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Abstract 
In this paper, we develop a unique time-varying forecasting model for dynamic demand of medical 

resources based on a susceptible-exposed-infected-recovered (SEIR) influenza diffusion model. In this 
forecasting mechanism, medical resources allocated in the early period will take effect in subduing the 
spread of influenza and thus impact the demand in the later period. We adopt a discrete time-space 
network to describe the medical resources allocation process following a hypothetical influenza 
outbreak in a region. The entire medical resources allocation process is constructed as a multi-stage 
integer programming problem. At each stage, we solve a cost minimization sub-problem subject to the 
time-varying demand. The corresponding optimal allocation result is then used as an input to the 
control process of influenza spread, which in turn determines the demand for the next stage. In addition, 
we present a comparison between the proposed model and an empirical model. Our results could help 
decision makers prepare for a pandemic, including how to allocate limited resources dynamically. 
Keywords: Time-varying demand, medical resources, influenza diffusion, time-space network 
 

1. Introduction 
A serious influenza can test the ability of a 

nation to effectively protect its population, to 
reduce human loss and to rapidly recover. 
Meanwhile, it can also cause a great economic 
loss. For example, during the period from 1997 
to 2002, more than 3,400,000 chickens were 
killed in Hong Kong, to prevent the avian 
influenza from transmitting to human. Generally, 
it is difficult to predict when an unexpected 
influenza outbreaks, and our security measures 

against such problem rest largely on 
consequence management, i.e., what can be 
done after the influenza outbreak occurs? How 
to ensure the supply of medical resources so that 
the efficiency of medical care can be maximized? 
Unfortunately, the available medical resources in 
the control of influenza are usually limited. 
Therefore, government decision makers must 
understand how the influenza spreads and then 
determine how to allocate the limited medical 
resources. 
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Most mathematic models for influenza 
diffusion analysis are compartmental models 
(Mishra and Saini 2007, Sun and Hsieh 2010, Li 
et al. 1999, Zhang et al. 2006, Zhang and Ma 
2003). In these models, the total population is 
divided into several classes and each class of 
individuals is closed into a compartment. The 
mixing of members is homogeneous, meaning 
these models are constructed with the 
assumption of both homogeneous infectivity and 
homogeneous connectivity of each individual. 
Another stream of research is focused on the 
development of influenza diffusion models by 
applying simulation methods, including 
computer simulation and numerical computation 
(Wein et al. 2005, Craft et al. 2005, Germann et 
al. 2006, Halloran et al. 2008). Recently, Aleman 
et al. (2011) proposed an agent-based simulation 
model that treated each individual as unique, 
with non-homogeneous transmission and 
infection rates correlated to demographic 
information and behavior. Kim et al. (2010) 
described the transmission of avian influenza 
among birds and humans. Liu and Zhang (2011) 
presented a SEIRS epidemic model based on the 
scale-free networks, where the active contact 
number of each vertex was assumed to be either 
constant or proportional to its degree in their 
model. Samsuzzoha et al. (2010) used a 
diffusive epidemic model to describe the 
transmission of influenza. The equations were 
solved numerically by using the splitting method 
under different initial distribution of population 
density. Further, Samsuzzoha et al. (2012) 
presented a vaccinated diffusive compartmental 
epidemic model to explore the impact of 
vaccination as well as diffusion on the 
transmission dynamics of influenza. The above 

mentioned works provide numerous and 
significant references to research the influenza 
diffusion. Although the emphasis of this paper is 
focused on how to allocate the limited medical 
resources, a basic component of our model, the 
forecasting mechanism for the dynamic demand, 
utilizes one of such epidemic diffusion models.  

So far, influenza vaccination policy is one of 
the most effective strategies to prevent a wide 
spread influenza occurs. However, the level of 
influenza vaccination coverage in all age groups 
is suboptimal, even in the majority of developed 
countries. There are several reasons for this 
phenomenon, where mismatch between the 
vaccine supply and the demand side of is one of 
them. Recently, some significant papers on the 
subject are focused on the coordination of the 
influenza vaccine supply chain. For example, 
Adida et al. (2013) considered how a central 
policy-maker can induce socially optimal 
vaccine coverage through the use of incentives 
to both consumers and vaccine manufacturer in 
a monopoly market for an imperfect vaccine. 
The result shows that a fixed two-part subsidy is 
unable to coordinate the market. Deo and 
Corbett (2009) examined the interaction 
between yield uncertainty of influenza vaccine 
and firms' strategic behavior and found that 
yield uncertainty can contribute to a high degree 
of concentration in an industry and a reduction 
in the industry output and the expected 
consumer surplus in equilibrium. Further, 
Arifoğlu et al. (2012) studied the impact of yield 
uncertainty (supply side) and self-interested 
consumers (demand side) on the inefficiency in 
the influenza vaccine supply chain. The result 
shows that the equilibrium demand can be 
greater than the socially optimal demand after 
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accounting for the limited supply due to yield 
uncertainty and manufacturer's incentives, which 
is contrast to the previous economic studies. To 
break the negative feedback loop between the 
retailer and the manufacturer in influenza 
vaccine industry, Dai et al. (2012) introduced 
two coordinating contracts, the Delivery time 
dependent Quantity Flexibility (D-QF) contract 
and the Buyback-and-Late-Rebate (BLR) 
contract. Furthermore, Yamin and Gavious 
(2013) built a theoretical epidemiological game 
model to find the optimal incentive for 
vaccination and the corresponding expected 
level of vaccination coverage. 

Motivated by the supply chain coordination 
concept, we study an interactive coordination 
problem between influenza diffusion and 
medical resources allocation. This paramount 
life-saving and costly logistics problem opens up 
a wide range of applications of OR/MS 
techniques and has motivated many researches 
in the past decades (Stinnett and Paltiel 1996, 
van Zon and Kommer 1999, Zaric and Brandeau 
2001, 2002, Brandeau et al. 2003). These models, 
however, are not applicable to epidemics with 
discrete rates of growth and are restricted by 
several assumptions like the number of 
interventions or independence of populations. 
Recent mathematical approaches for healthcare 
resources allocation, on the other hand, suggest 
advanced models of disease prevalence among 
several populations, and consider more general 
forms of cost function for the prevention 
programs (Zaric et al. 2008, Duintjer Tebbens et 
al. 2010, Vlah and Rui 2012, Savachkin and 
Uribe 2012). Furthermore, Rottkemper et al. 
(2012) designed a mixed integer programming 
model for distribution and inventory relocation 

under uncertainty in humanitarian operations. 
Rachaniotis et al. (2012) presented a resources 
scheduling model in epidemic control with 
limited resources. The objective is to minimize 
the total infected people in a certain time 
horizon under consideration by effectively 
relocating the available resources over several 
regions. Sun et al. (2013) built a mathematical 
model to optimize the patient allocation 
considering two objectives: to minimize the total 
travel distance by patients to hospitals; and the 
maximum distance a patient travels to a hospital. 
In addition, it is worth mentioning that a concise 
survey of OR/MS contribution to epidemics 
control can be found in Brandeau (2005). The 
popular techniques that have been used for 
resources allocation in epidemics control are 
linear and integer programming models, 
numerical analysis procedures, 
cost-effectiveness analysis, simulation, 
non-linear optimization and control theory 
techniques. Recently, Dasaklis et al. (2012) 
focused on defining the role of logistics 
operations and their management that may assist 
the control of epidemic outbreaks. They 
reviewed the literature and pointed out the 
research gaps critically.  

In summary, this section does not aim to be 
an exhaustive review of the literature; rather, we 
introduce an illustrative subset of existing 
models. In our previous work (Liu and Zhao 
2012), we divided influenza diffusion process 
into three stages. The first stage is the inception 
of influenza in very limited population. If the 
infectious disease is noticed in time and treated 
properly, the epidemic can be controlled without 
causing a wide spread. Otherwise, influenza 
diffusion develops into the second widespread 
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diffusion stage. The third stage is the recovery 
stage that influenza diffusion is under controlled. 
In this paper, we attempt to model the interactive 
coordination process between influenza 
diffusion and medical resources allocation in the 
second response stage. The model couples a 
forecasting mechanism for dynamic demand of 
medical resources based on the classical SEIR 
epidemic model (Brauer and Castillo-Chavez 
2012). As shown in Figure 1, we decompose the 
whole interactive coordination process into n 
correlated sub-problems (n decision-making 
cycles). Each sub-problem includes three phases, 
which are influenza diffusion analysis, demand 
forecasting and medical resources allocation. We 
briefly introduce the connections among these 
three phases as below. 

i) Initially, we employ a SEIR model to 
depict the dynamic epidemic diffusion process. 
The model gives us a forecast of the growing (or 
decreasing) number of the infected population in 
the course of the epidemic diffusion, which will 
be embedded in the following demand 
forecasting model. 

ii) Secondly, we define a difference factor to 
illustrate the change in the number of infected 
population. Coupling with this factor and 
medical resources allocation result in the current 
decision cycle, we can get the demand of 
medical resources for the next decision cycle. 

iii) Based on the forecasting demand for the 
next decision cycle, we solve an integer 
programming problem for the optimized 
allocation of medical resources in a supportive 
logistics system to meet the dynamic demand. 

The latter two phases are executed iteratively. 
The details of the demand forecasting model are 
presented in Section 2.2. It is worth mentioning 
that medical resources allocated in current 

period will take effect in subduing the spread of 
influenza and thus impact the demand in the 
next period. To the best of our knowledge, such 
an operational procedure is different from any 
existing influenza response operations, which 
have always been carried out under the 
assumption that demand is deterministic or 
stochastic. When the proposed method is 
adopted, we can take a fixed time interval (i.e. 
one day) as the decision-making cycle and then 
update the allocation result for each epidemic 
area periodically. Moreover, we believe the 
proposed model should serve for the benefit of a 
centralized decision maker, usually a local or 
regional governmental agent, in control of the 
influenza diffusion, who needs an analytic 
model to plan for the logistics and to revise and 
update such plan in the actual implementation.  

 

Figure 1 The dynamic operational procedure of 
medical resources allocation 
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The remainder of the article is organized as 
follows. Section 2 is the epidemic diffusion 
analysis and demand forecasting. A dynamic 
medical resources allocation model is proposed 
in Section 3. Numerical example and a short 
sensitivity analysis are presented in Section 4. 
Finally, conclusions are given in Section 5. 

2. Epidemic Diffusion Analysis and 
Demand Forecasting 

2.1 Influenza Diffusion Analysis 
In 1927, W. O. Kermack and A. G. 

McKendrick created the first SIR model in 
which they considered a fixed population with 
only three compartments, the susceptible, the 
infected, and the removed (Kermack and 
McKendrick 1927). ( )S t is used to represent the 
number of individuals not yet infected with the 
disease at time t. ( )I t denotes the number of 
individuals who have been infected with the 
disease and are capable of spreading the disease 
to those in the susceptible category. ( )R t  is the 
compartment used for those individuals who 
have been recovered from the disease, either due 
to immunization or due to death. Since that time, 
theoretical epidemiology has witness numerous 
developments. Some of the recent studies can be 
found in (Liu and Chen 2015, Harko et al. 
2014). 

Although the deterministic SIR model is 
successful in predicting the behavior of 
outbreaks very similar to which observed in 
many recorded epidemics (Brauer and 
Castillo-Chavez 2012), the SIR model discussed 
above takes into account only those diseases 
which cause an individual to be able to infect 
others immediately upon their infection. In fact, 

many diseases, such as influenza, have what is 
termed a latent or exposed phase, during which 
the individual is said to be infected but not 
infectious. Therefore, the host population N
should be broken into four compartments: the 
susceptible, the exposed, the infectious, and the 
recovered, with the number of individuals in a 
compartment, or their densities denoted 
respectively by ( )S t , ( )E t , ( )I t  and ( )R t . 
That means, ( ) ( ) ( ) ( )N S t E t I t R t= + + + . The 
SEIR model is proved to be a more suitable 
model to match the influenza diffusion (Zhang 
and Ma 2003).  

Even though people travel across regions and 
the population of any region is of a fluid nature, 
it is reasonable to believe that the population 
size does not change significantly over a short 
period of time without a social economic reason. 
Therefore, during the course of influenza 
spread-to-control, which usually lasts no longer 
than three months, there should not be 
significant difference between the in-flow and 
out-flow number of people. We note that this is 
the basic rationale based on which most SEIR 
literatures assume a constant population size as 
is in this paper. For future research, the basic 
framework proposed here can be extended to 
incorporate such factors as people’s hesitation to 
visit the epidemic outbreak region and/or 
government’s quarantining policy in controlling 
people from traveling out of the region. 

Therefore, without considering the natural 
birth rate and death rate of the population, we 
can use a simple deterministic compartmental 
model (SEIR) to describe the influenza spread 
process, which is described by the following 
system of ordinary differential equations (ODE). 
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'( ) ( ) ( ),
'( ) ( ) ( ) ( ) ( ),
'( ) ( ) ( ) ( ),
'( ) ( ).

S t S t I t
E t S t I t S t I t
I t S t I t I t
R t I t

β
β β t t
β t t α δ
δ

= −
 = − − −
 = − − − +
 =

（ ）
   (1) 

In ODE(1), ( )S t , ( )E t , ( )I t  and ( )R t  
represent the number of susceptible people, the 
number of exposed people, the number of 
infected people, and the number of recovered 
people, respectively. β is the propagation 
coefficient of the influenza; δ  is the recovery 
rate; α  is the loss rate; and t represents the 
incubation period of the disease. , , , 0β δ α t > . 
ODE (1) states the following: (i) The decrease 
rate of the susceptible population is in 
proportion to the propagation coefficient, β , 
and both of the current mass of the susceptible 
population and the current mass of the infected 
population. (ii) The growth rate of the exposed 
population is determined by the difference 
between the entering population, those of 
susceptible people who actually get exposed to 
the disease, and the exiting population, those of 
exposed population who get sick after the 
incubation period of the disease; (iii) The growth 
rate of the infected population is determined by 
the difference between the entering population, 
those of exposed population who get sick, and 
the exiting population who are either recovered 
or dead; Finally (iv) the growth rate of the 
recovered population is determined by the 
joining population of the newly recovered.  

According to ODE(1), improving the 
recovery rate,δ , and reducing the propagation 
coefficient, β , are two effective measures to 
take in suppressing the growth of ( )I t . That 
means, on one hand, local government should 
execute some quarantining policies in 
controlling people from traveling in (or out) of 

the region. Meanwhile, self-quarantine and 
decreasing the contact with people around are 
also effective strategies for controlling influenza 
diffusion. On the other hand, a sufficient 
medical resources supply should be allocated to 
the emergent designated hospitals (EDH), to 
guarantee or improve the recovery rate of 
infected persons. 

2.2 Demand Forecasting 
Generally, demand forecasting for medical 

resources in epidemic area is formulated as a 
linear or non-linear function with the number of 
infected people, which can be illustrated as 
follows: 

* [ ( )].td f I t=           (2) 
Herein, we refer it as the demand forecasting 

mode I (DFM-I). It is obvious that the demand 
has some functional relationship with the 
number of infected people. The deficiency is 
that it ignores the interactive effect between the 
influenza spread and medical resources 
allocation. Actually, the demand is discrete and 
independent. We use a schematic diagram to 
illustrate the evolution trajectory of the 
time-varying demand (see Figure 2). Herein, we 
refer it as the demand forecasting mode II 
(DFM-II).  

 

Figure 2 Schematic diagram of the demand 
forecasting 
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In this figure, the horizontal axis represents 
the decision-making cycle, and the vertical axis 
stands the demand for medical resources. The 
dotted curve depicts the forecasting demand 
which is obtained by using Equation (2), and the 
solid curve represents the actual time-varying 
demand. For example, we get the results *

td and 
*

1td + respectively for the two difference decision 
cycles t and t+1, when we use Equation (2) to 
predict the demand. However, a certain amount 
of medical resources, tp , would have been 
allocated to the disaster area during decision 
cycle t. These medical resources would affect in 
curing infected patients in hospitals and thus 
subduing influenza diffusion on decision cycle 
t+1. Therefore, instead of *

1td + , the expected 
demand on decision cycle t+1 is 1td + . To reflect 
the dynamic property of the time-varying 
demand, we define a difference factor to depict 
the change in demand for each decision-making 
cycle, which is formulated as: 

* *
1

*
( ) .t t

t
t

d d
d

η + −=         (3) 

The linear factor tη  can be either positive 
(increasing demand) or negative (decreasing 
demand), and may vary in the different cycles. 
To facilitate the model formulation in the 
following sections, herein we define the decision 
making cycle as λ , and we suppose that each 
infected person needs ω units of medical 
resources in each decision making cycle. 
Considering that each infected person needs a 
period of time to get cured, herein we denote the 
treatment cycle as Γ . Generally, to guarantee 
the efficiency of decision-making, decision 
cycle is always set to be a small time interval, 
e.g., one day. The shorter the time interval is, the 
more accurate the decision-making is. In another 

side, treatment cycle in actual practice is always 
a long time. It may be several weeks or more. 
Suppose that a certain amount of medical 
resources tp  is allocated to the epidemic area 
during cycle t, thus the commuted recovery rate 
at decision cycle t can be formulated as /tpλ ωΓ . 
Thus, we have the following recursion formulas: 

 when t=1, 0
1 0 0(1 )( ),

p
d d

λ
η

ω
= + −

Γ
     (4) 

when t=2, 1
2 1 1(1 )( ),

pd d λ
η

ω
= + −

Γ
     (5) 

     …… 

when t=n, 1
1 1(1 )( ).n

n n n
p

d d
λ

η
ω

−
− −= + −

Γ
 (6) 

The recursion formulas (4-6) are our 
prescribed demand forecasting model. Specially, 

0 (0)d Iω= ⋅  is the initial demand for medical 
resources, and 0p is the best allocation result on 
decision cycle t=0, which can be obtained by 
solving the programming model in the following 
Section 3. After that, we can forecast the demand 
for medical resources on decision cycle t=1 by 
using Equation (4). Similar works are executed 
iteratively to obtain the demand information for 
each decision cycle during the entire medical 
resources allocation process. 

3. The Dynamic Medical Resources 
Allocation Model 

3.1 Model Specification 
Time-space network approach has been 

popularly employed to solve scheduling/routing 
problems, as it is efficient to represent the result 
in dimensions of time and space (Yan and Shih 
2009, Yan et al. 2013, Yan et al. 2014). To depict 
the dynamic process of medical resources 
allocation, we employ such network flow 
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technique to develop a dynamic and multi-stage 
programming model, with the objective of cost 
minimization subject to some related operating 
constraints.  

 
Supplier H 

Time 

Day 0 

Day 1 

Day 2 

Day 3 

Day 4 

…
 

DC 

a 

Day n 

a 

(a) 

(c) (d) 

(b) 

(e) 

 
Figure 3 Time-space network of medical resources 

allocation 

Figure 3 describes the time-space network of 
medical resources allocation. The vertical axis 
stands for time duration. The horizontal axis 
represents medical resources suppliers, 
distribution centers (DC) and local designated 
hospitals (H). There are several suppliers,

1, 2,...,i I= , who can produce and ship the 
medical resources to the epidemic area. Surely, 
each supplier has a production capacity. Also, 
there are several distribution centers, 1,...,j J= , 
and many local hospitals, 1, 2,...,k K= , 
geographically located in the area that are 
designated to host and treat the infected people. 
Allocation arcs are defined as follows: (a) 
represents that medical resources are delivered 
from supplier to DC; (b) denotes that medical 
resources are allocated from DC to the 

designated hospitals; (c)~(e) are time duration 
arcs. The distribution centers transship the 
medical resources and distribute them to the 
local hospitals based on the forecasting demand. 
As mentioned in Section 1, the local government 
or an agent designated by the government would 
take the role of centralized decision making and 
control the relevant resources in a burst of 
influenza spread. The objective of the decision 
making is to minimize the total logistics cost in 
terms of medicine supply and distribution. To 
minimize it, medicine distribution scheduling 
should be coordinated, forming a just-in-time 
mechanism for the two-echelon medicine supply 
chain. Therefore, inventory level in the DCs and 
the local hospitals should be as lower as possible 
and thus inventory costs in both DCs and local 
hospitals can be ignored in our model. 

3.2 Notation 
Before introducing the model’s formulation, 

the notation and symbols are listed below:  
Sets 
T : Set of decision cycle. 
S : Set of supplier. 
D : Set of DC. 
H : Set of hospital. 
Parameters 

ijc : Unit transportation cost for medical 
resources from supplier i  to DC j . 

jkr : Unit transportation cost for medical 
resources from DC j  to local hospital k . 

ita : The production capacity of supplier i  
on decision cycle t . 

jtz : The available quantity of medical 
resources in DC j  on decision cycle t . 

ktd : Demand for medical resources in 
hospital k  on decision cycle t . 
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Decision variables 

ijtx : Quantity of medical resources 
transported from supplier i  to DC j on 
decision cycle t . 

jkty : Quantity of medical resources 
transported from DC j  to hospital k  on 
decision cycle t . 

3.3 Model Formulation 
Let ),( yxF  be the objective function, the 

dynamic medical resources allocation model can 
be formulated as follows: 
Min ( , ) ijt ij jkt jk

t T i S j D t T j D k H
F x y x c y r

∈ ∈ ∈ ∈ ∈ ∈
= +∑∑∑ ∑∑ ∑ (7) 

 s.t. 

( 1){ } , ,jt j t ijt jkt
i S k H

z z x y j D t T+
−

∈ ∈
= + − ∀ ∈ ∈∑ ∑ (8) 

    , ,ijt it
j D

x a i S t T
∈

≤ ∀ ∈ ∈∑ (9) 

    , ,jkt kt
j D

y d k H t T
∈

≤ ∀ ∈ ∈∑ (10) 

    min{ , },jkt kt it
j D k H k H i S

y d a t T
∈ ∈ ∈ ∈

= ∀ ∈∑ ∑ ∑ ∑ (11) 

( 1)

( 1) ( 1)(1 )( ), ,
jk t

j D
kt k t k t

y
d d k H t T

λ

η
ω

−
∈

− −= + − ∀ ∈ ∈
Γ

∑

 
(12) 

, , , , ,ijt jktx y I i S j D k H t T∈ ∀ ∈ ∈ ∈ ∈  (13) 

The objective function in Equation (7) 
minimizes the total logistics cost of medical 
resources allocation. Constraint (8) is the flow 
conservation constraint. Constraint (9) is the 
production capacity constraint. Constraints (10)- 
(12) are the demand constraints. At last, 
constraint (13) ensures that all decision variables 
are integers.  

3.4 Solution Procedure 
For any t T∈ , the proposed model is a 

standard transshipment programming problem. 
The feature of such a programming problem is 

that both the input quantity and the output 
quantity of medical resources in each DC are 
unknown. Hence, we design a heuristic 
algorithm to solve the proposed model, which is 
presented as follows: 

 

Procedure: 
Input: parameters of the SEIR model, ijc , ijr

and ita . 
Output: the final optimal allocation result 
Begin 

Solve the ODE and decompose the 
problem into n correlated sub-problems (n 
decision-making cycles); 

t←0; 
while (not termination condition) do 

Forecast the demand ktd ; 
Solve the programming model on 

decision cycle t; 
Obtain the allocation result tp ; 

t←t+1; 
end 
Output the medical resources allocation 

result and the cost for each decision-making 
cycle. 

End 

4. Numerical Example and Discussion 

4.1 Numerical Example 
In this section, we rely on a numerical 

example to demonstrate the efficiency of the 
proposed method. The tests are performed on a 
personal computer equipped with a Intel (R) 
Core (TM) 3.10 GHz CPU and 4.0 Gb of RAM 
in the environment of Microsoft Window 7. 
Since the proposed programming model is 
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formulated as a multi-stage integer 
programming model, we can solve it by 
MATLAB coupled with the optimal software 
CPLEX 12.4.  

An area, with 2 medicine suppliers that 
supply the medicine for the influenza, 4 
distribution centers (DC) that store and 
distribute the medicine to the local hospitals 
based on their demand, and 8 local hospitals(H) 
that are designated to host and treat the infected 
individuals, is assumed to be the hypothetical 
influenza outbreaks area. Initial values of the 
related parameters for the SEIR model are given 
in Table 1.  

Taking region 1 as our example, Figure 4 
depicts the numerical simulation result if no 
medical resources could be allocated. The 
computation time to solve the ODE is less than 
10 seconds. The four curves respectively 
represent the number of four groups of people (S, 
E, I, R) over time. As a numerical test, we 
extract the time interval from the 15th day 
(decision-making cycle t=0) to the 45th day 
(decision-making cycle t=30) to be the second 
response stage of the influenza diffusion process 
according to our previous works (Liu et al. 2011, 

Liu and Zhao 2012). Of course, the time range 
for the response stage can be adjusted 
correspondingly when different influenza 
outbreak occurs. 

Let 1λ = and 1ω = , there are 30 iterations 
for the test and we can rewrite the demand for 
medical resources as * ( ),td I t t T= ∈ . Meanwhile, 
we can obtain the difference factor tη  for each 
decision cycle. Moreover, let 15Γ =  (days) 
and suppose the production capacity of each 
supplier is 2,000 units of medical resources daily. 
Therefore, with the given coefficient matrix of 
transportation cost between the different nodes 
(i.e. the suppliers, the DCs and the local 
hospitals), we can obtain the medical resources 
allocation result for the first decision cycle. 
Coupling with the result, we can forecast the 
demand for the second decision cycle by using 
Equation (5). After that, we can solve the 
programming model for the second decision 
cycle and acquire the medical resources 
allocation result 2p . Such phase is executed 
iteratively and the computation time to get the 
final optimal solution of the whole test is 457.81 
seconds. 

Table 1 Initial values of the relative parameters 

Hospital(H) Region 1 Region2 Region3 Region4 Region5 Region6 Region7 Region8 

(0)S (person) 35 10×  34.5 10×  35.5 10×  35 10×  36 10×  34.8 10×  35.2 10×  34 10×  

(0)E (person) 30 35 30 40 25 40 50 45 

(0)I (person) 5 6 7 8 4 7 9 10 

(0)R (person)                    0 

β  54 10−×  

δ  0.3 

α  31 10−×  

t (day) 5 
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Figure 4 Numerical simulation of the SEIR model 

 

Figure 5 Demand for medical resources over time 

Figure 5 shows the changes in demand for 
medical resources during the entire testing 
response stage. While DFM-I is adopted to 
forecast the demand, medical resources supply is 
not enough from the 24th day to the 38th day. To 
avoid the stock-out situation, the suppliers 
should either improve their production capacity 
or replenish medical resources from other 
emergency suppliers. Whatever, the effect that 
medical resources allocated in early periods 
takes effect in subduing the spread of influenza 
and thus impacts the demand in the later period 
is ignored. While DFM-II is adopted, the above 
stock-out problem is no longer a problem. That 

means, the assumption that each supplier has a 
production capacity of 2,000 is feasible for the 
entire process. The second observation from 
Figure 5 is that both curves exhibit similar 
trends, namely, the demand will first increase 
along with the spread of influenza, and then 
decrease after it is under control. However, it is 
magnified while DFM-I is adopted to predict the 
demand, and the proposed DFM-II is superior to 
the first one in less waste of medical resources. 

4.2 Comparison and Discussion 
It is easy to obtain the global optimal 

solution of the programming model in the above 
test, since medical resources are provided 
enough. Herein, we refer it as ‘the global 
allocation mode’. An obvious question is that 
what will happen when the production capacity 
is limited? For example, if each supplier can 
only provide 1,000 units of medical resources in 
each decision cycle, does the global allocation 
mode still efficient to assign the medical 
resources? Moreover, based on our interviews 
with the public healthcare administrative 
personnel in China, an empirical method has 
always been adopted in practice. In such manual 
method, if medical resources supply is adequate, 
the demand in each hospital would be satisfied. 
Otherwise, while medical resources are limited 
provided, they would be allocated to each 
hospital according to the proportion of its 
demand in the total demand. Herein, we call it 
“the equilibrium allocation mode”, which can be 
formulated as follows. 
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Holding all the other parameters fixed as in 
numerical example given in Section 4.1, except 
that production capacity of each supplier, which 
is limited as 1,000 for each decision cycle. We 
calculate the whole test again and obtain the new 
final allocation results for each decision cycle. 
The comparison of supply and demand matching 
between these two methods is shown in Figure 6. 
Both allocation modes cannot avoid the problem 
of stock-out, and medical resources supply is not 
enough from the 22th day to the 34th day.  

 

Figure 6 Total demand of medical resources in each 
decision cycle 

To make a clear comparison between these 
two allocation results, we extract the final result 
on the decision cycle t=14 (the 29th day) as our 
example. The comparison result is shown in 
Figure 7. When we adopt the global allocation 
mode to assign the restricted medical resources, 
hospitals 1, 5 and 8 are supplied adequately, and 
the others are provided partially (see Figure 
7(a)). The total allocation cost on this decision 
cycle is 6,475RMB. However, when we 
implement the equilibrium allocation mode to 
assign the medical resources, significant gaps 
between supply and demand for each EDH are 
presented (see Figure 7(b)). The reason is that 
medical resources are allocated to each hospital 

according to the proportion of its demand in the 
total demand. The larger the demand is, the 
larger the shortage is. The total allocation cost 
for this mode is 6,642 RMB. Therefore, it can be 
concluded that the equilibrium allocation mode, 
which is always adopted as an empirical method 
in practice, is uneconomical. 

(a) 
       

   
 (b) 

Figure 7 Supply and demand on decision cycle t=14 
(the 29th day) 

In addition, we calculate the difference 
between the two total costs for these two modes. 
We also present the cumulative deficit for the 
cost difference. The results are shown in Figure 
8. Superficially, it is difficult to distinguish 
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which mode is the better one; but on the whole, 
the total allocation cost by using equilibrium 
allocation mode is the higher one. The second 
observation from Figure 8 is that the total 
quantity of medical resources allocated by using 
the equilibrium allocation mode is 44,741 units, 
and the total allocation cost is 150,076 RMB for 
the whole 30 decision cycles. However, these 
two values in global allocation mode are 
44,760units and 149,615 RMB, respectively. It 
can be concluded that the global allocation mode 
is more efficient, because it assigns more 
medical resources within less cost during the 
same time interval. 

 

Figure 8 Cost comparison between the two modes 

4.3 A Short Sensitivity Analysis 
In this section, we present a short sensitivity 

analysis of the parameter Γ  in time-varying 
demand forecasting model. Holding all the other 
parameters fixed as in numerical example given 
in Section 4.1, except that Γ  takes on five 
different values (10, 12, 15, 18 and 20), 
respectively. The total allocation cost on each 
decision cycle is shown in Figure 9. As Figure 9 
shows, the shorter Γ  is, the lower allocation 
cost is. It is worth mentioning that such a 
phenomenon only appears when medical 
resources are supplied adequately. The second 

observation from Figure 9 is that the occurrence 
time and the duration time of the stock-out are 
earlier and longer respectively as the growth of
Γ . The reason is that more medical resources 
would be required to treat the infected people if 
the treatment cycle is extended. Therefore, the 
total allocation cost would be increased and the 
duration time of stock-out would be extended. 
The above analysis confirms that this parameter 
plays an important role in medical resources 
allocation decisions. For a small change of Γ , 
the final allocation decisions and the total 
operation cost will be changed significantly. 

 
Figure 9 Total cost with different value of Γ  

5. Conclusions  
In this paper, we rely on a discrete 

time-space network to describe medical 
resources allocation problem when an 
unexpected influenza is outbreak. We formulate 
the problem as a multi-stage integer 
programming model with time-varying demand 
based on the SEIR diffusion rule. The three main 
differences that distinguish this work from the 
past literatures are presented as follows. 

Firstly, the model proposed in this paper 
addresses a time-series demand that is forecasted 
in match of the course of influenza diffusion. 
The model couples a multi-stage integer 
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programming for optimal allocation of medical 
resources with a proactive forecasting 
mechanism cultivated from influenza diffusion 
dynamics. The rationale that medical resources 
allocated in early periods take effect in subduing 
the spread of influenza and thus impact demand 
in later periods has been for the first time 
incorporated into our model.  

Secondly, the computational results based on 
a numerical example show that the proposed 
model is superior to the general measures in 
terms of cost reduction and medical resources 
control. Our model can reduce the total 
operation cost of medical resources allocation 
and may get influenza diffusion in control earlier 
than general measures.  

Last but not least, medical resources 
allocation problem has always been formulated 
as vehicle routing problem (VRP), or vehicle 
routing problem with time windows (VRPTW) 
in precious literatures, which includes many 
sub-tour constraints and is difficult to be solved. 
In this paper, we decompose medical resources 
allocation problem into several mutually 
correlated sub-problems, and solve them 
systematically in the same decision scheme 
subsequently. Therefore, the proposed method is 
more suitable for an actual decision-making 
support. 

The next research steps of this paper 
incorporate a more realistic influenza diffusion 
model including features such as subdivision of 
the population by risk group and disease stage. It 
can also include the cross area diffusion between 
two or more geographic areas, and the 
incorporation of purchase lead time of medical 
resources. In addition, the utilization of multiple 
resources in model is another important topic for 

the further research. 
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