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Abstract 
Dual hesitant fuzzy set (DHFS) is a new generalization of fuzzy set (FS) consisting of two parts 

(i.e., the membership hesitancy function and the non-membership hesitancy function), which confronts 
several different possible values indicating the epistemic degrees whether certainty or uncertainty. It 
encompasses fuzzy set (FS), intuitionistic fuzzy set (IFS), and hesitant fuzzy set (HFS) so that it can 
handle uncertain information more flexibly in the process of decision making. In this paper, we 
propose some new operations on dual hesitant fuzzy sets based on Einstein t-conorm and t-norm, study 
their properties and relationships and then give some dual hesitant fuzzy aggregation operators, which 
can be considered as the generalizations of some existing ones under fuzzy, intuitionistic fuzzy and 
hesitant fuzzy environments. Finally, a decision making algorithm under dual hesitant fuzzy 
environment is given based on the proposed aggregation operators and a numerical example is used to 
demonstrate the effectiveness of the method. 
Keywords: Dual hesitant fuzzy set, Einstein t-conorm and t-norm, operation, aggregation operator 
 

1. Introduction 
Fuzzy set (FS) (Zadeh 1965) is a useful tool 

for dealing with the information being imprecise 
or vague (Zadeh 1975, 1978), allowing the 
degree of an element to a set denoted by a fuzzy 
number. Yet, in actual situations, someone may 
have a hesitation about the membership degree of 
x  in A . Aiming at this problem, Atanassov 
proposed the concept of intuitionistic fuzzy set 
(IFS) (Atanassov 1986), assigning a membership 
degree and a non-membership degree of each 
element to a given set. IFS has been shown to be 

so flexible in dealing with fuzzy data that it has 
been used in many fields, such as medical 
diagnosis (De et al. 2001), pattern recognition 
(Hung and Yang 2004), decision making (Tan 
and Chen 2010, Wang and Liu 2011, Wei 2010, 
Xu 2007, 2011, Xu and Yager 2006, Zhao et al. 
2010, Xu et al. 2014, Zeng et al. 2014) and so on. 
Atanassov and Gargov (1989) further generalized 
IFS into interval-valued intuitionistic fuzzy set 
(IVIFS). Chen et al. (2011), Ye (2010, 2011), and 
Yu et al. (2011) proposed some decision making 
methods for interval-valued intuitionistic fuzzy 

 Systems Engineering Society of China and Springer-Verlag Berlin Heidelberg 2017 

mailto:xuzeshui@263.net


Zhao et al.: Dual Hesitant Fuzzy Information Aggregation with Einstein T-conorm and T-norm 
J Syst Sci Syst Eng  241 

data. Later, Torra and Narukawa (2009, 2010) 
extended fuzzy set to another kind of set, called 
hesitant fuzzy set (HFS), allowing the 
membership degree to have a set of possible 
values. They also discussed the relationships 
between HFSs and IFSs, showing that the 
envelope of a HFS is an IFS. Xia and Xu (2011), 
Xu and Xia (2011a, 2011b), and Zhu et al. (2012) 
investigated the aggregation techniques, distance, 
correlation and similarity measures for HFSs, and 
gave their applications to decision making. Gu et 
al. (2011) aggregated the hesitant fuzzy 
information in the evaluation model for risk 
investment with the hesitant fuzzy weighted 
averaging operator. Wei (2012) considered the 
multi-attribute decision making problems with 
hesitant fuzzy data in which the attributes are in 
different priority levels and developed some 
prioritized aggregation operators to deal with 
hesitant fuzzy information. Liao et al. (2015) 
introduced the correlation measures and the 
correlation coefficients of the hesitant fuzzy 
linguistic term set (HFLTS), discussed their 
properties and then used them in the qualitative 
decision making. Recently, Zhu et al. (2012) 
generalized the HFS and proposed a new kind of 
set, called dual hesitant fuzzy set (DHFS), which 
encompasses fuzzy set, IFS, HFS and fuzzy 
multiset (FMS) (Miyamoto 2000, 2001, 2005) as 
special cases. DHFS consists of two parts, i.e., 
the membership hesitancy function and the 
non-membership hesitancy function, which 
confront several different possible values 
indicating the cognitive degrees whether 
certainty or uncertainty. As we all know, when 
the decision makers provide their judgments in 
decision making, the more the information they 
take into account, the more the values we obtain 

from the decision makers. Because DHFS can 
reflect the original information given by the 
decision makers as much as possible, and thus, 
compared to the existing sets mentioned above, 
DHFS can be regarded as a more comprehensive 
set, supporting a more flexible approach. 
Furthermore, Zhu et al. (2012) studied some 
basic operations of DHFSs, proposed an 
extension principle of DHFSs, and then they gave 
an example to illustrate the application of DHFSs 
in group forecasting. Up to now, how to 
aggregate dual hesitancy fuzzy information is 
still a new research direction, which is also the 
focus of this paper. 

Another important problem in fuzzy set 
theory is that of triangular norms and conorms, 
that is, t-norms and t-conorms which are very 
useful to deal with “and” and “or” operations in 
decision making problems (Wang and Liu 2011, 
Xia et al. 2012, Zhao and Wei 2013). Wang and 
Liu (2011) introduced some operations on IFSs, 
such as Einstein sum, Einstein product and 
Einstein exponentiation, and developed some 
new geometric aggregation operators for IFSs. 
Xia et al. (2012) gave a further study about the 
application of Archimedean t-conorm and t-norm 
under intuitionistic fuzzy environment, and gave 
some new operational laws for intuitionistic 
fuzzy numbers, studied their properties and 
correlations, based on which, some specific 
intuitionistic fuzzy aggregation operators have 
been developed to solve the decision making 
problems. Based on the Einstein sum, Einstein 
product and Einstein exponentiation (Wang and 
Liu 2011), Zhao and Wei (2013) developed some 
new Einstein hybrid aggregation operators, such 
as the intuitionistic fuzzy Einstein hybrid 
averaging (IFEHA) operator and the intuitionistic 
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fuzzy Einstein hybrid geometric (IFEHG) 
operator, and applied them to decision making. 
We can find that all the aggregation operators 
above are based on different t-conorms and 
t-norms, which can provide more choices for the 
decision makers in dealing with intuitionistic 
fuzzy data. Yet, there’s almost no research on 
such issues under dual hesitant fuzzy 
environment. In this paper, we shall focus on this 
issue which needs to be explored in depth. In 
order to do that, we organize the remainder of the 
paper as follows. In Section 2, we review the 
concepts of DHFS and study the dual hesitant 
fuzzy operations based on the Einstein t-conorm 
and t-norm. In Section 3, we propose some new 
operators for aggregating dual hesitant fuzzy 
information. Section 4 gives an application of the 
new operators to multi-attribute decision making. 
Section 5 concludes the paper. 

2. Dual Hesitant Fuzzy Operations 
Based on Einstein T-conorm and 
T-norm 

2.1 The Notions of FS, HFS and DHFS  
Now we first introduce the concept of fuzzy 

set (Zadeh 1965). The characteristic of fuzzy set 
is that it assigns to each element a membership 
degree which is in the interval [0,1] , that is to 
say, it accepts partial memberships of an element 
to a set. So it is more useful in dealing with 
fuzzy and uncertain phenomenon than the 
classical set whose membership degree of an 
element to a set is either 1 or 0. Fuzzy set theory 
is so useful that it has been widely used in 
various fields, such as control, decision making, 
management, and so on. 
Definition 1 (Zadeh 1965). Let X  be a fixed 

set, a fuzzy set A  on X  is represented by a 
function : [0,1]A Xµ → , with the condition
0 ( ) 1,A x x Xµ≤ ≤ ∀ ∈ .  

However, when giving the membership 
degree of an element, we usually have several 
possible values. For such cases, Torra (2010) 
proposed a generation of fuzzy set: 
Definition 2 (Torra 2010). Let X  be a fixed 
set, a hesitant fuzzy set (HFS) on X  is in terms 
of a function that when applied to X  returns a 
subset of [0,1] .  

Xia and Xu (2011) expressed the HFS by a 
mathematical symbol: 

      
{ , ( ) | },EE x h x x X= < > ∈  

where ( )Eh x
 

is a set of some values in [0,1] , 
which denote the possible membership degrees 
of the element x X∈  to the set E  and called  

( )Eh h x= a hesitant fuzzy element (HFE). 
As we know, the membership grips with 

epistemic certainty while the non-membership 
grips with epistemic uncertainty, and thus can 
reflect the original information given by the 
decision makers as much as possible, similar to 
HFSs, the uncertainty on the possible values 
should also be considered. Based on this idea, 
Zhu et al. (2012) defined the notion of dual 
hesitant fuzzy set (DHFS) in terms of two 
functions that return two sets of membership 
values and non-membership values respectively 
for each element in the domain as follows: 
Definition 3 (Zhu et al. 2012). Let X  be a 
fixed set, then a DHFS D  on X  is described 
as: 

 { , ( ), ( ) | },D x h x g x x X= < > ∈       (1) 
in which ( )h x  and ( )g x  are two sets of some 
values in [0,1] , denoting the possible 
membership degrees and non-membership 
degrees of the element x X∈  to the set D  
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respectively, with the conditions:  
0 , 1, 0 1,γ η γ η+ +≤ ≤ ≤ + ≤       (2) 

where ( ), ( )h x g xgh ∈ ∈ , ( )h xγ + +∈ =  

( ) max{ }h xγ γ∈ , and ( )g xη+ +∈ =  

( ) max{ }g xη η∈   for all x X∈ .   The pair 

( ) ( ( ), ( ))d x h x g x=  is called a dual hesitant 
fuzzy element (DHFE) denoted by ( , )d h g=
for convenience.  

Zhu et al. (2012) concluded that the DHFS 
encompasses several fuzzy sets including the 
fuzzy set (Zadeh 1965), the IFS (Atanassov 
1986) and the HFS (Torra 2010). Furthermore, 
Zhu et al. (2012) gave some basic operations for 
DHFEs (See Appendix 1) which are based on 
the Algebraic t-conorm and t-norm. In fact, there 
are various types of t-conorm and t-norm. If we 
replace the Algebraic t-conorm and t-norm in 
Zhu et al. (2012)’s operations for DHFEs with 
other forms of t-conorm and t-norm, we shall get 
more operational methods for DHFEs and then 
give different aggregation operators, and thus 
can provide more choices for decision makers. 
Therefore we shall focus on discussing these 
problems in the next sections. 

2.2 Operations of DHFEs Based on 
Einstein T-conorm and T-norm 
In what follows, we review the Einstein 

t-conorm and t-norm respectively (Beliakov et al. 
2007): 

( , ) , ( , ) .
1 1 (1 )(1 )

E Ex y xyS x y T x y
xy x y
+

= =
+ + − −

(3) 
Based on the above Einstein t-conorm and 

t-norm, we can define the Einstein sum and the 
Einstein product of DHFEs as below: 
Definition 4 For any two DHFEs 1 1 1( , )d h g=  
and 2 2 2( , )d h g= , we have 

(1)
1 1 1 1 2 2 2 21 2 , , ,h g h gd d ghgh   ∈ ∈ ∈ ∈⊕ =   

         1 2 1 2

1 2 1 2

, ,
1 1 (1 )(1 )
γ γ η η

γ γ η η

    +        + + − −       
 

(2)
1 1 1 1 2 2 2 21 2 , , ,h g h gd d ghgh   ∈ ∈ ∈ ∈⊗ =   

         1 2 1 2

1 2 1 2

, ,
1 (1 )(1 ) 1

γ γ η η

γ γ η η

    +        + − − +       
 

and all the results of the above two operations 
are also DHFEs. 

To get the Einstein scalar multiplication 
and the Einstein power for DHFEs, we first 
introduce the following two Theorems: 
Theorem 1 If ( , )d h g=  is a DHFE, then 

,
(1 ) (1 ) 2. , ,
(1 ) (1 ) (2 )

n n n

h g n n n nnd gh
ggh 
gghh   ∈ ∈

    + − −   =      + + − − +       


(4) 

where 
n

nd d d d= ⊕ ⊕ ⊕


 , the operation ⊕  
is as defined in Definition 4. Moreover, nd  is 
a DHFE even if n  is any positive real number. 

Furthermore, nd  is a DHFE even if n  is 
any positive real number. Similarly, we can 
prove the following result: 
Theorem 2 If d  is a DHFE, then 

,
2 (1 ) (1 ), ,

(2 ) (1 ) (1 )

n n n
n

h g n n n nd gh
ghh 
gghh   ∈ ∈

    + − −   =      − + + + −       


       
                              

(5) 

where 
n

nd d d d= ⊗ ⊗ ⊗


 , the operation ⊗  
is defined in Definition 4, and nd  defined 
above is a DHFE even if n  is any positive real 
number. 

From Theorems 1 and 2, we can define the 
Einstein scalar multiplication and the Einstein 
power of DHFEs as follows: 
Definition 5 Let ( , )d h g=  be a DHFE, 0λ > , 
then 
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(1)  

,
(1 ) (1 ) 2, ,
(1 ) (1 ) (2 )h g

d
λ λ λ

gh  λ λ λ λ

λ

ggh 
gghh   ∈ ∈

    + − −   =      + + − − +       


          

(2)
 

,
2 (1 ) (1 ), .

(2 ) (1 ) (1 )h gd
λ λ λ

λ
gh  λ λ λ λ

ghh 
gghh   ∈ ∈

    + − −   =      − + + + −       


 

    Moreover, some relations of the Einstein 
operations in Definitions 4 and 5 can be 
discussed as follows: 
Theorem 3 Let d , 1d  and 2d  be any three 
DHFEs, 0λ > , then the relations of the 
operations in Definitions 2 and 3 are given as: 

(1) 1 2 2 1d d d d⊕ = ⊕ , 
(2) 1 2 2 1d d d d⊗ = ⊗ , 
(3) ( )1 2 1 2d d d dλ λ λ⊕ = ⊕ , 
(4) ( )1 2 1 2d d d dλ λ λ⊗ = ⊗ , 
(5) ( )1 2 1 2d d dλ λ λ λ⊕ = ⊕ , 
(6) 1 2 1 2d d dλ λ λ λ+⊗ = . 

In the following, we shall propose some 
novel aggregation operators for DHFSs on the 
basis of the above new operations. 

3. Dual Hesitant Fuzzy Operators 
Based on Einstein T-conorm and 
T-norm 

The operational laws defined in Section 2.2 
will be used to aggregate the dual hesitant fuzzy 
information, which is the core of this section. In 
the following, we present the Einstein dual 
hesitant fuzzy weighted averaging (EDHFWA) 
operator based on the ordinary weighted 
arithmetic mean. 
Definition 6 Let ( 1, 2, , )id i n=   be a 
collection of DHFEs, then we define the 
Einstein dual hesitant fuzzy weighted averaging 
(EDHFWA) operator as follows:  

    EDHFWA ( )1 2 1
, , ,

n

n i ii
d d d w d

=
= ⊕    (6) 

where 1 2( , , , )T
nw w w w=    is the weight 

vector of ( 1, 2, , )id i n=  , iw  indicates the 
importance degree of id , satisfying 0iw ≥  
( 1, 2, ,i n=  ) and 1 1n

ii w= =∑ , the operation 
⊕ is the Einstein sum in Definition 4.  
Note 1 If the weight vector 

1 2
1 1 1( , , , ) ( , , , )T

nw w w w
n n n

T= = 

, then the 

EDHFWA operator reduces to the Einstein dual 
hesitant fuzzy arithmetic averaging (EDHFA) 
operator, which is defined as: 

     EDHFWA ( )1 2 1

1, , .
n

n ii
d d d d

n =
= ⊕    (7) 

   The following theorem tells us how to 
obtain the aggregated results by the EDHFWA 
operator specifically. 
Theorem 4 Let ( 1, 2, , )id i n=   be a 
collection of DHFEs, and 1 2( , , , )T

nw w w w=   
be the weight vector of ( 1, 2, , )id i n=  , where 

iw  indicates the importance degree of id , 
satisfying 0iw ≥  ( 1, 2, ,i n=  ) and 

1 1n
ii w= =∑ , then the aggregated value by using 

the EDHFWA operator is also a DHFE, and 

( )1 2,E , ,DHFWA nd d d

 

1

n

i ii
w d

=
= ⊕

  

1 1 2 2
1 1 2 2

1 1
, , ,
, , ,

1 1

1

1 1

(1 ) (1 )
,

(1 ) (1 )

2
.

(2 )

i i

n n
n n i i

i

ii

n n
w w

i i
i i

h h h n n
g g g w w

i i
i i

n
w
i

i
n n

ww
i i

i i

ggg 
hhh 

gg

gg

h

hh

= =
∈ ∈ ∈
∈ ∈ ∈

= =

=

= =

  
+ − − 

 =  
  + + −  

 
 

 
 
 − +   

∏ ∏

∏ ∏

∏

∏ ∏







 

(8) 
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Because the DHFS encompasses the fuzzy 
set, IFS and HFS, the following special 
operators can be obtained subsequently: 
Note 2 Let ( 1, 2, , )id i n=   be a collection of 
DHFEs, where ( , ), 1, 2, ,i i id h g i n= =  , then 

(1) If ih  and ig  have only one value iγ  
and 

i
η  respectively, and 1i iγ η+ = , or ih  

owns one value, and ig = ∅ , then the 
EDHFWA operator reduces to:  

1 2EFWA( , , , )nd d d

 

1

n

i ii
w d

=
= ⊕  

1 1

1 1

(1 ) (1 )
,

(1 ) (1 )

i i

i i

n n
w w

i i
i i
n n

w w
i i

i i

γ γ

γ γ

= =

= =

+ − −
=

+ + −

∏ ∏

∏ ∏
                                

(9) 
which is called the Einstein fuzzy weighted 
averaging (EFWA) operator. 

(2) If ih  and ig  contain only one value iγ   

and 
i

η respectively, and 1i iγ η+ < , then the 

EDHFWA operator becomes: 

1 2EIFWA( , , , )nd d d

 

1

n

i ii
w d

=
= ⊕

  

1 1 1

1 1 1 1

(1 ) (1 ) 2
, ,

(1 ) (1 ) (2 ))

ii i

ii i i

n n n
ww w

i i i
i i i
n n n n

ww w w
i i i i

i i i i

γ γ η

γ γ η η

= = =

= = = =

 
+ − − 

 =  
+ + − − +  

 

∏ ∏ ∏

∏ ∏ ∏ ∏
                                   (10) 

which is called the Einstein intuitionistic fuzzy 
weighted averaging (EIFWA) operator (Xia et al. 
2012). 

(3) If h ≠ ∅  but g = ∅ , then the EDHFWA 
operator reduces to: 
 
 

1 2EHFWA( , , , )nd d d

 

1

n

i ii
w d

=
= ⊕

  

1 1 2 2

1 1
, , ,

1 1

(1 ) (1 )
,

(1 ) (1 )

i i

n n
i i

n n
w w

i i
i i

h h h n n
w w

i i
i i

γ γ γ

γ γ

γ γ

= =
∈ ∈ ∈

= =

 
+ − − 

 =  
 + + −  

∏ ∏

∏ ∏




                                    (11) 
which is called the Einstein Hesitant fuzzy 
weighted averaging (EHFWA) operator.  

In the following, we shall discuss the 
properties of the EDHFWA operator: 
Property 1 Let ( , ) ( 1, 2, , )i i id h g i n= =   be a 
collection of DHFEs, where 

1 2( , , , )T
nw w w w=   is the weight vector of 

( 1, 2, , )id i n=  , and iw  indicates the 
importance degree of id , satisfying 0iw ≥  
( 1, 2, ,i n=  ) and 1 1n

ii w= =∑ , then 
(1) (Idempotency): If ( 1, 2, , )id i n=   are 

equal, i.e. , ( 1, 2, , )id d i n= =  , then  

      EDHFWA ( )1 2, , , .nd d d d=     (12) 
(2) (Boundedness): 

1 2EDHFWA( , , , ) ,nd d d d d− +≤ ≤   (13) 
where min max max min( , ), ( , )d dγ η γ η− += = , and 

min min{ }
i i

ihγ
γ γ

∈
= , max max{ }

i i
ihγ

γ γ
∈

= , min min{ }
i i

igη
η η

∈
= , 

and max max{ }
i i

igη
η η

∈
= . 

(3) (Monotonicity): Let 
( , ) ( 1, 2, , )

i i i
d h g i n∗ ∗ ∗= =   be another collection of 
DHFEs, and  

max{ } min{ }, min{ } max{ },

# # , # # , 1,2, , ,
i ii i i i i i

i i i igh h g

i i i ih h g g i n

hg g h
gghh  

∗ ∗ ∗ ∗

∗ ∗

∈∈ ∈ ∈

∗ ∗

≤ ≥

≥ ≤ = 

 

then 

1 21 2EDHFWA( , , , ) EDHFWA( , , , ).
nnd d d d d d∗ ∗ ∗≤                                     

(14) 
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Motivated by the idea of the ordinary 
geometric mean, the following definition can be 
given: 
Definition 7 Let ( 1, 2, , )id i n=   be a 
collection of DHFEs, we define the Einstein 
dual hesitant fuzzy weighted geometric mean 
(EDHFWG) operator as:  

    EDHFWG 1 2 1
( , , , ) ,i

n
w

n ii
d d d d

=
= ⊗    (15) 

where 1 2( , , , )T
nw w w w=   is the weight 

vector of ( 1, 2, , )id i n=  , iw  indicates the 
importance degree of id , satisfying 0iw ≥  
( 1, 2, ,i n=  ) and 1 1n

ii w= =∑ , the operation 
⊗ in Equation (15) is the Einstein product in 
Definition 4. 
     
Note 3 If the weight vector 

1 2
1 1 1( , , , ) ( , , , )T

nw w w w
n n n

T= = 

, then the 

EDHFWG operator reduces to the Einstein dual 
hesitant fuzzy geometric averaging (EDHFG) 
operator, which is defined as: 

1

1 2 1
( , ,ED ,HFG ) ( ) .

n
n

n ii
d d d d

=
= ⊗  

Based on the operations of the DHFEs 
given in Definitions 4 and 5, we can derive the 
following theorem which provides a specific 
calculating equation to aggregate the dual 
hesitant fuzzy information with the EDHFWG 
operator:      
Theorem 5 Let ( 1, 2, , )id i n=   be a 
collection of DHFEs, and 1 2( , , , )T

nw w w w=    
be the weight vector of ( 1, 2, , )id i n=  , where 

iw  indicates the importance degree of id , 
satisfying 0iw ≥ ( 1,2, ,i n=  ) and 

1 1n
ii w= =∑ , then the aggregated value by using 

the EDHFWG operator is also a DHFE, and

1 2EDHFWG( , , , )nd d d  

1
i

n w
ii

d
=

= ⊗
  

1 1 2 2
1 1 2 2

1
, , ,
, , ,

1 1

1 1

1 1

2
,

(2 )

(1 ) (1 )
.

(1 ) (1 )

i

n n
n n ii

i i

i i

n
w
i

i
h h h n n
g g g ww

i i
i i

n n
w w

i i
i i
n n

w w
i i

i i

ggg 
hhh 

g

gg

hh

hh

=
∈ ∈ ∈
∈ ∈ ∈

= =

= =

= =

  
  
 =  
  − +  

 
+ − −  

 
 
 + + −   

∏

∏ ∏

∏ ∏

∏ ∏







 

         (16) 

Also, in view of the relations among the 
DHFS, FS, IFS and HFS, some special operators 
can be found as follows: 
Note 4. Suppose that ( 1, 2, , )id i n=   are a 
collection of DHFEs, in which ( , )i i id h g= , 

1, 2, ,i n=  , then 
(1) If ih  and ig  have only one value iγ   

and 
i

η  respectively, and 1i iγ η+ = , or ih  

contains one element, and ig = ∅ , then the 
EDHFWG operator reduces to: 

1 2 1
EFWG( , , , ) i

n w
n ii

d d d d
=

= ⊗    

1

1 1

2
,

(2 )

i

ii

n
w
i

i
n n

ww
i i

i i

γ

γ γ

=

= =

=
− +

∏

∏ ∏
 

                                  (17) 

which is called the Einstein fuzzy weighted 
geometric (EFWG) operator (Wang and Liu 
2011).  

(2) If ih  and ig  own only one value iγ   
and 

i
η  respectively, and 1i iγ η+ < , then the 

EDHFWG operator reduces to: 
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1 2EIFWG( , , , )nd d d

 

1
i

n w
ii

d
=

= ⊗
  

1 1 1

1 1 1 1

2 (1 ) (1 )
, ,

(2 ) (1 ) (1 )

i i i

ii i i

n n n
w w w
i i i

i i i
n n n n

ww w w
i i i i

i i i i

γ η η

γ γ η η

= = =

= = = =

 
+ − − 

 =  
− + + + −  

 

∏ ∏ ∏

∏ ∏ ∏ ∏
                                   

(18) 
which is called the Einstein intuitionistic fuzzy 
weighted geometric (EIFWG) operator (Wang 
and Liu 2011, Xia et al. 2012). 

(3) If h ≠ ∅  but g = ∅ , then the 
EDHFWG operator becomes 

1 2EHFWG( , , , )nd d d

 
1

i
n w

ii
d

=
= ⊗

 

 

1 1 2 2

1
, , ,

1 1

2
,

(2 )

i

n n
ii

n
w
i

i
h h h n n

ww
i i

i i

γ γ γ

γ

γ γ

=
∈ ∈ ∈

= =

 
 
 =  
 − +  

∏

∏ ∏


   

(19) 
which is called the Einstein Hesitant fuzzy 
weighted geometric (EHFWG) operator.  

Similarly, we can prove that the EDHFWG 
operator also has the following three properties: 
Property 2 Let ( , ) ( 1, 2, , )i i id h g i n= =   be a 
collection of DHFEs, where 

1 2( , , , )T
nw w w w=   is the weight vector of 

( 1, 2, , )id i n=  , and iw  indicates the 
importance degree of id , with 0iw ≥  
( 1, 2, , )i n=   and 1 1n

ii w= =∑ , then 
(1) (Idempotency): If ( 1, 2, , )id i n=   are 

equal, i.e. ( 1, 2, , )id d i n= =  , then  
EDHFWG ( )1 2, , , .nd d d d=  

(2) (Boundedness):  

1 2EDHFWG( , , , ) .nd d d d d− +≤ ≤  
where min max max min( , ), ( , )d dγ η γ η− += = , and 

min min{ }
i i

ihγ
γ γ

∈
= , max max{ }

i i
ihγ

γ γ
∈

= , min min{ }
i i

igη
η η

∈
= , 

and max max{ }
i i

igη
η η

∈
= . 

(3) (Monotonicity): Let ( , ) ( 1, 2, , )
i i i

d h g i n∗ ∗ ∗= =   
be a collection of DHFEs, and  

max{ } min{ }, min{ } max{ },

# # , # # , 1,2, , ,
i ii i i i i i

i i i igh h g

i i i ih h g g i n

hg g h
gghh  

∗ ∗ ∗ ∗

∗ ∗

∈∈ ∈ ∈

∗ ∗

≤ ≥

≥ ≤ = 

 

then 

1 21 2EDHFWG( , , , ) EDHFWG( , , , ).
nnd d d d d d∗ ∗ ∗≤ 

 
     

The EDHFWA and EDHFWG operators 
have the same problem that they only consider 
the importance degrees of the given attribution 
values but ignore the ordered positions in the 
aggregation. To reflect the ordered positions, 
based on the idea of the OWA operator (Yager 
1988, 2004) and the OWG operator (Xu and Da 
2002), we now introduce the other two Einstein 
dual hesitant fuzzy aggregating operators: 
Definition 8 Let ( 1, 2, , )id i n=   be a 
collection of DHFEs, then we define the 
Einstein dual hesitant fuzzy ordered weighted 
averaging (EDHFOWA) operator as: 

EDHFOWA 1 2 ( )1
( , , , ) ,

n

n i ii
d d d w dσ

=
= ⊕   (20) 

where ( )idσ  is the ith largest of 
( 1, 2, , )id i n=  , 1 2( , , , )T

nw w w w=   is the 
associated vector of the EDHFOWA operator, 

iw  indicates the importance degree of the 
position of ( )idσ , such that 0iw ≥  
( 1, 2, , )i n=   and 1 1n

ii w= =∑ , the operation 
⊕  in Equation (20) is the Einstein sum in 
Definition 4. 

To know the detailed computing method of 
the EDHFOWA operator, we give the following 
theorem: 

Theorem 6 Let ( , ) ( 1, 2, , )i i id h g i n= =   
be a collection of DHFEs, ( )idσ  be the ith  
largest of ( 1, 2, , )id i n=  , and 
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1 2( , , , )T
nw w w w=   be the weight vector of 

the EDHFOWA operator, where iw  indicates 
the importance degree of the position of ( )idσ , 
with 0iw ≥ ( 1, 2, , )i n=   and 1 1n

ii w= =∑ , 
then the aggregated value by using the 
EDHFOWA operator is also a DHFE, and 

1 2

( )1

EDHFOWA( , , , )n
n

i ii

d d d

w dσ
=

= ⊕


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n
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n n
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σ
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γ γ

η

η η
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= =

=

= =

  
+ − − 

 
 
  + + −  

 
 

 
 
 − +   

∏ ∏

∏ ∏

∏

∏ ∏

 

 (21) 
Below let’s discuss some special cases of 

the EDHFOWA operator: 
Note 5 Assume that ( 1, 2, , )id i n=   are a set 
of DHFEs, where ( )( , ) 1, 2, ,i i id h g i n= =  , 
then 

(1)If ih  and ig  own only one value iγ   
and i

η respectively, and 1i iγ η+ = , or ih  
contains one value, and ig = ∅ , then the 
EDHFOWA operator reduces to:  

1 2

( )1

( ) ( )
1 1

( ) ( )
1 1

EFOWA( , , , )

(1 ) (1 )
,

(1 ) (1 )

i i

i i

n
n
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n n
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i i

i i
n n

w w
i i

i i

d d d

w dσ

σ σ

σ σ

γ γ

γ γ

=

= =

= =

= ⊕

+ − −
=

+ + −

∏ ∏

∏ ∏



 

(22) 
which is called the Einstein fuzzy order 

weighted averaging (EFOWA) operator. 

 

 (2) If ih  and ig  own only one value iγ   
and 

i
η respectively, and 1i iγ η+ < , then the 

EDHFOWA operator changes 

1 2
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n

i ii

d d d
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=

= ⊕


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(23) 
which is called the Einstein intuitionistic fuzzy 
order weighted averaging (EIFOWA) operator.  

(3)If h ≠ ∅  but g = ∅ , then the 
EDHFOWA operator turns into 

1 2

( )1

EHFOWA( , , , )n
n

i ii

d d d

w dσ
=

= ⊕



 
(1) (1) (2) (2) ( ) ( ), , , n nh h hσ σ σ σ σ σγ γ γ∈ ∈ ∈=


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 + + −  

∏ ∏

∏ ∏
 

 

 (24) 
which is called the Einstein Hesitant fuzzy 
Order weighted averaging (EHFOWA) operator.  

Another ordered dual hesitant fuzzy 
operator is shown as follows: 
Definition 9 Let ( 1, 2, , )id i n=   be a 
collection of DHFEs, then we define the 
Einstein dual hesitant fuzzy ordered weighted 
geometric mean (EDHFOWG) operator as:  
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EDHFOWG 1 2 ( )1
( , , , ) ,i

n
w

n ii
d d d dσ

=
= ⊗     (25) 

where ( )idσ  is the ith  largest of 
( 1, 2, , )id i n=  , 1 2( , , , )T

nw w w w=   is the 
associated vector of the EDHFOWG operator, 

iw  indicates the importance degree of the 
position of ( )idσ , such that 0iw ≥  
( 1, 2, , )i n=   and 1 1n

ii w= =∑ , the operation 
⊗  in Equation (25) is the Einstein product in 
Definition 4. 

To know how to aggregate the DHFEs by 
the EDHFOWG operator in detail, we introduce 
the following theorem: 
Theorem 7 Let ( )( , ) 1, 2, ,i i id h g i n= =   be a 
collection of DHFEs, and ( )idσ  be the i th 
largest of ( 1, 2, , )id i n=  , 1 2( , , , )T

nw w w w=   
be the weight vector of the EDHFOWG operator, 

iw  indicates the importance degree of the 
position of ( )idσ , satisfying 

0 ( 1,2, , )iw i n≥ =  and 1 1n
ii w= =∑ , then the 

aggregated value by using the EDHFOWG 
operator is also a DHFE, and  
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(26) 
Similarly, some special cases of the 

EDHFOWG operator are discussed as follows: 

Note 6 Let ( 1, 2, , )id i n=   be a set of DHFEs, 

where ( , ) ( 1, 2, , )i i id h g i n= =  , then 
(1) If ih  and ig  contain only one value iη  

and iγ  respectively, and 1i iγ η+ = , or ih  

owns one element, and ig = ∅ , then the 

EDHFOWG operator reduces to:  
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(27) 
which is called the Einstein fuzzy ordered 
weighted geometric (EFOWG) operator (Wang 
and Liu 2011).     

(2) If ih  and ig  have only one value iη  
and iγ  respectively, and 1i iγ η+ < , then the 
EDHFOWG operator becomes 
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(28) 
which is called the Einstein intuitionistic fuzzy 
ordered weighted geometric (EIFOWG) operator 
(Wang and Liu 2011). 
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(3) If h ≠ ∅  but g = ∅ , then the 
EDHFOWG operator turns into: 
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which is called the Einstein hesitant fuzzy 
ordered weighted geometric (EHFOWG) 
operator. 

The EDHFOWA and EDHFOWG operators 
also have the properties of idempotency, 
boundedness and monotonicity. Moreover, they 
satisfy the following property: 
Property 3 Let 1 2, , , nd d d′ ′ ′

  be any 
permutation of 1 2, , , nd d d , then 

1 2 1 2EDHFOWA( , , , ) EDHFOWA( , , , ),n nd d d d d d′ ′ ′= 

1 2 1 2EDHFOWG( , , , ) EDHFOWG( , , , )n nd d d d d d′ ′ ′= 

for every weight vector w . 

4. An Application of the Operators to 
Multi-Attribute Decision Making 

As a preparation for this section, we first 
introduce the comparison laws for the HFEs 
(Xia and Xu 2011) and DHFEs (Zhu et al. 
2012): 
Definition 10 (Xia and Xu 2011). For a HFE h , 

1( ) hs h
h γ γ

∈
= ∑

#
 is called the score function 

of h , where #h  is the number of the elements 
in h . For two HFEs 1h  and 2h , if 

1 2( ) ( )s h s h> , then 1 2h h> ; if 1 2( ) ( )s h s h= , 

then 1 2h h= . 
Definition 11 (Zhu et al. 2012). Let 

{ , },d dd h g= { , }
i ii d dd h g= ( 1, 2)i =  be any 

three DHFEs, 1 1( )
# #h gs d

h ggh gh ∈ ∈= ∑ − ∑  

is called the score function of d , and 
1 1( )

# #h gp d
h ggh gh ∈ ∈= ∑ + ∑  the accuracy 

function of d , where #h  and # g  are the 

numbers of the elements in h  and g  
respectively, then  
if 1 2( ) ( )s d s d> , then 1d  is superior to 2d , 
denoted by 1 2d d> ; 
if 1 2( ) ( )s d s d= , then 

(1) if 1 2( ) ( )p d p d= , then 1d  is equivalent 
to 2d , denoted by 1 2d d= ; 

(2) If 1 2( ) ( )p d p d> , then 1d  is superior 
than 2d , denoted by 1 2d d> . 

 
In the following, we apply the operators to 

multi-attribute decision making under the dual 
hesitant fuzzy environment. 

  Let { }1 2, , , mA A A A=   be a set of 
alternatives, { }1 2, , , nG G G G=   a set of 
attributes, and 1 2( , , , )T

nw w w w=   the weight 
vector associated with the EDHFWA, 
EDHFWG, EDHFOWA or EDHFOWG 
operator with 0iw ≥  ( 1, 2, , )i n=   and 

1 1n
ii w= =∑ . Assume that the characteristic 

information of the alternatives iA
( 1, 2, , )i m=   is represented by the DHFEs:  

      { } { }( ), , ,
ij ij ij ijij h g ij ijd gh  gh ∈ ∈=      (30) 

where ijγ  indicates the degree that the 

alternative iA  satisfies the attribute jG , ijh  

indicates the degree that the alternative iA  
does not satisfy the attribute jG , where 

[0,1]ijγ ∈ , [0,1]ijη ∈ , and 0 1ij ijγ η+ +≤ + ≤ . So 
we can get the dual hesitant fuzzy decision 
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matrix ( )ij m nD d ×= . 

    Now we give a method for multi-attribute 
decision making based on the Einstein dual 
hesitant fuzzy aggregating operators: 

Step 1 Utilize the four operators above:  
( )1 2EDHFWA , , , , 1, 2, , ,i i i ind d d d i m= =  (31) 

 ( )1 2EDHFWG , , , , 1, 2, , ,i i i ind d d d i m= =  (32) 
 ( )1 2EDHFOWA , , , , 1, 2, , ,i i i ind d d d i m= =  (33) 

or                     

( )1 2EDHFOWG , , , , 1, 2, , ,i i i ind d d d i m= =   (34) 

to get the overall DHFEs ( )1,2, ,id i m=   of 
the alternatives ( )1,2, ,iA i m=  . 

Step 2 Calculate the scores 
( )( )1,2, ,iS d i m=   and the accuracy degrees 
( )( )1,2, ,ip d i m=   of the overall values 
( )1,2, ,id i m=   by using the comparison laws 

of Definition 11. 
Step 3 Rank the alternatives 

( )1,2, ,iA i m=  , and then select the best one(s) 
by using the comparison laws of Definition 11. 
    In the following, we solve a supplier 
selection problem in a supply chain by the 
proposed dual hesitant fuzzy aggregating 
operators. 

Table 1 The dual hesitant fuzzy decision matrix D   
 

G1 G2 G3 

A1 ({0.3,0.5},{0.2}) ({0.4,0.6},{0.3}) ({0.4,0.5},{0.4}) 

A2 ({0.2,0.3,0.5},{0.4}) ({0.5, 0.6},{0.3}) ({0.5},{0.3,0.4}) 

A3 ({0.5, 0.6 },{0.1,0.3}) ({0.3},{0.4,0.6}) ({0.4,0.6},{0.2}) 

A4 ({0.4,0.7},{0.2}) ({0.6,0.7},{0.2}) ({0.4},{0.2,0.4,0.5}) 

A5 ({0.3,0.4,0.5},{0.2,0.3}) ({0.4, 0.5},{0.4}) ({0.6},{0.2,0.3}) 

A6 ({0.2,0.4,0.6},{0.3}) ({0.3, 0.6},{0.2}) ({0.7},{0.1,0.2}) 

A7 ({0.3,0.5,0.7},{0.2}) ({0.2, 0.7},{0.2}) ({0.5},{0.2,0.4}) 

A8 ({0.3, 0.4 },{0.4,0.5}) ({0.3,0.5},{0.4}) ({0.2,0.5},{0.3}) 

 
Example (Chen 2011). In a small 

enterprise, several decision makers try to reduce 
the supply chain risk and uncertainty to improve 
customer service, inventory levels, and cycle 
times, which results in increased 
competitiveness and profitability. The decision 
makers evaluate eight suppliers: 1 2 8, , , ,A A A  

considering three criteria involving: (1) G1: 
performance (e.g., delivery, quality, price); (2) 
G2: technology (e.g., manufacturing capability, 

design capability, ability to cope with 
technology changes); and (3) G 3: organizational 
culture and strategy (e.g., feeling of trust, 
internal and external integration of suppliers, 
compatibility across levels and functions of the 
buyer and supplier). Assume that the weight 
vector of the attribution jG  ( 1, 2,3j = ) is 

(0.3,0.4,0.3)Tw = , and all the possible 

evaluated values under the criteria jG  
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( 1, 2,3j = ) for the alternatives ( )1,2, ,8iA i =   

are given by the DHFEs 

, {{ },{ }}
ij ij ij ijij h g ij ijd gh  gh ∈ ∈=  ( 1,2, ,8,i = 

)1, 2,3j =  where ijγ  indicates the degree that 

the alternative iA  satisfies the attribute jG , 

ijη  indicates the degree that the alternative iA  

does not satisfy the attribute jG , with 

[0,1]ijγ ∈ , [0,1]ijη ∈ , 0 1ij ijγ η+ +≤ + ≤ , and the 

decision matrix 8 3( )ijD d ×=  is constructed as 

shown in Table 1. 

To get the optimal supplier(s), the 
following steps are given: 

Step 1 Utilize one of the proposed dual 
hesitant fuzzy aggregation operators, for 
example, the EDHFWA operator to get the 
overall values ( )1,2, ,8id i =   of the 
alternatives ( )1,2, ,8iA i =  :  

1 2 3
3

1

EDHFWA( , , )i i i

j ijj

d d d

w d
=

= ⊕

  

1 1 2 2 3 3
1 1 2 2 3 3

, ,
, ,

3 3

1 1
3 3

1 1

3

1
3 3

1 1

(1 ) (1 )
,

(1 ) (1 )

2
,

(2 )

i i i i i i
i i i i i i

k k

k k

k

kk

h h h
g g g

w w
ik ik

k k

w w
ik ik

i i

w
ik

k

ww
ik ik

k k

ggg 
hhh 

gg

gg

h

hh

∈ ∈ ∈
∈ ∈ ∈

= =

= =

=

= =

=

  
+ − − 

 
 
  + + −  

 
 

 
 
 − +   

∏ ∏

∏ ∏

∏

∏ ∏



 

           (35) 
to get the overall DHFEs of the alternatives 

( )1,2, ,8iA i =  : 

1 ({0.37,0.40,0.43,0.46,0.49,0.52,0.54},{0.29}),d =

2 ({0.42,0.44,0.46,0.49,0.50,0.54},{ 0.33,0.36}),d =

3 ({0.39,0.43,0.46,0.49},{ 0.22,0.27,0.30,0.36}),d =

4 ({0.49,0.54,0.58,0.63},{ 0.20,0.25,0.27}),d =

5 ({0.44,0.47,0.48,0.49,0.50,0.53},{ 0.27,0.30,0.34}),d =

6 ({0.42,0.47,0.53,0.54,0.58,0.63},{ 0.19,0.23}),d =

7 ({0.33,0.39,0.47,0.54,0.59,0.65},{ 0.20,0.25}),d =

8 ({0.26,0.29,0.33,0.36,0.38,0.41,0.44,0.47},{ 0.37, 0.39}).d =  
 Step 2 By the comparison laws of 

Definition 11, we calculate the scores 

( )( )1,2, ,8iS d i =   of the overall values of 

( )1,2, ,8id i =  : 

1 2 3 4( ) 0.169, ( ) 0.13, ( ) 0.156, ( ) 0.32,s d s d s d s d= = = =

5 6 7 8( ) 0.182, ( ) 0.318, ( ) 0.27, ( ) 0.012.s d s d s d s d= = = = −

   Step 3 Because 4 6 7 5( ) ( ) ( ) ( )s d s d s d s d> > > >

1 3 2 8( ) ( ) ( ) ( )s d s d s d s d> > >  , we have 

4 6 7 5 1 3 2 8 ,A A A A A A A A        
and thus, the alternative 4A  is the best one. 

If we only consider the membership degree 
and neglect the non-membership degree or we 
don’t know the non-membership information at 
all, then the decision making matrix in Table 1 
will turn into the following form: 

Table 2 The hesitant fuzzy decision matrix D   
 

G1 G2 G3 

A1 {0.3,0.5} {0.4,0.6} {0.4,0.5} 

A2 {0.2,0.3,0.5} {0.5, 0.6} {0.5} 

A3 {0.5, 0.6 } {0.3} {0.4,0.6} 

A4 {0.4,0.7} {0.6,0.7} {0.4} 

A5 {0.3,0.4,0.5} {0.4, 0.5} {0.6} 

A6 {0.2,0.4,0.6} {0.3, 0.6} {0.7} 

A7 {0.3,0.5,0.7} {0.2, 0.7} {0.5} 

A8 {0.3, 0.4 } {0.3,0.5} {0.2,0.5} 
 

Because the data in Table 2 are HFEs, to 
aggregate the information, we have to utilize the 
Einstein hesitant fuzzy aggregating operators, 
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for example, the EHFWA operator (11) and the 
sorting steps are given as follows: 

Step 1 Utilize the EHFWA operator to get 
the overall HFE ih  of the alternatives 

( )1,2, ,8iA i =  : 

1 {0.37,0.40,0.43,0.46,0.49,0.52,0.54},h =  

2 {0.42,0.44,0.46,0.49,0.50,0.54},h =  

3 {0.39,0.43,0.46,0.49},h =  

4 {0.49,0.54,0.58,0.63},h =  

5 {0.44,0.47,0.48,0.49,0.50,0.53},h =  

6 {0.42,0.47,0.53,0.54,0.58,0.63},h =  

7 {0.33,0.39,0.47,0.54,0.59,0.65},h =  
  8 {0.26,0.29,0.33,0.36,0.38,0.41,0.44,0.47}.h =  

Step 2 By the comparison laws of Definition 
10, we calculate the scores ( ) ( 1, 2, ,8)is h i =   
of the overall values of ( 1, 2, ,8)ih i =  : 

1 2 3 4( ) 0.459, ( ) 0.475, ( ) 0.443, ( ) 0.562,s h s h s h s h= = = =

5 6 7 8( ) 0.485, ( ) 0.528, ( ) 0.495, ( ) 0.368.s h s h s h s h= = = =
   Step 3 Because 4 6 7 5( ) ( ) ( ) ( )s h s h s h s h> > > >              

2 1 3 8( ) ( ) ( ) ( ),s h s h s h s h> > > we have 

4 6 7 5 2 1 3 8 ,A A A A A A A A        
and thus, the alternative 4A  is the best one. 

Although the best alternatives derived by 
the two methods are the same, the orderings of 
the alternatives 1A , 2A  and 3A  are different. 
In the first method (the case under dual hesitant 
fuzzy environment), the ordering of them is 

1 3 2A A A  , while in the second method (the 
one over hesitant fuzzy environment), the 
ordering is 2 1 3A A A  . The fundamental 
reason is that the HFS neglects the 
non-membership degree and loses some of the 
information, while the DHFS considers not only 
the membership degree, but also the 
non-membership degree and thus can capture 
more information than the HFS. 

5. Concluding Remarks 
The triangular norms and conorms, that is, 

the t-norms and t-conorms play an important 
role in dealing with “and” and “or” operations in 
decision making problems. In this paper, we 
have deeply studied the applications of the 
Einstein t-conorm and t-norm under dual 
hesitant fuzzy environment, and given some new 
operational laws for DHFEs, studied their 
relations, and then given some Einstein dual 
hesitant fuzzy aggregation operators, including 
the EDHFWA, EDHFWG, EDHFOWA and 
EDHFOWG operators. The first two operators 
emphasize the importance degrees of the given 
attribution values, neglecting the ordered 
positions in the aggregation. The last two ones 
can reflect the ordered positions but ignore the 
importance of the attributions. The two kinds of 
operators can be chosen to aggregate the 
information in different occasions on the basis 
of their characteristics. In the final part of this 
paper, we have also presented a decision making 
method using the developed operators based on 
the Einstein t-conorm and t-norm. 

In fact, there are various kinds of forms of 
t-conorm and t-norm. As space is limited, we 
have only discussed the aggregation method 
based on the Einstein t-conorm and t-norm 
under dual hesitant fuzzy environment. How to 
combine the other t-conorms and t-norms with 
the dual hesitant fuzzy aggregation technique is 
still valuable and interesting research topic in 
future work. 

All the proofs of the paper can be found in 
the following Appendices. 
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Appendices 
1. The Operations of the DHFEs 
Definition 12 (Zhu et al. 2012). Let X  be a 
fixed set, 1d  and 2d  two DHFEs, n  a 
positive real number, then the following 
operations are valid: 

(1) 1 2d d⊕
 

1 2 1 2
( , )d d d dh h g g= ⊕ ⊗

  
( )1 2 1 2 1 21 1 1 1 2 2 2 2, , , { },{ } ,

d d d d d d d dh g h g d d d d d dghgh    gggghh     ∈ ∈ ∈ ∈= + −

 
(2) 1 2d d⊗

 
1 2 1 2

( , )d d d dh h g g= ⊗ ⊕
  
( )1 2 1 2 1 21 1 1 1 2 2 2 2, , , { },{ } ,

d d d d d d d dh g h g d d d d d dghgh    gghhhh     ∈ ∈ ∈ ∈= + −

 
(3) ( ), {1 (1 ) },{( )} ,

d d d d

n n
h g d dnd gh  gh ∈ ∈= − −

 
(4) ( ), {( ) },{1 (1 ) } ,

d d d d

n n n
h g d dd gh  gh ∈ ∈= − −

where all the results are also DHFEs.  

2. The Proof of Theorem 1 
Proof. We use mathematical induction to prove 
that Equation (4) holds for the positive integer 
n : 

For 1n = , we shall prove 
1 1 1

, 1 1 1 1
(1 ) (1 ) 21 { },{ } .
(1 ) (1 ) (2 )h gd gh

ggh 
gghh   ∈ ∈

 + − −
=   + + − − + 


 

In the left-hand side of the equation above, 

,1 ({ },{ }),h gd d gh  gh ∈ ∈= =  and in the 
right-hand side of it,  

( )

1 1 1

, 1 1 1 1

,

(1 ) (1 ) 2,
(1 ) (1 ) (2 )

{ },{ } ,

h g

h g

gh

gh

ggh 
gghh  

gh

∈ ∈

∈ ∈

    + − −   
     + + − − +       

=





 

which indicates that the two sides are equal, so 
Equation (4) holds for 1n = . 

Assume Equation (4) holds for n k= , it 
must be proven that Equation (4) holds for 

1n k= + , i.e.,  

1 1 1

, 1 1 1 1

( 1)

(1 ) (1 ) 2, .
(1 ) (1 ) (2 )

k k k

h g k k k k

k d

gh
ggh 
gghh  

+ + +

∈ ∈ + + + +

+

    + − −   =      + + − − +       


 (36) 

Because the left-hand side of Equation (36) can 
be rewritten as ( 1)k d kd d+ = ⊕ , using the 
induction hypothesis that Equation (4) is correct 
for n k= , and based on the Einstein sum 
operation of two DHFEs, we have 

,

,

,

( 1)

(1 ) (1 ) 2,
(1 ) (1 ) (2 )

{ , }

(1 ) (1 )
(1 ) (1 ) ,

(1 ) (1 )1
(1 ) (1 )

2
(2 )

k k k

h g k k k k

h g

k k

k k

h g k k

k k

k

k

k d
kd d

gh

gh

gh

ggh 
gghh  

gh

gg  g
gg
gg  g
gg

h
hh

∈ ∈

∈ ∈

∈ ∈

+
= ⊕

    + − −   =      + + − − +       
⊕

 + − −
+ 

+ + − =   + − −  + + + − 

− +







21 (1 )(1 )
(2 )

k

k

k k

h

h h
hh

 
 

 
 
 + − −  − + 

1 1 1

, 1 1 1 1
(1 ) (1 ) 2, .
(1 ) (1 ) (2 )

k k k

h g k k k kgh
ggh 
gghh  

+ + +

∈ ∈ + + + +

    + − −   =      + + − − +       


  
So we have proven that indeed Equation (4) 

holds for 1n k= + . Since both the basis and the 
inductive step are correct, we complete the proof 
of the theorem. 
 
3. The Proof of Theorem 1 When n  Is Any 

Positive Real Number 

Proof. Because 0 1, 0 1, 1 2 2γ η η≤ ≤ ≤ ≤ ≤ − ≤ , 
and 1 0, 1 0γ η η γ− ≥ ≥ − ≥ ≥ , obviously, we 
have  
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(1 ) (1 )0 1,
(1 ) (1 )

n n

n n
γ γ
γ γ

+ − −
≤ ≤

+ + −
       (37)

               
 

and  
20 1,

(2 )

n

n n
η

η η
≤ ≤

− +         (38) 

(1 ) (1 ) (1 ) (1 ) (1 )0 ,
(1 ) (1 ) (1 ) (1 )

n n n n n n

n n n n n n
γ γ γ γ γ η
γ γ γ η γ η

+ − − + − − + −
≤ ≤ ≤

+ + − + + + +
(39)  

2 20
(2 ) (1 (1 ))

2 2 .
(1 (1 )) (1 )

n n

n n n n

n n

n n n n

η η
η η η η

η η
η η γ η

≤ = ≤
− + + − +

≤
+ − + + +

 

(40)                                              
From Equations (39) and (40), we have 
(1 ) (1 ) 20 1.
(1 ) (1 ) (2 )

n n n

n n n n
γ γ η
γ γ η η

+ − −
≤ + ≤

+ + − − +
  (41) 

So from Equations (37), (38), and (41), we know 
that the DHFE nd  defined above is a DHFE 
for any positive real number. 

4. The proof of Theorem 3 
Proof. (1) and (2) are obvious, below we prove 
the others: 

(3) 1 2( )d dλ ⊕   

1 2 1 2

1 1 1 1 2 2 2 2
1 2 1 2

, , , ,
1 1 (1 )(1 )h g h gghgh  
gghh  

λ
gghh   ∈ ∈ ∈ ∈

     +     =      + + − −        
  

1 2 1 2

1 2 1 2

1 1 1 1 2 2 2 2
1 2 1 2

1 2 1 2

, , ,

(1 ) (1 )
1 1

,
(1 ) (1 )

1 1

h g h g

λ λ

ghgh  
λ λ

gggg  

gggg  
gggg  

gggg  

∈ ∈ ∈ ∈

 + + 
+ − − + + =   + +  + + −  + + 

   

1 2

1 2

1 2 1 2

1 2 1 2

2( )
1 (1 )(1 )

(2 ) ( )
1 (1 )(1 ) 1 (1 )(1 )

λ

λ λ

η η
η η

η η η η
η η η η

 
 + − −  

 
 − + + − − + − − 

  

1 2 1 2

1 1 1 1 2 2 2 2
1 2 1 2

1 2

1 2 1 2

, , ,
(1 ) (1 ) (1 ) (1 )

,
(1 ) (1 ) (1 ) (1 )

2( )

(2 ) (2 ) ( )

h g h g

λ λ λ λ

ghgh    λ λ λ λ

λ

λ λ λ

gggg  

gggg  

hh

hhhh  

∈ ∈ ∈ ∈

 + + − − − =   + + + − −  
   − − +  



 

1 2d dλ λ⊕

1 1 1 1

1 1 1
,

1 1 1 1

(1 ) (1 ) 2
,

(1 ) (1 ) (2 )h g

λ λ λ

gh  λ λ λ λ
ggh 
gghh   ∈ ∈

    + − −   =      + + − − +       


2 2 2 2

2 2 2
,

2 2 2 2

(1 ) (1 ) 2
,

(1 ) (1 ) (2 )h g

λ λ λ

gh  λ λ λ λ
ggh 
gghh   ∈ ∈

    + − −   ⊕      + + − − +       


1 1 1 1 2 2 2 2, , ,

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 2

1 1 2 2

(1 ) (1 ) (1 ) (1 )
(1 ) (1 ) (1 ) (1 )

,
(1 ) (1 ) (1 ) (1 )1
(1 ) (1 ) (1 ) (1 )

2 2
(2 ) (2 )

h g h gghgh  

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ

λ λ λ λ

gggg  
gggg  
gggg  
gggg  

hh
hhhh  

∈ ∈ ∈ ∈=

 + − − + − −
+ 

+ + − + + − 
  + − − + − −  +  + + − + + − 

− + − +



1 2

1 1 2 2

2 21 (1 )(1 )
(2 ) (2 )

λ λ

λ λ λ λ
hh

hhhh  

 
 

 
 
 + − − − + − + 

1 1 1 1 2 2 2 2

1 2 1 2

1 2 1 2

1 2

1 2 1 2

, , ,

(1 ) (1 ) (1 ) (1 )
,

(1 ) (1 ) (1 ) (1 )

2( )
,

(2 ) (2 ) ( )

h g h gghgh  

λ λ λ λ

λ λ λ λ

λ

λ λ λ

gggg  

gggg  

hh

hhhh  

∈ ∈ ∈ ∈=

 + + − − −   + + + − −  
   − − +  



 

and thus,  
1 2 1 2( )d d d dλ λ λ⊕ = ⊕ . 

(5) 1 2d dλ λ⊕  
1 1 1

1 1 1 1
,

(1 ) (1 ) 2,
(1 ) (1 ) (2 )h g

λ λ λ

gh  λ λ λ λ
ggh 
gghh   ∈ ∈

    + − −   =      + + − − +       


2 2 2

2 2 2 2
,

(1 ) (1 ) 2,
(1 ) (1 ) (2 )h g

λ λ λ

gh  λ λ λ λ
ggh 
gghh   ∈ ∈

    + − −   ⊕      + + − − +       
  
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1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 2

1 1 2 2
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Similarly, (4) and (6) can be proven, which 
completes the proof of the theorem. 
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i.e., Equation (8) holds for 1n k= + . Thus, 
Equation (8) holds for all n .  

Using the same method as in Theorem 1, we 
can prove that the aggregated value by using the 
EDHFWA operator is also a DHFE, which 
completes the proof of Theorem 4. 
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and thus, by Equations (42) and (43), we know 
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and thus, by Equations (42) and (43), we have 
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So ( ) ( )h d h d+ = , and thus d d− = . 
     

From the above discussion, we can get 

1 2EDHFWA( , , , ) ,nd d d d d− +≤ ≤ which 
completes the proof. 

(3) Because 1( ) , 0 1
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xf x x
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Therefore, we have 
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and then 
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Therefore, we have  
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Summarily, we get 
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(45) 
     

Let 1 2EDHFWA( , , , )nd d d d=  and 

1 2EDHFWA( , , , )nd d d d∗ ∗ ∗ ∗= , then from 
Definition 11 and Equations (44) and (45), we 
know that ( ) ( )s d s d∗≤ . 

(1) If ( ) ( )s d s d∗< , then  

1 2 1 2EDHFWA( , , , ) EDHFWA( , , , ).n nd d d d d d∗ ∗ ∗<   
(2) If ( ) ( )s d s d∗= , that is, 
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From Equations (44) and (45), we know that  
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which means ( ) ( )h d h d∗= , and it follows from 
Definition 11 that 

1 2 1 2EDHFWA( , , , ) EDHFWA( , , , ).n nd d d d d d∗ ∗ ∗=        
Therefore,  

1 21 2EDHFWA( , , , ) EDHFWA( , , , ),
nnd d d d d d∗ ∗ ∗≤ 

which completes the proof.
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