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Abstract 
As requirements for system quality have increased, the need for high system reliability is also 

increasing. Software systems are extremely important, in terms of enhanced reliability and stability, for 
providing high quality services to customers. However, because of the complexity of software systems, 
software development can be time-consuming and expensive. Many statistical models have been 
developed in the past years to estimate software reliability. In this paper, we propose a new 
three-parameter fault-detection software reliability model with the uncertainty of operating 
environments. The explicit mean value function solution for the proposed model is presented. 
Examples are presented to illustrate the goodness-of-fit of the proposed model and several existing 
non-homogeneous Poisson process (NHPP) models based on three sets of failure data collected from 
software applications. The results show that the proposed model fits significantly better than other 
existing NHPP models based on three criteria such as mean squared error (MSE), predictive ratio risk 
(PRR), and predictive power (PP). 
Keywords: Nonhomogeneous Poisson process, software reliability, mean squared error, predictive 
ratio risk, predictive power, fault detection 
 

 
1. Introduction 

As requirements on system quality increase, 
the need for high system reliability is also 
increasing. Software systems are extremely 
important, in terms of enhanced reliability and 
stability, for providing high quality services to 
customers. Software systems improve the 
solution of immediate problems in a variety of 
industries, and continue offering customer 
convenience. However, because of the 

complexity of software systems, the software 
development process can be time-consuming and 
expensive. Enhancing the reliability of software 
systems and reducing cost to acceptable levels 
have become the main focus of the software 
industry (Grag 2010). Meanwhile, research has 
long been performed in software reliability 
engineering, and many software reliability 
growth models (SRGM) have been proposed. 
Many existing non-homogeneous Poisson 
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process (NHPP) software reliability models have 
been conducted through the fault intensity rate 
and mean value ( )m t functions within a 
controlled testing environment in order to 
estimate reliability metrics, such as the number of 
residual faults, failure rate, and software 
reliability. In general, these models are applied to 
software testing data, and then used to make 
predictions on software failures and reliability in 
the field. The existing proposed models have the 
common assumption that the operating 
environments and the developing environment 
are about the same. For this reason, once software 
systems are introduced, the software product 
used in field environments are the same as, or 
close to, those used in the development - testing 
environment. However, such systems might be 
used in many different locations. The operating 
environments in the field for the software, in 
reality, are quite different. The uncertainty of the 
operating environments will affect the software 
failure and software reliability. During the system 
test, software developers execute test cases that 
mimic an ender user’s operational profile. 
However, the operational profile of the test 
environment might not exactly match up with the 
operational profile of the operating environment 
(Zhang and Pham 2006). Zhu et al. (2015) 
recently revisited the 32 environmental factors 
that studied more than a decade ago by Zhang 
and Pham (2000) and reinvestigated the impact of 
software development environmental factors on 
software reliability assessment. 

Some researchers, such as Yang and Xie 
(2000), Huang et al. (2000), and Zhang et al. 
(2002), proposed a method for predicting the 
fault detection rate to reflect changes in operating 
environments and attempted a methodology that 

modifies the software reliability model in 
operating environments by introducing a 
calibration factor. Teng and Pham (2006) 
discussed a generalized model that captures 
environment uncertainty and its effects on 
software failure rates. Recently, Pham (2013, 
2014) developed a new software reliability model 
that incorporates the uncertainty of system 
fault-detection rate per unit of time subject to 
operating environments. Chang et al. (2014) also 
developed a new software reliability model in the 
software development process and related it to 
the error detection rate function with 
consideration of the uncertainty of operating 
environments. 

In this paper, we present a new model with 
consideration of a three-parameter fault-detection 
rate in the software development process, and 
relate it to the error detection rate function with 
consideration of the uncertainty of operating 
environments. We examine the goodness-of-fit of 
the fault-detection rate software reliability model 
and other existing NHPP models based on several 
sets of software testing data. The explicit solution 
of the mean value function for the new model is 
derived in Section 2. Criteria for model 
comparisons and selecting the best model are 
discussed in Section 3. Model analysis and 
results are discussed in Section 4. Section 5 
presents conclusions and remarks. 

2. A Fault-detection Rate Software 
Reliability Model 

In this section, an NHPP software reliability 
model with the uncertainty of operating 
environments is presented. The following are the 
assumptions for this model; 1) The occurrence of 
software failures follows an NHPP, 2) Software 
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can fail during execution, caused by faults in the 
software, 3) The software-failure detection rate at 
any time is proportional to the number of 
remaining faults in the software at that time, 4) 
When a software failure occurs, a debugging 
effort removes the faults immediately, 5) For 
each debugging effort, whether the faults is 
successfully removed or not, some new faults 
may be introduced into the software system, 6) 
The environment affects the unit failure detection 
rate, ( )b t , by multiplying a factor η . A 
generalized NHPP model that incorporates the 
uncertainty of operating environments can be 
formulated as follows (Pham 2014): 

( ) [ ( )][ ( )],dm t b t N m t
dt

η= −        (1) 

where  
( )m t  expected number of errors detected by time

t , or the mean value function 
N  expected number of faults that exist in the 

software before testing 
( )b t   fault detection rate function, which also 

represents the average failure rate of a fault 
η   random variable that represents the 

uncertainty of the system fault detection 
rate in the operating environments with 
probability density function g  

The closed-form solution function ( )m t  
with the initial condition (0) 0m =  is given in 
terms of random variableη : 

                                        

0
( )

( ) 1 .
t
b x dx

m t N e
η− ∫= − 

 
        (2) 

Some recent studies [1, 13, 18] have assumed 
that the uncertainty of the system operating 
environment random variable η  follows a 
gamma distribution. Although the exponential 
distribution is a special case of gamma 

distribution, we believe that this exponential 
distribution can be of help in our study in order to 
keep the number of unknown parameters in the 
model as low as possible. With that in mind, in 
this paper we assume that η  has an exponential 
distribution with parameter β , i.e., exp( )η β , 
where the probability density function of η  is 
given by 

( ) ,for 0, 0,xg x e xββ β−= > ≥  

then, from equation (2), we obtain the following: 

   

0

( ) 1 .
( )

tm t N
b x dx

β

β

  
  = −  

 +   ∫
      (3) 

In this paper, we consider a three-parameter 
fault-detection rate ( )b t  is a non-decreasing 
function with inflexion S-shaped curve, which 
captures the learning process of the software 
developers. A three-parameter fault-detection 
rate ( )b t  as follows: 

 ( )
1 bt

ab t
ce−

=
+

, , , 0.a b c >          (4) 

From equation (4), a new three-parameter 
fault-detection software reliability model, where 
the expected number of software failures 
detected by time t , ( )m t , is subject to the 
uncertainty of the environments, can be obtained 
directly from equation (3): 

  ( ) 1 .
(1 )ln
1

bt

bt

m t N
a c e
b ce

β

β
−

−

  
  
  = −   +  −     +   

   (5) 

Example results show the estimated 
parameter and performance of the proposed 
model above (both equations (4) and (5)) based 
on several sets of real failure data and a set of 
criteria for model comparisons will be discussed 
in the next two sections. 
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3. Criteria for Model Comparisons 
Once the analytical expression for the mean 

value function ( )m t is derived, the model 
parameters to be estimated for this function can 

be obtained with the help of a developed Visual 
C++ program and MS Office Excel 2010 based on 
the least square estimate (LSE) method. 

Table 1 Software reliability models 

No. Model ( )m t  

1 G-O Model [3] ( )( ) 1 btm t a e−= −  

2 Delayed S-Shaped SRGM [21] ( )( ) 1 (1 ) btm t a bt e−= − +  

3 Inflection S-Shaped SRGM [23] ( )1
( )

1

bt

bt

a e
m t

eβ

−

−

−
=

+
 

4 Yamada Imperfect 
Debugging Model [22] ( ) 1 1btm t a e at

b
a a−   = − − +    

 

5 PNZ Model [15] 
1 1

( )
1

bt

bt

a e at
bm t

e

a a

β

−

−

  − − +    =
+

 

6 Pham-Zhang Model [16] ( )( ) 1
( )

1

bt t bt

bt

abc a e e e
bm t
e

a

a
β

− − −

−

  + − − −   − =
+

 

7 Dependent-parameter 
Model 1 [11] ( )( ) (1 ) 1tm t t t e γa γ γ −= + + −  

8 Dependent-parameter  
Model 2 [11] ( )0 0( ) ( )

0 0
0

1( ) ( 1) 1 (1 )
1

t t t ttm t m e t t t e
t

γ γγ a γ γ γ
γ

− − − − +
= + + − + − + 

 

9 Testing Coverage Model [1] ( ) 1
( )bm t N
at

a
β

β

  
 = −    +  

 

10 Vtub-shaped Model [13] ( ) 1
1

bt
m t N

a

a
β

β

    = −
  + −  

 

11 Proposed New Model ( ) 1
(1 )ln
1

bt

bt

m t N
a c e
b ce

β

β
−

−

  
  
  = −   +  −     +   
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Three common criteria (Pham, 2006), such as 
the mean squared error (MSE), the predictive 
ratio risk (PRR), and the predictive power (PP), 
are used as criteria for the model estimation of the 
goodness-of-fit, and to compare the proposed 
model and other existing models as listed in 
Table 1. MSE, PRR and PP are given as follows: 

( )20 ( )n
i ii m t y

MSE
n m

=
−

=
−

∑ , 

2

0

ˆ ( )
ˆ ( )

n i i
i

i

m t y
PRR

m t=

 −
=  

 
∑ , 

2

0

ˆ ( )n i i
i

i

m t y
PP

y=

 −
=  

 
∑ , 

where iy  is total number of failures observed at 
time it ; m is the number of unknown 
parameters in the model; and ( )im t is the 
estimated cumulative number of failures at it  
for 1, 2, ,i n=  . MSE measures the distance of 
a model estimate from the actual data with 
consideration of the number of observations, n , 
and the number of unknown parameters in the 
model, m . PRR measures the distance of model 
estimates from the actual data against the model 
estimate. PP measures the distance of model 
estimates from the actual data against the actual 
data. For all these three criteria (MSE, PRR, and 
PP) the smaller the value, the better the model fits 
relative to other models run on the same data set. 
Table 1 summarizes the proposed model and 
several existing well-known NHPP models with 
different mean value functions. Note that models 
9 and 10 in Table 1 did consider environmental 
uncertainty. 

4. Parameter Estimation and Model 
Comparison 

Data set #1, listed in Table 2, was extracted 
from information on failures in the software 
development for the real-time multi-computer 
complex of the US Naval Fleet Computer 
Programming Center of the US Naval Tactical 
Data System (NTDS) (Goel 1979). The software 
consists of 38 different project modules. The time 
horizon is divided into four phases: production, 
test, user, and subsequent test. A total of 26 
software failures were found during the 
production phase, five during the test phase, and 
the last failure was found on 4 January 1971. One 
failure was observed during the user phase, in 
September 1971, and two failures during the test 
phase in 1971. Data set #2, given in Table 3, is 
the data collected from testing system T at AT&T 
(Ehrlich 1993). AT&T's system T is a 
network-management system developed by 
AT&T that receives data from telemetry events 
such as alarms, facility-performance information, 
and diagnostic messages, and forwards them to 
operation for further action. The system has been 
tested and failure data has been collected. Table 3 
lists failures and inter-failures, as well as 
cumulative failure times (in CPU units). Detailed 
information can be obtained from Ehrlich (1993) 
and Pham (2006). Data set #3, listed in Table 4, 
was reported by Jeske and Zhang (2005). The 
software in this case study runs on an element 
within a wireless network switching center. Its 
main function includes routing voice channels 
and signaling messages to relevant radio 
resources and processing entities. The 
cumulative field exposure time of the software 
was 58,633 system-days and a total of 33 failures 
were observed in the field, amongst which there 
were 19 unique failures. Table 4 shows the failure 
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data, in grouped format, for each of the 13 
months (Jeske and Zhang 2005). 

Table 2 NTDS data set – data set #1 

t data t data t data 

1 2 11 26 21 31 

2 8 12 27 22 31 

3 14 13 28 23 31 

4 21 14 30 24 31 

5 22 15 30 25 31 

6 23 16 30 26 31 

7 23 17 30 27 32 

8 23 18 30 28 33 

9 26 19 31 29 34 

10 26 20 31   

Table 3 AT&T data set – data set #2 

t data t data 

1 3 8 17 

2 6 9 17 

3 10 10 19 

4 14 11 20 

5 14 12 20 

6 16 13 21 

7 16 14 22 

 

 

Table 4 WNSC data set – data set #3 

Month 
Index 

System  
Days 

System 
Days 

(Cum.) 
Failures Cum. 

Failures 

1 1249 1249 4 4 

2 3472 4721 6 10 

3 4065 8786 4 14 

4 4883 13669 3 17 

5 5425 19094 6 23 

6 5656 24750 1 24 

7 7549 32299 2 26 

8 8295 40594 4 30 

9 8882 49476 1 31 

10 6120 55596 0 31 

11 2465 58061 1 32 

12 527 58588 1 33 

13 45 58633 0 33 

Tables 5, 6, 7 and 8 summarize the results of 
the estimated parameters for all 11 models in 
Table 1 using the LSE technique and the three 
common criteria (MSE, PRR, and PP) values. We 
obtained the three common criteria when 

1,2, , 29t =   from Data set #1 (Table 2) and 
when 1,2, ,14t =   from Data set #2 (Table 3). 
In addition, we obtained when cumulative system 
days from Data set #3 (Table 4). As can be seen 
from Table 6, the PRR, and PP values for the 
proposed new model are the lowest. Furthermore, 
the PRR and PP values for the proposed new 
model are the lowest compared with all models in 
Table 7. Finally, the MSE value for the proposed 
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new model is the lowest in Table 8. Figures 1, 2, 
and 3 show the graph of mean value functions for 

all 11 models for Data sets #1, #2, and #3, 
respectively. 

Table 5 Parameter estimation in models 

Model Data Set #1 Data Set #2 Data Set #3 

G-O Model [3]  â =31.717, b̂ =0.190  â =22.760, b̂ =0.186  â =33.010, b̂ =0.000058 

Delayed S-shaped 
SRGM [21]  â =30.413, b̂ =0.458   â =20.002, b̂ =0.520   â =31.013, b̂ =0.000144 

Inflection S-shaped 
SRGM [23] 

 â =31.717, b̂ =0.190,   

β̂ =0.00001 

 â =22.760 , b̂ =0.186, 

 β̂ =0.001 

 â =33.009, b̂ =0.000058, 

 β̂ =0.00000001 

Yamada Imperfect 
Debugging Model [22]  

 â =28.234, b̂ =0.234,  
 â =0.0063  

 â =17.425, b̂ =0.265,   
 â =0.0250  

 â =33.009, b̂ =0.000058,  
 â =0.00000001 

PNZ Model [15] 
 â =22.829, b̂ =1.015, 

â =0.017, β̂ =12.048 

 â =11.673, b̂ =1.148,  

 â =0.066, β̂ =7.799 

â =32.740, b̂ =0.00006,  

â =0.00000001, β̂ =0.002 

Pham-Zhang Model [16] 
 â =31.420, b̂ =0.211,    

â =2.903, β̂ =0.00, 

 ĉ =0.002 

 â =22.109, b̂ =0.210,  

 â =4.033, β̂ =0.00, 

 ĉ =0.001 

 â =33.008, b̂ =0.000058, 

 â =10.00, β̂ =0.00, 

 ĉ =0.001 
Dependent-Parameter 

Model1 [11]  â =0.000001, γ̂ =243.500  â =0.000002, γ̂ =276.9   â =2230.17, γ̂ =0.000003 

Dependent-Parameter 
Model2 [11] 

 â =286.14, γ̂ =0.011,  

 0̂t =4.43, 0m̂ =21.23 

 â =218.657, γ̂ =0.024 

 0̂t =2.81, 0m̂ =10.75 

 â =632.23, γ̂ =0.000004 

 0̂t =0.00, 0m̂ =15.20 

Testing Coverage Model 
[1] 

 â =0.731, b̂ =4.297,  

 â =0.124, β̂ =0.736,  

 N̂ =39.99 

 â =2.021, b̂ =2.4945, 

 â =0.062, β̂ =5.888,  

 N̂ =63.682 

 â =0.0099, b̂ =0.721,  

 â =1.001, β̂ =61.10,  

 N̂ =52.24 

Vtub-shaped Model 
[13] 

 â =1.300, b̂ =0.001,  

 â =3.880, β̂ =0.005,   

 N̂ =33.01 

 â =40.600, b̂ =0.0001,  

 â =5.40, β̂ =0.011,  

 N̂ =24.20 

 â =1.0001, b̂ =0.0001,  

 â =1.1460, β̂ =0.0002,   

 N̂ =40.77 

Proposed New Model 
 â =0.175, b̂ =3.755, 

 ĉ =0.497, β̂ =49.680, 

 N̂ =35.389 

 â =0.072, b̂ =2.323,     

 ĉ =3.520, β̂ =0.302, 

 N̂ =27.684 

 â =0.0059, b̂ =0.000001, 

 ĉ =34.60, β̂ =2.870, 

 N̂ =41.54 

Table 6 Comparison criteria from NTDS data – data set #1 

Model MSE Rank PRR Rank PP Rank 

G-O Model 2.2957 4 0.5504 7 3.1876 7 
Delayed S-shaped SRGM 3.8051 9 0.2324 4 0.2179 4 

Inflection S-shaped SRGM 2.384 5 0.5504 6 3.1875 6 
Yamada Imperfect Debugging 2.5117 8 0.5758 8 4.0719 8 
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Model MSE Rank PRR Rank PP Rank 
PNZ Model 1.401 3 0.1214 2 0.1863 3 

Pham-Zhang Model 2.3916 6 0.3945 5 1.2342 5 
Dependent-Parameter Model 1 227.7507 11 3639.2277 11 11.6177 10 
Dependent-Parameter Model 2 32.7889 10 1.6766 10 92.6538 11 

Testing Coverage Model 1.1342 1 0.191 3 0.132 2 
Vtub-shaped Model 2.5222 7 0.5835 9 4.0556 9 

Proposed New Model 1.2571 2 0.0708 1 0.0673 1 

Table 7 Comparison criteria from AT&T data – data set #2 

Model MSE Rank PRR Rank PP Rank 

G-O Model 0.8969 4 0.1170 6 0.1517 6 
Delayed S-shaped SRGM 1.6446 9 0.3841 9 0.1987 8 

Inflection S-shaped SRGM 0.9786 6 0.1167 5 0.1509 5 
Yamada Imperfect Debugging 0.8996 5 0.1430 8 0.2180 9 

PNZ Model 0.3740 1 0.0853 4 0.0607 3 
Pham-Zhang Model 1.1234 7 0.0617 2 0.0606 2 

Dependent-Parameter Model 1 59.2875 11 495.6490 11 4.8606 10 
Dependent-Parameter Model 2 12.4631 10 0.9502 10 6.6993 11 

Testing Coverage Model 0.7993 2 0.0667 3 0.0666 4 
Vtub-shaped Model 1.1637 8 0.1276 7 0.1764 7 

Proposed New Model 0.8702 3 0.0490 1 0.0492 1 

Table 8 Comparison criteria from WNSC data – data set #3 

Model MSE Rank PRR Rank PP Rank 

G-O Model 1.626 4 0.6277 6 0.24255 5 
Delayed S-shaped SRGM 7.3713 9 65.1778 10 1.1664 9 

Inflection S-shaped SRGM 1.7887 6 0.6279 6 0.24257 7 
Yamada Imperfect Debugging 1.787 5 0.6278 5 0.24256 6 

PNZ Model 2.0232 7 0.5604 4 0.2266 4 
Pham-Zhang Model 2.2359 8 0.628 7 0.2426 8 

Dependent-Parameter Model 1 152.13 11 66696.988 11 5.4583 10 
Dependent-Parameter Model 2 33.593 10 1.0252 9 8.3639 11 

Testing Coverage Model 1.3975 3 0.0546 1 0.0695 1 
Vtub-shaped Model 1.2856 2 0.2462 3 0.1285 3 

Proposed New Model 1.2405 1 0.2134 2 0.1165 2 
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Figure 1 Mean value functions for all 11 models in 

Table 1 for data set #1 

 
Figure 2 Mean value function for all 11 models in 

Table 1 for data set #2 

 

Figure 3 Mean value function for each 11 models in Table 1 for data set #3 
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5. Conclusions and Remarks 
In general, existing proposed models have the 

common assumption that the testing and 
operating environment are the same as, or close 
to. However, systems might be used in many 
different locations. In this paper, we discussed a 
new software reliability model subject to the 
uncertainty of operating environments. The three 
sets of software failure data are used to illustrate 
the proposed new model. We summarized the 
results of the estimated parameters for all 11 
models and the three common criteria (MSE, 
PRR, and PP) values. As can be seen from Table 
6, the PRR, and PP values for the proposed new 
model are the lowest. Furthermore, the PRR and 
PP values for the proposed new model are the 
lowest compared with all models in Table 7, and 
the MSE value for the proposed new model is the 
lowest in Table 8. The results shown in Tables 6 – 
8 show that the proposed new model fits 
significantly better than other ten existing NHPP 
models based on three common criteria. Future 
work in broader validation of this conclusion is 
needed based on recent data-sets. 
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