic RC attains a 
higher SL for New- and Repeat-patient 
appointments, but this performance is offset by a 
very low SL for surgery patients. From this 
result we infer that the Cyclic RC has become 
unbalanced due to randomly allocated annual 
leave and conference leave, causing variability. 
The Dynamic RC was able to cope with this 
variability by automatically compensating for 
e.g., lost surgery sessions, by iteratively 
calculating which activity types are most needed.  
The standard deviations of SLs (in brackets) are 
small, and indicate that there are no large 
differences between the five simulation runs 
conducted. 

The wait times reported in Table 2 show that 
the Dynamic RC outperforms the Cyclic and 
Real 2011 RCs. For all patients together, the 
Dynamic RC can shorten average wait time by 

three days compared to Cyclic, and 1.3 days 
compared to Real 2011. The gain is especially 
palpable for the surgery appointments, where 
wait time average is shortened by 76.7 days and 
3.7 days, compared to Cyclic and Real 2011 RC, 
respectively. The Cyclic RC however shows 
wait times slightly shorter than that of the 
Dynamic RC for New- and Repeat-patient 
appointments. This again indicates that the 
Cyclic RC, if no additional changes are made to 
it, is incapable of handling random activity 
cancellations, and thus becomes unbalanced.  

The dynamic approach demonstrates its 
ability to take into account the effect of 
cancelled activities due to holidays, annual leave 
etc., and to redistribute activities among the 
specialists. In other words, in the cyclic 
approach, when a certain activity is cancelled 
due to a holiday, the cyclic pattern dictates when 
that activity will take place again. A specialist is 
simply subject to a degree of luck for the 
activity that gets cancelled for him. In the Real 
2011 approach, the department’s head planner 
used his best judgment to reschedule activities 
that they deem necessary, with great effort. The 
dynamic approach allows for quicker 
compensation and automatically ‘staying on-par’ 
under the effects of variability caused by 
holidays and leave. 

5. Conclusions and Limitations 
The results of the simulation experiment 

show strong support for the minimal-variability 
data-driven approach to specialist allocation. It 
shows that the dynamic RC allows for more 
patient appointments scheduled on time, shorter 
overall wait times, and higher resource 
utilization. This automated approach can 
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significantly alleviate and support the head 
planner’s difficult task of scheduling and 
re-scheduling activities.  

As opposed to nurse scheduling, which is 
uniform from one hospital to the next, physician 
(or specialist) scheduling is much more 
hospital-centric, because more complex labor 
agreements and individual contract clauses that 
physicians are able to negotiate, make their 
scheduling problem less general (Brunner et al. 
2009, Fugener et al. 2015). Generalizability in 
the complex setting of health care resource 
allocation is a catch-22: we depart from general 
types of resource allocation problems, but we 
want to prove, and illustrate, that our methods 
and approaches are capable of finding good 
solutions under real-life constraints. But it is 
often these real-life constraints that make the 
problem very case-specific (Brucker et al. 2011). 
When the problem is relationally complex, 
simulation proves to be useful and flexible, 
allowing sufficient degree of detail. But 
constructing realistic models with high degree of 
detail, many interrelations, shared resources, 
complex patient flows, and considerable 
variability, has the downside that models 
become very specific to the case setting, 
producing results that can be difficult to 
generalize.  Our aim was therefore more 
directed at generalizing a particular set of results 
to a broader theory: the theory of Swift Even 
Flow, rather than to other case-specific problems. 
No set of cases, no matter how large, is likely to 
deal satisfactorily with the complaint that it is 
difficult to generalize from one case to another 
(Yin 2013).  

The use of cyclic schedules is common in 
hospital departments in the Netherlands and 

elsewhere, as is the wide variety in specialists’ 
day-to-day tasks, and their availability (Beaulieu 
et al. 2000, Guo et al. 2004). But reusing a 
hospital model in a different hospital requires 
some customization. This is a particularly 
difficult task when someone other than the 
modeler undertakes it (Gunal 2012). The new 
user will have to learn how the model works 
first, and format input data to make it 100% 
compatible. Regardless of who the user is, there 
is no guarantee that a valid model for hospital A 
will also be valid for hospital B, or even 
department B. The new user for hospital/ 
department B still has to do validation and 
verification to make sure that the model behaves 
as it should. System characteristics may differ 
greatly between different hospitals or 
departments, and could make the development 
of a new model more appealing than adapting 
and customizing an existing one. For example, 
at some hospitals the specialists may strictly 
hold their own patient lists and thus have no 
type of buddy system in effect. Or on the 
contrary, as is the case at high-volume public 
hospitals in Hong Kong, all specialists on the 
same team and specialty treat all patients of that 
specialty. Adapting our model to a system such 
as the latter might not have merit. Such a 
shared-patients system is also subject to 
variability in roster activities, but one would 
need to seek different ways to cope with it, or 
mitigate its effects. For example, one could seek 
to schedule daily activities flexible and 
dynamically on a department level, rather than 
individual specialist level.  

Implementation of our new, dynamic 
data-driven allocation method would require a 
substantial change in mentality among hospital 
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staff, to switch from a cyclic pattern to a 
dynamic schedule. The projected benefits need 
to be clear and rather certain, in order to foster 
support for such a change. In interviews in 2011, 
four of the six specialists indicated that if a 
dynamic approach would significantly 
outperform their current approach in terms of 
efficiency and throughput, then they would be 
willing to switch activity 1, their administration 
activity which can be performed from home, 
around. Changing the days on which the other 
activities take place would be a less severe 
change for them, although their preferences 
should be taken into account as much as 
possible. 

In future research, more-sophisticated 
models for scheduling surgery patients can be 
integrated into the current approach. This item 
was subject to simplification most of all in our 
model. Surgery scheduling entails a large body 
of research on its own (Agnetis et al. 2014, 
Cardoen et al. 2010, Day et al. 2012, 
Molina-Pariente et al. 2015), and synergies 
should be sought in terms of surgery scheduling 
in combination with other appointment 
scheduling, for the same patient. Then allocation 
of activities can become more refined, and more 
realistic, e.g., for difficult surgical procedures 
where specialists operate together on a single 
patient.  

The fact that our simulation model strictly 
adheres to scheduling rules and restrictions (with 
exceptions programmed to a viable level of 
detail), means that some human decisions that 
deviate from the rules and procedures, are not 
modeled. For example, in the model, no 
double-booking can take place (assigning two 
patients to a single time slot). This makes model 

validation a very difficult task, urging us to 
focus more on verification (Kelton et al. 2015). 
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