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Abstract 
   A novel approach for assessing the robustness of an equilibrium in conflict resolution is presented. 
Roughly, an equilibrium is robust if it is resilient, or resistant to deviation. Robustness assessment is 
based on a new concept called Level of Freedom, which evaluates the relative freedom of a decision 
maker to escape an equilibrium. Resolutions of a conflict can be affected by changes in decision 
makers’ preferences, which may destabilize an equilibrium, causing the conflict to evolve. Hence, a 
conflict may become long-term and thereby continue to evolve, even after reaching an equilibrium. 
The new robustness measure is used to rank equilibria based on robustness, to facilitate distinguishing 
equilibria that are relatively sustainable. An absolutely robust equilibrium is a special case in which the 
level of freedom is at an absolute minimum for each individual stability definition. 
Keywords: Robustness, equilibria, level of freedom, conflict evolution, graph model  
 

1. Introduction 
Strategic conflicts can be formally modelled 

and analyzed using the Graph Model for Conflict 
Resolution (GMCR) (Kilgour et al. 1987, Fang 
et al. 1993, Hipel 2009 a,b, Kilgour and Eden 
2010, Hipel et al. 2011), which utilizes various 
stability concepts to determine possible equilibria 
or resolutions to a given conflict, and thereby 
obtain strategic insights. It has been observed that 
some real world conflicts demonstrate that it is 
possible for conflicts to continue evolving even 

after reaching an equilibrium (Matbouli et al. 
2013, 2014b). Therefore, further analysis of 
equilibrium robustness is desired in order to gain 
some insights about the sustainability of a 
resolution. In this research, robust equilibrium is 
not necessarily a binary relation; instead, 
robustness can be viewed as a level in which 
equilibria are ranked from most robust to least 
robust. Such a methodology, for example, will 
make it possible to distinguish between stable 
states, where, for instance, in the sense of GMCR, 
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a specific Nash equilibrium can be more stable 
than another Nash equilibrium.  

A new formal robustness of equilibrium 
analysis is introduced within GMCR, which will 
provide insights for better understanding the 
evolution of long-term conflicts. Refined 
stability definitions are presented, which 
facilitates the evaluation of equilibrium 
robustness, thereby making conflict resolution 
more sustainable. In the following sections, a 
background on strategic long-term conflicts and a 
review of GMCR is summarized. Then, a formal 
methodology for analyzing robust stability and 
ranking procedures to assess equilibrium 
robustness are proposed. The new strategic 
approach is applied to a groundwater 
contamination dispute that took place in Elmira, 
Ontario, Canada. Subsequently, strategic results 
and insights obtained when applying robustness 
of equilibrium analysis are discussed. 

 
2. Background 

2.1 Strategic Conflicts 
Strategic conflicts are a complex form of 

decision making (Jeong et al. 2008) where each 
decision maker (DM) considers his or her options 
while thinking about other DMs’ moves. In such 
a situation, a DM cannot achieve a desired 
outcome without carefully anticipating the 
decisions of opponents. Conflict conditions exist 
when two or more DMs pursue incompatible 
goals (Galtung 2008). Modelling and analysis of 
these interactive decision-making problems have 
been widely implemented using game-theoretic 
methodologies, such as GMCR. The 
development of the graph model started in 1987 
by Kilgour et al. (1987), while the first book on 

the topic was written in 1993 by Fang et al. 
(1993). It has been widely used around the world 
in various application areas such as 
environmental conflicts (Kilgour et al. 2001), 
energy disputes (Matbouli et al. 2014b), 
negotiations (Sheikhmohammady et al. 2010), 
policy design (Zeng et al. 2004), and business 
applications (Kilgour and Hipel 2005). 

2.2 Long-Term Conflicts 
The need to study the robustness of equilibria 

is recognized because some real world conflicts, 
such as the great Canadian hydroelectric power 
conflict (Matbouli et al. 2014b), continued to 
evolve even after reaching a predicted resolution, 
thereby creating a challenge to modelling and 
analysis. For the purpose of analyzing such 
conflicts, a new concept of robustness of 
equilibria is introduced to make the classification 
of resolutions possible, and permit the 
examination of the sustainability of different 
solution concepts. As Figure 1 shows, after an 
active conflict reaches an equilibrium, it may or 
may not transform into a long-term conflict if 
preferences change. A measure of equilibrium 
robustness is introduced in the methodology 
section. 

2.3 The Graph Model for Conflict 
Resolution (GMCR) 

GMCR (Kilgour et al. 1987, Fang et al. 1993, 
Kilgour and Hipel 2005, Hipel 2009 a,b, Kilgour 
and Eden 2010, Hipel et al. 2011) is a systematic 
chess-like approach that is used to analyze 
strategic conflicts. GMCR uses solution concepts 
inspired by game-theoretic equilibrium 
definitions in order to model interactions 
amongst DMs under conflicts. The use of GMCR 
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has several advantages over classical 
game-theoretic approaches in the analysis of 
conflicts. First, GMCR is flexible in representing 
large conflicts, compared to normal or extensive 
games. Additionally, conflicts represented in 
GMCR can handle moves that are not only 
reversible, but also irreversible or common. 
Moreover, GMCR can represent complex 
preference structures of DMs, such as cardinal, 
transitive, and intransitive preferences. 
Definition 1 A graph model for conflict 

resolution is defined as 
, ,{ } ,{ , , ~ }i i N i i i i NG N S A ∈ ∈= 〈 〉  , where N  is 

the set of all DMs, S  is the set of feasible states, 

iA  is the set of unilateral moves available for 

iDM  such that iA S S⊆ × , and { , , ~ }i i i   
represents DM i 's preference relation, such that 
for any ,s q S∈ , is q  means state s  is more 
preferred by iDM  than state q , is q  
indicates that state s  is less preferred for iDM  
than state q , and ~is q  means iDM  is 
indifferent between state s  and state q .

 
 
 
 
 
 
 
 
 
 

 
Figure 1 Long-term conflict 

 
Definition 2 In a graph model G , the reachable 
list for a iDM  (Fang et al. 1993) i N∈  from 
state s S∈  denoted by 

( ) { : ( , ) }i iR s q S s q A= ∈ ∈ , is the set of states to 
which iDM  can move unilaterally from state s . 
Similarly, the unilateral improvement (UI) list of 
moves denoted by ( )iR s+ , is a subset of ( )R s  
defined by { ( ) : }iq R s q s∈  . The lists 

( ) ( ) { ( ) : ~ }i iR s R s q R s q s= ⊆ ∈  and 
( ) ( ) { ( ) : }i iR s R s q R s q s− ⊆ ∈   are defined 

analogously such that 
( ) ( ) ( ) ( )i i i iR s R s R s R s+ − =∪ ∪ = . 
  Hence, if there is a move between states s  

and q  such that ~is q , the move is considered 

a unilateral move (UM) available to iDM  
between indifferent states, and it is denoted by 

( )iR s= . Moreover, in case is q , the move 
from s  to q  is considered a unilateral 
disimprovement (UD) and it is denoted by 

( )iR s− . 

2.3.1 Stability Definitions 
Primary stability concepts, defined below, are 

the context in which robustness can be 
understood in terms of individual stability. These 
stability concepts include Nash (Nash 1950, 
1951), Sequential Sanctioning (SEQ) (Fraser and 
Hipel 1979, 1984), general metarational (GMR) 
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(Howard1 1971), and symmetric metarational 
(Howard 1971). First, the Nash stable states for 
i N∈ , Nash

iS S⊆  are defined as follows: 
Definition 3 For i N∈ , state 

( )Nash
i is S R s+⇔∈ = ∅ . 

Thus, a state s S∈  is Nash stable for iDM  
if and only if (iff) iDM  has no UI from s . In 

Nash stability, a DM looks one move ahead from 
the present state, considering only his or her own 
preference. The next definition, sequential 
stability (SEQ), extends the consideration for 

iDM 's foresight to two moves, where the DM 
takes into account possible sanctions of a UI by 
other DMs.

 

Table 1 Foresight of focal decision maker in different stability conditions 

Stability Definitions Foresight Focal DM Opponent DM 

Nash (r) One move UI - 

Sequential Stability (SEQ) Two moves UI UI 

General Metarationality (GMR) Two moves UI UI, UD 

Symmetric Metarationality (SMR)  Three moves UI UI, UD 

 
Definition 4 For ,i N∈  state 

( ), ( )SEQ
i i N is S q R s x R q+ +

−∈ ⇔ ∀ ∈ ∃ ∈ .ix s x  
A state s  is sequentially stable for iDM  iff 

any UI from state s  is sanctioned by a 
countermove from N iDM − . Note that any Nash 
stable state is sequentially stable, and hence, 

Nash SEQ
i iS S⊆ . 

The difference between SEQ and GMR, 
which is defined below, is that in SEQ, the threat 
to sanction a UI is credible because it will result 
in an improved position for the sanctioning DM, 
whereas, in GMR, the sanctioning DM does not 
consider his or her own benefit. GMR is a more 
conservative stability definition; therefore, it is a 
weaker stability concept than SEQ. 
Definition 5 For i N∈ , state GMR

is S∈  
( ), ( )i N i iq R s x R q x s+

−∀ ∈ ∃ ∈⇔  x . 
A state s S∈  is general metarational (GMR) 

for iDM , iff any UI by iDM  from state s  to 
q  is sanctioned by a unilateral move (UM) by 

N iDM −  q  to x  such that state x  is not more 
preferred than state s  by iDM . 

When the GMR definition is extended to see 
if the focal DM is able to recover from 
sanctioning, the result is the definition of SMR 
stability, in which the focal DM cannot escape 
from a sanction. 
Definition 6 For i N∈ , state SMR

is S∈  
( ), ( ) ( ) .i N i i i iq R s x R q x s h R x h s+ +

−⇔ ∀ ∈ ∃ ∈ ∧∀ ∈ x  x

   A resolution is reached when a state that is 
stable for all DMs is reached. Such a state is 
called an equilibrium. A conflict may have more 
than one equilibrium.  
Definition 7 equilibrium Stable

Ns S s S∈⇔∈   
SEQStable Nash GMR SMR

N N N NNS S S S S= ∪ ∪ ∪   
In Table 1, a summary of the numbers and 

types of moves the focal DM considers in the 
various stability concepts is given. For example, 
in Nash stability, the focal DM considers only his 
or her own possible UIs, while in SEQ the focal 
DM also considers UIs by opponents. After 
incorporating robustness in the stability 
definitions, the contents of Table 1 will be 
extended to consider additional foresight or 
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moves that are not necessarily UIs.  

2.4 Robustness of Equilibria 
Although robustness of equilibria is a fresh 

concept in GMCR, the term robustness of 
equilibria is not entirely new, as it has been used 
in game theory settings by Fudenberg et al. 
(1988), and it has also been suggested that some 
equilibrium states are more stable than others 
(Kohlberg and Mertens 1986). Methodologies 
have been put forward to further refine the 
definition of equilibrium in order to find the most 
stable, robust, or likely equilibrium, by assigning 
probabilistic weights to opponents’ strategies to 
exclude unlikely equilibria.  

Examples of robustness of equilibria 
approaches in game theory include perfect 
equilibrium (Selten 1975), proper equilibrium 
(Myerson 1978), strategically stable equilibrium 
(Kohlberg and Mertens 1986), and robust 
equilibria of potential games (Ui 2001).  

Moreover, robustness can be attributed by 
flexibility of DMs (Rosenhead et al. 1972, 
Rosenhead and Mingers 2001, Rosenhead and 
Wiedemann 1979). In this respect, a DM makes 
robust decisions by maintaining flexibility 
against unforeseeable changes in the future.  

However, in long-term conflicts in general, 
and in GMCR in particular, the interest is not to 
predict the most likely equilibria. Instead, the 
goal is to find which equilibria are more resilient 
to change, and sustainable in relative comparison, 
in other words, which equilibria are more likely 
to persist despite future uncertainties or gradual 
preference changes.  

Therefore, a fresh concept in conflict 
resolution, Level of Freedom (LoF) (Matbouli et 
al. 2014a), was introduced as a new measure in 

equilibrium robustness. A formal framework for 
equilibrium analysis is presented in the next 
section.  

 
3. Methodology 

Strategic long-term conflicts take place when 
two or more interested parties seek incompatible 
objectives (Galtung 2008). Although equilibria 
can be seen as resolutions for such conflicts, the 
tendency of conflicts to evolve can be attributed 
to many reasons, one of which is the changing of 
preference. Future changes in preferences can be 
hard to predict. When a preference change takes 
place, the stability concepts of individual 
stabilities of DMs at some states no longer hold. 
Preferences can change for a number of reasons, 
for example, a change in goal realization because 
of external or internal factors. Take, for instance, 
a conflict arising over the utilization of limited 
water resources. When the demand of one region 
increases, more water needs to be drawn, which 
could put a prior agreement at risk of initiating a 
conflict.  

There are three main input parameters for 
GMCR: DMs, options, and preferences. The 
reliability of equilibria states, which are the 
output of GMCR, depends on the quality of the 
inputs. Because uncertainty is prevalent in real 
world conflicts, DMs, options, and preferences 
can be assumed to be characterized by high 
variability. To account for uncertainty of conflict 
parameters, there are a number of extensions to 
the original graph model which account for 
uncertainty at the present or historical state of a 
conflict, such as fuzzy preferences (Al-Mutairi et 
al. 2008, Bashar et al. 2012), and stochastic 
preferences (Rêgo and Santos 2013). If 
uncertainty exists in the present conditions of a 
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conflict, future changes are even more uncertain 
(Pye 1978). The robustness of equilibria method 
provides insights into the sensitivity of stable 
states against future changes by considering 
available moves to be the main factor in 
challenging the stability of equilibria.  

In the proposed enhancement, the information 
about DMs, options, and preferences is assumed 
to be complete. However, considering the risk of 
future changes, some Nash stable states can be 
more robust than other Nash stable states based 
on the possibility of deviation from the state on 
account of future changes.  

3.1 Factors in Equilibrium Robustness 
Robustness of an equilibrium is a relative 

measure that is dependent on the characteristics 
of a particular conflict being studied. The 
comparison and evaluation of equilibrium 
robustness is based on three factors: level of 
freedom (LoF) (Matbouli et al. 2014a), type of 
individual stability, and relative preference. The 
thought process that led to the idea of LoF started 
by looking for possible unilateral escapes from 
stable states.  

3.1.1 Level of Freedom (LoF) 
In ongoing long-term conflicts, some 

equilibrium conditions may remain satisfied even 
when the preferences of one or more DMs change 
in a new round. This situation can be linked to the 
availability of moves; for example, when a DM 
has no possibility of moving from an equilibrium, 
the conditions for stability will be maintained. 

The level of freedom (LoF) constitutes a 
rough measure to assess relative resistance to a 
stability disruption in cases of preference change 
(Matbouli et al. 2014a). If a DM changes his or 

her preferences for any reason, a stability 
condition may not be maintained. Therefore, the 
concept of LoF evaluates the robustness of 
stability of a given state for a particular DM, by 
counting the number of unilateral moves 
available to the DM. If the focal DM has a high 
LoF, it means that even a small change in 
preference would likely disturb the equilibrium. 
If the LoF is very low, or if it is zero, even a 
dramatic change in preference will not affect the 
equilibrium. 

Assume that iDM  finds states 1s  and 2s  
to be Nash stable. Assume also that from state 1s , 
there is no unilateral move available to iDM , 
while at state 2s  there are three available moves 
that are disimprovements for iDM . Now, both 
states are Nash, but which state is more stable? 
For the case of preference change for iDM , his 
or her stability at state 1s  cannot be affected. For 
state 2s , however, if the preference change for 

iDM  makes an available move a unilateral 
improvement, then the conditions of Nash 
stability at state 2s  will no longer be valid. Thus, 
even though both states 1s  and 2s  are Nash 
stable, state 1s  is more robust than state 2s .  

LoF can be calculated in a number of ways. 
For example, one may count the available 
number of moves from the present state in one 
step to other states. Or an analyst may choose to 
extend the horizon to calculate the number of 
moves in two or three consecutive steps ahead. 
However, LoF should be interpreted only 
relatively. The difference between LoFs of 4 and 
5 may not be significant, but larger differences in 
LoF tend to indicate a significant difference in 
the robustness of the states. A state is Absolutely 
Robust for an individual stability concept, as 
introduced in Section 3.2, when LoF is zero, the 
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absolute minimum for a stability definition. 
 In this article, a two-step calculation has 

been chosen for LoF, by counting the number of 
unilateral moves from the present state, 
regardless of the type of move: unilateral 
improvement, disimprovement, or neither. States 
that are one move ahead from the present state 
can be endpoints or transitional nodes. There is 
the possibility to encounter two-step loops that 
return to the initial state. Since the aim is to find 
the robustness of a state relative to another state, 
the count of the number of moves was limited to 
two sets of moves. The first set of moves is 
counted from the present state to the next 
endpoint. The second set of moves is counted 
based on the number of moves leading to 
transitional nodes multiplied by two. LoF is 
defined as follows (Matbouli et al. 2014a): 
Definition 8. ( ) 2iLoF s c d= − , where c  is the 
number of UMs from state s , and d  is the 
number of UMs from state s  that lead to a stable 
state for the DM. 

In addition, state 1s  in the above example, 
which is a Nash stable state with no possible 
unilateral moves, is called an Absolutely Robust 
state. Further definitions related to absolute 
robustness are presented in Section 3.2. 

Moreover, calculating LoF for each DM at 
every state can produce some interesting 
properties, some of which are given below: 
1. If a state s  has an ( ) 1iLoF s = , then s  is 
Nash stable for iDM  iff ( )i is R s . 
2. If for a state s  the number of feasible states is 
not greater than ( ) 1iLoF s + , then iDM  can 
move unilaterally from state s  to any state in the 
conflict. 
3. If ( ) 0iLoF s =  and ( )iR q s= , then the move 

from q  to s  is irreversible. 
4. If, for all states s S∈ , ( ) 0iLoF s = , then 

iDM  has no choices in the conflict. 
5. If ( ) 0iLoF s = , then s  is Nash, SEQ, GMR, 
and SMR stable for iDM . 

3.1.2 Types of Individual Stability 
There are four types of stability considered 

for robustness of equilibria analysis: Nash, SEQ, 
GMR and SMR. It is generally accepted that 
Nash and SEQ stability concepts are stronger 
than GMR and SMR, because of the sociological 
assumption that supports each stability definition. 
In Nash, the DM is assumed to move unilaterally 
when a better outcome is achieved. In SEQ, the 
DM avoids making a UI, fearing a credible threat, 
which will put his or her opponent in a better 
position while harming the focal DM. On the 
other hand, in GMR and SMR stable states, the 
focal DM is assumed to abstain from making a 
unilateral improvement to avoid a less credible 
sanctioning. In GMR and SMR, the threat of 
sanctioning assumes that an opponent DM will 
harm his or her own position in order to put the 
focal DM in a worse state. This assumption is less 
likely than the general assumption that in 
strategic conflicts, DMs seek to improve their 
outcome and not the reverse.  

In order to rank individual stabilities, LoF is 
measured in two separate categories: strong 
stability concepts (Nash and SEQ), and weak 
stability concepts (GMR and SMR). Initially, all 
Nash and SEQ states are assumed to be more 
robust than GMR and SMR states. In addition, 
within each category, the lower the LoF, the 
higher the robustness ranking of individual 
stability with respect to the focal DM. 
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Table 2 Foresight of focal decision maker in different robust stability conditions 

Stability Definitions Foresight Focal DM Opponent DM 

Robust Nash (RNash) One move UI, UD - 

Robust Sequential Stability (RSEQ) Two moves UI, UD UI 

Robust General Metarationality (RGMR) Two moves UI, UD UI, UD 

Robust Symmetric Metarationality (RSMR)  Three moves UI, UD UI, UD 

 

3.1.3 Preferences 
Since LoF assesses the possibility of 

deviation in case of preference change, it is useful 
to consider preferences when ranking 
equilibrium robustness. Assume that a DM i has 
the same LoF at two stable states of the same type. 
To determine which state is more robust in this 
case, it is plausible to compare the preferences of 
both states. The state that is more preferred to the 
focal DM is considered more robust for the 
respective DM.  

3.2 Robust Individual Stabilities 
A robust state is a particular case of stability 

robustness where LoF is equal to the absolute 
minimum for each stability type. An absolutely 
robust equilibrium is the state that all DMs find to 
be robust stable. The robust stable states– Nash, 
SEQ, GMR, and SMR–are defined below. 
Definition 9 ( )RNash

i is S R s∈ ⇔ =∅ . 
Note that state s  is a Robust Nash (RNash 

Stable) iff iDM  has no UM from s . Thus 
RNash Nash
i iS S⊆ , i.e. s  robust Nash is Nash. 

Clearly s  is Robust Nash iff ( ) 0iLoF s = . 
Definition 10 ( ),RSEQ

i is S q R s+∈ ⇔ ∀ ∈
( ) Stable

N i i ix R q x s x S+
−∃ ∈ ∧ ∈ x . 

In SEQ stability, a DM abstains from making 
a UI to avoid a credible sanctioning by the 
opponent. For Robust SEQ (RSEQ), there is at 

most one possible move that is the UI, and this UI 
leads to an end point (stable state), not a 
transitional state. State s  is Robust SEQ iff 

( ) 1iLoF s ≤ . 
Definition 11 ( )RGMR

i is S q R s+∈ ⇔ ∀ ∈  
( .) Stable

N i i ix R q x s x S−∃ ∈ ∧ ∈ x  
Likewise, in Robust GMR (RGMR), the 

number of moves ( ) 1iLoF s ≤  is similar to the 
LoF of RSEQ, except that the threat of 
sanctioning in RGMR is less credible than in 
RSEQ.   
Definition 12 ( ),SMR

i is S q R s+∈ ⇔ ∀ ∈  
( ) ( ) .Stable

N i i i i ix R q x s h R x h s x S+
−∃ ∈ ∧∀ ∈ ∧ ∈ x  x  

The focal DM, who finds a state to be SMR 
stable, considers two moves ahead from the 
present state, so there are at most 2 unilateral 
moves. Thus, a Robust SMR state has a 

( ) 2iLoF s ≤ . 
In the definitions above, it can be observed 

that UDs are taken into consideration when 
performing robust stability analysis (see Table 2). 
The number of moves considered ahead is no 
different from regular stability definitions as seen 
in Table 1. However, there are more types of 
future moves considered. 

3.3 Ranking of Robustness of Equilibria 
In order to relatively rank equilibria 

robustness, two steps of the ranking are 
performed. First, each individual stability that 
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results in equilibrium is ranked from an 
individual DM’s perspective. Then, the overall 
ranking is ordered based on individual ranking of 
stable states. 

3.3.1 Ranking of Individual Stability  
The interest here is only to rank states that 

represent equilibria. So this is kind of a reverse 
process. After individual stability analysis is 
performed, and equilibria points are defined, we 
go back to individual stability states and select 
only those pertaining to equilibria.  

For each DM, rank the individual states based 

on LoF in two groups: one is the group of Nash 
and SEQ stable states, and the other group 
consists of GMR and SMR stable states. For each 
group, the states are ranked from most robust to 
least robust, with the state having the lowest LoF 
regarded as the most robust. Then combine the 
ranking of both groups by assigning all Nash and 
SEQ stable states a higher order of robustness 
than GMR and SMR states. Ties in ranking are 
acceptable at this stage. Assign an order number 
for each individual state from each DM’s 
perspective as seen in the first section of Table 3. 

Table 3 Ranking of equilibria robustness 

Decision 
Makers 

Equilibria States 

1s  2s  …  ns  

1DM  1 1( )Rank s  1 2( )Rank s  1( )Rank …  1( )nRank s  

2DM  2 1( )Rank s  2 2( )Rank s  2 ( )Rank …  2 ( )nRank s  

          
NDM  1( )NRank s  2( )NRank s  ( )NRank …  ( )N nRank s  

Overall 
Ranking 1

1
( ( ))

N

N
i

Rank s
=
∑  2

1
( ( ))

N

N
i

Rank s
=
∑  

1
( ( ))

N

N
i

Rank s…
=
∑  

1
( ( ))

N

N n
i

Rank s
=
∑  

 

3.3.2 Overall Ranking of Equilibria 
Robustness  

For each state, combine the order number 
given from each DM’s perspective (see Table 3). 
The states are ranked based on the summation of 
ranks for each state from most robust to least 
robust. The lower the order of ranking, the higher 
the robustness. For ease of interpretation, 
readjust the order number with the lowest order 
starting at 1. At this stage, in case of a tie in 
ranking, we investigate the preferences according 
to either methodology discussed in Section 3.1.3. 
However, if the equilibrium states have exactly 

the same LoF and type of stability, then ranking 
equilibrium robustness based on LoF is not 
currently possible. This is because the possibility 
of deviation from equilibria will be identical 
among equilibrium states. 

3.4 Insights from Level of Freedom  
The utilization of LoF can provide interesting 

insights that not only rank equilibria according to 
robustness, but also highlight general 
assessments about the robustness of stable states 
for DMs in a conflict. 
Theorem 3.1 Suppose that, for iDM , 

( )i
s S

LoF s n
∈

≤∑ , where n  is the total number of 
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feasible states. Then, there is at least one state 
that is Nash, and RNash for iDM . 

Proof. If the total iLoF  is less than the number 
of feasible states, then one or more states must 
have 0.iLoF =                           ■ 
Theorem 3.2 For a 2-DM conflict { , }i j , 
suppose jDM  has ( ) 0jLoF q = . Then, jDM  
cannot sanction any move by iDM  to state q  
Proof. For a 2-DM conflict { , }i j , suppose 

jDM  has ( ) 0jLoF q = . Then, jDM  cannot 
sanction any move by iDM  to state .q       ■ 
Theorem 3.3 If state s  is RNash for iDM , the 
state s  is also RSEQ for DM i . 

Proof. If state s  is RNash for iDM , then 
Definition 10 for RSEQ is satisfied, because 

( ) .iR s = ∅                              ■ 
Theorem 3.4 If state s  is RSEQ for iDM , the 
state s  is also RGMR for .iDM  

Proof. If state s  is RSEQ for iDM , then 
Definition 11 for RGMR is satisfied, since 

( ) ( ).i iR s R s+ ⊆                          ■ 
Theorem 3.5 If state s  is RNash for iDM , the 
state s  is also RSMR for iDM . 
Proof. If state s  is RNash for iDM , then 
Definition 12 for RSMR is satisfied, because  

( ) .iR s = ∅                              ■
 

 
The above interrelationships among robust 

individual stabilities are similar to the standard 
stability concepts (Fang et al. 1993). Moreover, it 
is also noteworthy that each robust stability 
definition is a subset of the original 
corresponding stability definitions, as depicted in 
Figure 2. For example, if state s  is RNash, then 
state s  is also Nash stable, because 

RNash NashS S⊆ .  

4 Case Study: Elmira Groundwater 
Contamination Conflict  

In 1989, contamination was discovered in the 
drinking water source of Elmira, which is a 
Canadian town located in southwestern Ontario, 
about 100 km east of Toronto. The contamination 
was attributed to chemical discharges released by 
Uniroyal Chemical Ltd. (UR), which ran a 

 
Figure 2 Interrelationships between robust and standard stability concepts 
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chemical plant. The Ontario Ministry of 
Environment (MoE) issued a control order 
demanding UR to remediate the water pollution. 
UR appealed the control order issued by MoE, 
while the local government (LG) insisted that the 
MoE enforce its initial control order without 
modification of the original control order (Hipel 
et al. 1993, Mehta and Oullet 1995). Eventually, 
MoE modified its control order, and UR accepted 
it.  

4.1 Background  
The events that followed the discovery of the 

water contamination at Elmira are modelled 
using the Graph Model for Conflict Resolution. 
This water conflict has been modelled previously 
by Hipel et al. (1993) using GMCR. The same 
conflict is modified by removing LG from the 
model. This seems plausible because the LG did 
not have much say in the conflict other than 
insisting to MoE to keep its original control order. 
In addition, the deal between MoE and UR came 
as a surprise to LG.  

4.2 Modelling of Elmira Groundwater 
Contamination Conflict  

This conflict is modelled at the point where 
UR appealed the control order. The MoE has two 
options: modify the control order to appease UR 
or not. UR, on the other hand, could delay 
responding to the control order, accept it, or 
abandon the plant. A summary of the DMs and 
their options is given in table 4. The feasible 
states are also shown in table 4. The letter “Y” in 
the table indicates “Yes” and “N” indicates “No” 

for each corresponding option. Figure 3 
represents the integrated graph model of the 
conflict, where available moves for each DM are 
shown.  

Table 4 Elmira conflict: decision makers, options 
and states 

DMs and 

Options 

States 

1 2 3 4 5 

MoE      

1.Modify N Y N Y - 

UR      

2.Delay Y Y N N N 

3. Accept N N Y Y N 

4.Abandon N N N N Y 
 
 

 
Figure 3 Graph Model for the Elmira water conflict 

 

4.3 Stability Analysis  
Stability analysis is performed in Table 5, 

where (r) indicates a rational state (Nash), and (u) 
indicates an unstable state. For MoE, all states are 
Nash stable, because MoE has no UIs from any 
state. UR finds all states to be stable except states 
3 and 2. UDs are shown but not used in regular 
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stability analysis; however, they will be used in 
calculating LoF. Overall, the analysis of the 
model results in three equilibria: states 1, 4, and 5. 
Analysis of equilibria robustness is presented in 
the following section. 

Table 5 Elmira conflict: decision makers, moves, and 
states 

DMs and Moves States 

Equilibrium States X E E X E 

MoE  

Preferences 3 4 1 2 5 

Stability r r r r r 

UIs      

UDs 4  2   

UR  

Preferences 1 4 5 3 2 

Stability r r r u u 

UIs    5 4 

     5 

UDs 3 5    

 5     
 

4.4 Analysis of Equilibria of Elmira 
Water Conflict  

For the three equilibrium states 1 4 5{ , , }s s s , 
LoF is calculated for MoE and UR at each state as 
shown in Table 6. On the right column of Table 6, 
states are ranked based on robustness for each 
DM respectively. Then, in Table 7 the overall 
equilibria robustness is represented. It shows that 
state 5s  is the most robust state. Also, it meets 
the requirement for the special case of absolutely 
robust equilibrium. This means that if the conflict 

reaches state 5s , it is not possible to destabilize 
the conflict, even in the case of preference 
changes, because there are no moves available 
for any DM. State 5s  represents the situation 
where UR abandons the plant. According to the 
model this is an irreversible move for UR, and 
MoE has no moves from 5s .  

The least robust state is 1s , which represents 
the situation where MoE refuses to modify its 
control order, and UR delays. This state clearly 
cannot be a permanent resolution.  

Finally, state 4s  represents the situation that 
took place, where MoE modifies the control order, 
and UR accepts it, which is less robust than state 

5s , because if UR changes its preference, it can 
abandon the project. This scenario is possible, for 
example, if market conditions become 
unfavourable for UR causing it to lose profits. In 
such a case, UR may change its preference and 
prefer state 5s  over 4s , which will disturb the 
stability conditions at state 4s .  

In addition, see Figure 4, which shows 
available moves from each equilibrium state. 
Looking at the graph, it can be inferred that the 
results of LoF are consistent with possible 
escapes as shown in the graph. For state 1 , there 
seems to be many possible escapes compared to 
states 4  and 5 . It can be deduced from the 
graph that state 5  is the most robust equilibrium 
because there is no way any DM can move away 
from this equilibrium.  State 1 , on the other 
hand, has the highest possibility of escape among 
equilibria states. 
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Table 6 Levels of freedom and individual stability ranking 
 

DMs 
Level of Freedom 

Robustness Ranking of Individual Stability 
1s  4s  5s  

MoE 1 0 0 4 5 1{ , } { }s s s>  

UR 3 1 0 5 4 1{ } { } { }s s s> >  

 
 
 
 
 
 
 
 
 

Figure 4 Possible moves from equilibria states 
 

Table 7 Overall ranking of equilibria robustness for 
the Elmira conflict 

DMs 
Ranking of Equilibria 

1s  4s  5s  

MoE 2 1 1 
UR 3 2 1 

Overall Ranking 5 3 2 
Adjusted Ranking 3 2 1 

State Ranking 5 4 1{ } { } { }s s s> >  
 

5 Conclusions  
In this paper, a formal analysis of robustness 

of equilibria is presented to provide insights on 
resiliency of equilibria to change in preference. 
The result can be insightful as seen in the case 
study of the Elmira groundwater contamination 
conflict. This approach provides an interesting 
view on the possibility of deviation from 
equilibrium. The essence of the new approach is 
the concept of LoF. GMCR defines stability 

based on moves and preferences, and a DM is 
confined to available moves, but his or her 
preferences can change. Perception of goals over 
time can cause preferences to change. Also, 
external factors such as increased demand or 
natural phenomena may provide opportunities to 
disturb equilibria. Ranking of equilibrium 
robustness is helpful to the analyst who is 
interested in ascertaining which equilibria are 
more sustainable than others. This could be 
especially useful for third party interveners 
attempting to resolve a long-term conflict. This 
research is the first to introduce a systematic 
approach to robustness analysis within the graph 
model for conflict resolution.  
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