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Abstract 
This paper considers solving a multi-objective optimization problem with sup-T equation constraints. 

A set covering-based technique for order of preference by similarity to the ideal solution is proposed 
for solving such a problem. It is shown that a compromise solution of the sup-T equation constrained 
multi-objective optimization problem can be obtained by solving an associated set covering problem. 
A surrogate heuristic is then applied to solve the resulting optimization problem. Numerical 
experiments on solving randomly generated multi-objective optimization problems with sup-T 
equation constraints are included. Our computational results confirm the efficiency of the proposed 
method and show its potential for solving large scale sup-T equation constrained multi-objective 
optimization problems. 
Keywords: Fuzzy relational equations, fuzzy optimization, set covering problems 
 

1. Introduction 
Fuzzy relational equations have played an 

important role in many applications of fuzzy sets 
and systems (Li and Fang 2008, Peeva and 
Kyosev 2004). Simultaneously optimizing 
several objective functions in the presence of 
fuzzy relational equation constraints can be 
formulated as the following multi-objective 
optimization problem:  

1Max/Min   (x) [ (x), , (x), , (x)]k KF f f f=    

 s.t.       x b,   x [0,1] ,nA = ∈       (1) 

where  :[0,1] R,  1, 2,..., ,n
kf k K→ =  is a real- 

valued function,  ( ) [0,1] ,m n
ij m nA a ×

×= ∈

1 1 x=( ) R , b ( ) [0,1]n m
j n i mx b× ×∈ = ∈ and “  ” 

stands for the specific sup-T composition with T 
being a continuous t-norm. In this way, 

x bA =  represents a system of fuzzy 
relational equations with sup-T composition (or 
a system of sup-T equations for short). The most 
frequently used t-norm in applications of fuzzy 
relational equations is the minimum operator 
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,MT i.e., ( , ) min( , ).MT x y x y= Another two 

important triangular norms are the product 
operator ( , )PT x y xy= and the Lukasiewicz 

t-norm ( , ) max( 1,0).LT x y x y= + −  

The problem (1) was first studied by Wang 
(1995) for medical applications, with 𝑓𝑓𝑘𝑘 being 
linear, for {1,2,..., }k K∈ . The properties of 
efficient solutions were investigated and the 
necessary and sufficient conditions for 
identifying efficient solutions were provided. 
Some investigations of the problem (1) can also 
be found in the area called the “inverse problem” 
(Bourke and Fisher 1998). Typically, the 
constraint part of the problem (1) is one form of 
the inverse problem, where matrix A  stands 
for the relation between symptoms and causes 
and vector b stands for the symptom. Each 
variable 𝑥𝑥𝑗𝑗  may represent one cause for the 
problem. Solving the problem means finding a 
combination of causes to yield the given 
symptom. In general, we may associate some 
measures such as cost, time to completion, etc., 
to a combination of causes. The problem (1) 
then represents selecting the best combinations 
among all feasible combinations of causes which 
yield the given symptom (Guu et al. 2011). 

The resolution of the system of sup-T 
equations is to determine the unknown vector 
X  for a given coefficient matrix A and a right 

hand side vector b  such that x=b.A  The set 
of all solutions, when it is non-empty, is a 
finitely generated root system which can be fully 
determined by a unique maximum solution and a 
finite number of minimal solutions (Li and Fang 
2009). For a finite system of fuzzy relational 
equations with sup-T composition, its 
consistency can be verified by constructing and 

checking a potential maximum solution. 
However, the detection of all minimal solutions 
is closely related to the set covering problem and 
remains a challenging problem (Pedrycz 1991, 
Markovskii 2005, Li and Fang 2009). Overviews 
of fuzzy relational equations and their 
applications can be found in Li and Fang (2009) 
and Peeva and Kyosev (2004). 
 It is well known that many decision making 

problems have multiple objectives which cannot 
be optimized simultaneously due to the inherent 
incommensurability and conflict among these 
objectives. Thus, making a trade off between 
these objectives becomes a major subject of 
finding the “best compromise” solution. A 
variety of methodologies for solving the 
multi-objective decision making (MODM) 
problems have been proposed (Hwang and 
Masud 1981, Zeleny 1982, Steuer 1986, Sakawa 
1993, Ramezani et al. 2011). Among them, the 
goal programming and global criterion methods 
are the popular approaches. These methods 
consider only one criterion based on the shortest 
distance from the given goal or the positive ideal 
solution. However, in practice, such single 
criterion may not be enough for a decision 
maker (Hwang and Masud 1981). Instead, the 
technique for order of preference by similarity to 
ideal solution (TOPSIS) was first developed by 
Hwang and Yoon (1981) to solve a multiple 
attribute decision making (MADM) problem. It 
provides the principle of compromise saying that 
the chosen alternative should have “the shortest 
distance from the positive ideal solution” and 
“the farthest distance from the negative ideal 
solution.” Lately, this principle of compromise 
was also suggested by Hwang et al. (1993) for 
solving MODM problems. Abo-Sinna (2000) 
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extended the TOPSIS to solve multi-objective 
dynamic programming problems. Lin and Yeh 
(2012) considered solving stochastic computer 
network optimization problems by employing 
the TOPSIS and genetic algorithms. Since vague 
concepts frequently appeared in decision data 
for modeling real-life situations, multi-objective 
decision makings in a fuzzy environment is of 
theoretical and practical importance. Chen (2000) 
extended the concept of TOPSIS to develop a 
methodology for solving multi-person multi- 
criterion decision-making problems in a fuzzy 
environment. In this paper, we show that by 
applying the basic principle of compromise of 
TOPSIS, the fuzzy relational equation 
constrained multi-objective optimization pro- 
blem (1) can be reduced to a sup-T equation 
constrained optimization problem. 
  The problem of minimizing a linear objective 
function subject to a system of fuzzy relational 
equations with max-min composition was first 
investigated by Fang and Li (1999). Most 
recently, it was shown (Li and Fang 2008) that 
the problem of minimizing an objective function 
subject to a system of fuzzy relational equations 
can be reduced to a 0-1 mixed integer 
programming problem in polynomial time. If the 
objective function is linear, or more generally, 
separable and monotone in each of the variables, 
then it can be further reduced to a set covering 
problem (Hu and Fang 2011). The set covering 
problem is known to be one of Karp’s 21 
NP-complete problems. Many algorithms have 
been developed to solve it. Exact algorithms are 
mostly based on brand-and-bound and branch- 
and-cut (Balas and Carrera 1996, Fisher and 
Kedia 1990). However, these algorithms are 
rather time consuming and can only solve 

instances of very limited size. For this reason, 
many research efforts have been focused on the 
development of heuristics to find good or 
near-optimal solutions within a reasonable 
period of time. The most effective heuristics for 
solving set covering problems are those based 
on Lagrangian relaxation with subgradient 
optimization (Beasley 1990, Fisher and Kedia 
1990). Some meta-heuristics methods, including 
genetic algorithm (Beasley and Chu 1996), 
simulated annealing algorithm (Brusco 1999) 
and tabu search algorithm (Caserta 2007), have 
also been applied to the set covering problems. 
For a deeper understanding of the effective 
algorithms for set covering problems in the 
literature, readers may refer to the survey in 
Caprara (2000). In this paper, we consider 
applying an effective surrogate heuristic studied 
in Lorena and Lopes (1994) for solving the 
resulting sup-T equation constrained optimiza-  
tion problem in view of the associated set 
covering problem. The surrogate heuristic 
presents comparable results in terms of bounds 
to the Lagrangian heuristic of Beasley (1990), 
one of the best known heuristics for the set 
covering problem, but with about half the 
computational time for the same test problems 
(Lorena and Lopes 1994).  

The rest of this paper is organized as follows. 
In Section 2, we show that a compromise 
solution of the fuzzy relational equation 
constrained multi-objective optimization 
problem (1) can be obtained by solving a sup-T 
equation constrained optimization problem. A 
surrogate heuristic is introduced in Section 3 for 
solving the resulting sup-T equation constrained 
optimization problem. Numerical experiments 
on solving randomly generated multi-objective 
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optimization problems with sup-T equation 
constraints are included in Section 4 to show the 
prominent performance of the proposed method. 
Conclusions are provided in Section 5. 

 
2. Solving Fuzzy Relational Equation 
Constrained Multi-objective Optimi- 
zation Problem 

To solve the sup-T equation constrained 
multi-objective optimization problem (1), we 
adopt the principle of compromise, i.e., the 
chosen solution should have “the shortest 
distance from the positive ideal solution” and 
“the farthest distance from the negative ideal 
solution” (Hwang and Yoon 1981). An 
analogical discussion in Hwang et al. (1993) for 
solving MODM problems by the principle of 
compromise is provided in this section.  

Let : {x [0,1] | x=b}nX A= ∈  be the feasible 
domain and I, J be two index sets. For each 

,j J∈ (x)if  is an objective function to be 
maximized. Similarly, for each ,i I∈ (x)if  is 
an objective function to be minimized. 

To define the positive ideal solution and 
negative ideal solution of the problem (1), for 
each k, 1,2, , ,k K=    we consider 

 
max ( ), if ,
min ( ), if ,

x k
k

x k

f k J
f

f k I
Χ
Χ

∈Χ∗

∈Χ

∈
 ∈

        (2) 

and  
max ( ), if ,

min ( ), if .

kx
k

kx

f k J
f

f k I

Χ

Χ
∈Χ∗

∈Χ

∈
 ∈

           (3) 

Let 1 2( , ,..., ) R K
Kf f f f∗ ∗ ∗ ∗ ∈  be the solution 

vector of equation (2) which consists of 
individual best feasible solutions for all 
objectives. f ∗ is then called the positive ideal 
solution (PIS). Similarly, let 1 2( , ,f f f∗ ∗ ∗

  

..., ) R K
Kf
∗ ∈ be the solution vector of equation 

(3) which consists of individual worst feasible 
solutions for all objectives. f −  is then called 
the negative ideal solution (NIS). 
   To measure the distances from PIS and NIS 
to all objectives, the Minkowski’s 𝐿𝐿𝑃𝑃-metric is 
employed, i.e., the distance between two points 

( )kf x and kf
∗  (or ), 1, 2, , ,kf k K− =  is 

defined by the 𝐿𝐿𝑃𝑃-norm with p ≥ 1. Moreover, 
because of the incommensurability among 
objectives, the component distance from PIS or 
NIS for each objective is normalized. The 
following distance functions are then 
considered:  

 1

( )
( )

( )
,

p
j jPIS p

p j
j J j j

p p
p i i
i

i I j i

f f X
d X w

f f

f X f
w

f f

∗

∗ −
∈

∗

− ∗
∈

  −  = +
−   

 −   
−    

∑

∑

     (4) 

and 
                                 

1

( )
( )

( )
,

p
j jNIS p

p j
j J j j

p p
p i i
i

i I i i

f X f
d X w

f f

f f X
w

f f

∗

∗ −
∈

−

− ∗
∈

  −  = +
−   

 − 
  

−    

∑

∑

    (5) 

where PIS
Pd  and NIS

Pd  are the distances from 
the PIS and NIS to all objectives, respectively, 

[0,1], 1, 2, , ,kw k K∈ =  is the relative 
importance (weight) of objective function k, and 
p ≥ 1 is the parameter of a norm function. 

To consider the objectives of “minimize the 
distance from PIS or PIS

Pd ” and “maximize the 
distance from NIS or NIS

Pd ” instead of the 
original K objectives in problem (1), we have 
the following bi-objective programming 
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problem:  
min  (x)PIS

Pd  
max  (x)NIS

Pd                (6) 
 s.t.  A x=b,  
      x [0,1] .n∈  

Among all p values, the case of p = 1 is 
operationally and practically important, which 
provides better credibility than others in the 
measuring concept and emphasizes the sum of 
individual distances (regrets for PIS

Pd  and 
rewards for NIS

Pd ) in the utility concept (Hwang 
et al. 1993). Our work adopts p=1 for finding the 
compromise solution to the sup-T equation 
constrained multi-objective optimization 
problem (1). For the rest of the paper, p = 1 is 
chosen, although other values may be 
applicable. 

Lemma 2.1 The compromise solution of 
problem (1) can be obtained by solving the 
following sup-T equation constrained optimiza- 
tion problem: 

min  (x)PIS
Pd  

 s.t.  A x=b,               (7) 
      x [0,1]n∈  

or 
max  (x)NIS

Pd  
 s.t.  A x=b,               (8) 

      x [0,1] .n∈  

Proof. Since PIS
Pd = 1 NIS

Pd−  for 1,p =  “min

1
PISd ” and “max 1

NISd ” are subjected to the 
same system of sup-T equation constraints and 
have the same solution whether the weights of 
the objectives are the same or not. Thus, solving 
the bi-objective programming problem (6) is 
equivalent to solving either problem (7) or 
problem (8). Consequently, the compromise 

solution of problem (1) can be obtained by 
solving the sup-T equation constrained optimiz- 
ation problem (7) or (8). 
   In the implementation of TOPSIS for solving 
the sup-T equation constrained multi-objective 
optimization problem (1), we face the challenge 
of solving the fuzzy relational equation 
constrained optimization problems (2), (3), (7) 
or (8). This work considers solving the fuzzy 
relational equation constrained optimization 
problem in view of a set covering problem. 

3. Solving Sup-T Equation Constrain- 
ed Optimization Problem 

To solve the fuzzy relational equation 
constrained optimization problem, we recall 
some basic concepts and theoretical results 
associated with fuzzy relational equations in Li 
and Fang (2008). For the convenience of 
description, two index sets are defined by 

{1,2,..., }M m=  and {1,2,..., }.N n= The 
relationship between the sup-T equation 
constrained optimization problem and its 
associated set covering problem is provided in 
Section 3.1. 

3.1. Resolution of Systems of Sup-T 
Equations 

As mentioned in Section 1, the solution set 
of a finite system of sup-T equations, when it is 
non-empty, can be determined by a maximum 
solution and a finite number of minimal 
solutions. To characterize the solution set of a 
system of sup-T equations, two residual 
operators are defined with respect to a 
continuous t-norm T. 

Definition 3.1 Given a t-norm T, the binary 
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residual operators 2: [0,1] [0,1]TI → and 
2: [0,1] [0,1]TJ →  are defined, respectively, by 

( , ) sup{ [0,1] | ( , ) }TI x y z T x z y= ∈ ≤  
and 
   ( , ) inf{ [0,1] | ( , ) }.TJ x y z T x z y= ∈ ≥  

The residual operators TI and TJ  of the three 
most important continuous t-norms are listed in 
Table 1. 

Table 1 Residual Operators of MT , PT , and LT  

T    ( , )TI x y        ( , )TJ x y  

MT    1,   if  x y≤       1,   if  x y<  

     ,otherwisey      ,   otherwise.y  

  PT     1,   if  x y≤       1,   if  x y<  
        ,   otherwise.y x    ,   if 0< ,y x y x≤  
                       0,   otherwise.   

LT     min(1 ,1)x y− +    1,   if  x y<  
                     1 ,   if  0x y y x− + < ≤  
                     0,   otherwise.  
 
Given a system of sup-T equations x=bA  

with a continuous t-norm T , the set of all 
solutions to x=bA  is called its complete 
solution set and denoted by ( , b) {xS A = ∈  

[0,1] | x=b}.n A  A partial order can be defined 

on ( , b)S A  by extending the natural order such 

that for any 1 2x , x ( , b),  S A∈ 1 2x x  ≤ if and 

only if 1 2x , xj j  for all .j N∈  A system of sup-T 

equations x=bA  is called consistent if
( , b) .S A φ≠  Otherwise, it is inconsistent. Due 

to the monotonicity of the t-norm involved in the 

composition, if 1 2x , x ( , b),  S A∈ and 1 2x x , ≤

any x  satisfying 1 2x x x  ≤ ≤ is also in 
( , b).S A  Therefore, the attention could be 

focused on the so-called extremal solutions as 
defined below. 

Definition 3.2 A solution x S(A,b)∈  is called 
a minimal or lower solution if, for any 
x S(A,b),∈  the relation x x ≤   implies x=x.  
A solution x̂ S(A,b)∈  is called the maximum 
or greatest solution if ˆx x, x S(A,b).≤ ∀ ∈  

Theorem 3.1 (see, e.g., Li and Fang 2008) Let 
x=bA be a system of sup-T equations with a 

continuous t-norm T. The system is consistent if 
and only if the vector bT

tA ϕ  with its 
components defined by 

( b) inf ( , ),   ,T
t j T ij ii M

A I a b j Nϕ
∈

= ∀ ∈    (9) 

is a solution to x=b.A  Moreover, if the 
system is consistent, the solution set ( , b)S A  
can be determined by a unique maximum 
solution and a finite number of minimal 
solutions, i.e., 

x ( ,b)
ˆ( , b) U {x x x},

S A
S A

∈
= ≤ ≤





     (10) 

where ( , b)S A


is the set of all minimal solutions 
to x=bA and bT

tA ϕ is the maximum solution 
defined in (9). 

Clearly, the consistency of a system x=bA  
can be detected by constructing and checking 
the potential maximum solution x̂= bT

tA ϕ  in a 
time complexity of O (mn). 

With the potential maximum solution x̂ , the 
characteristic matrix ( )ij m nQ q ×=  of a system 

x=bA  can be defined by 

ˆ ˆ[ ( , ), ],    if ( , ) ,

,                  otherwise,
T ij i j ij j i

ij
J a b x T a x b

q
φ

 == 


  

and obtained in a time complexity of O(mn). 
When T is a continuous Archimedean t-norm of 
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which the product operator PT and the 

Lukasiewicz t-norm LT  are typical 

representatives, the nonempty elements in Q  

are always singletons with their values 
determined by the potental maximum solution 
(Li and Fang 2008). The characteristic matrix 

Q  in this case can be further simplified as 

( )ij m nQ q ×=  with 

1,    if   0,

0,    otherwise,
ij

ij
q

q
≠= 





 

Definition 3.3 Let { }( ) 0,1 mn
ij mxnQ q= ∈ be a 

binary matrix. A column j is said to cover a row 
i if ijq = 1. A set of nonzero columns P forms a 

covering of Q if each row of Q is covered by 
some column from P. A column j in a covering 
P is called redundant if the set of columns 

\{ }P j  remains to be a covering of Q. A 

covering P is irredundant if it has no redundant 
columns. The set of all coverings of Q is 
denoted by P(Q) while the set of all irredundant 

coverings of Q is denoted by P


(Q). 

Example 1 Consider the binary matrix 

0 0 0 1 1
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
1 1 1 0 0

Q

 
 
 
 =
 
 
 
 

 

1 {1,2,4,5}P =  is a covering of Q. Since 

1 \{5}P remains a covering of Q, 1P  is redundant. 
The set of all irredundant coverings of Q is P



(Q) = {{1, 2, 4}, {1, 3, 4}, {1, 2, 5}, {1, 3, 5}, 
{2,4, 5}, {3, 4, 5}}. 

It is well-known (Li and Fang 2008) that the 
set of all coverings P(Q) of a binary matrix Q 

can be well represented by the feasible solution 
set of a set covering problem, i.e., {u [0,1] |n∈   

u e}Q ≥  where { }(1,1,...,1) 0,1 ,mne = ∈ while 
the irredundant coverings of Q correspond to the 
minimal elements in {u [0,1]n∈ | u e}Q ≥ .  

When the system of sup-T equations 
x=bA with T being a continuous 

non-Archimedean t-norm, the situation turns out 
to be a little bit complicated. Denote jr the 

numbers of different values in 

{ }ˆ( , ) | ( , ) ,T ij i ij j iJ a b T a x b i M= ∈ for each 

,j N∈ jj Jr r
∈

= ∑ , { }1,2,...,j jK r=  and ,jkv

for k ∈ 𝐾𝐾𝑗𝑗 , the different values in 

{ }ˆ( , ) | ( , ) ,T ij i ij j iJ a b T a x b i M= ∈ for every 

.j N∈  Let [ ]
111 1 1( ,..., ,..., ,..., ) 0,1

n

rT
r n nrv v v v v= ∈      

and  
,  ,

j

j jk jk
k K

x v u j N
∈

= ∈∑   

where {0,1},  , .jk ju k K j N∈ ∀ ∈ ∈ Obviously, 

for each j ∈ N, at most one of ,  jk ju k K∈ can 

be 1, i.e., ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑘𝑘∈𝐾𝐾 1, . j N≤ ∈ These restrictions 
are called the innervariable incompatibility 
constraints and can be represented by Gu ≤ ne , 
where 11(1,1, ,1) {0,1} ,  u=(u , ,n T ne = ∈ 

11u ,r  

1,u ,n ,u )
n

T
nr ∈ {0,1}r and G = ( )jk n rg × with 

1

1 1
1,  if ,

0,     otherwise.         

j j

s s
jk s s

r k r
g

−

= =


< ≤= 




∑ ∑  

The characteristic matrix Q  in this case can be 
further converted to its augmented characteristic 
matrix ( ) {0,1}mr

ik m rQ q ×= ∈  with 
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1

1 1
1,  if ,  ,  ,

0,otherwise.

j j

s s jk ij
ik s s

r k r v q j N
q

−

= =


< ≤ ∈ ∈= 




∑ ∑ 



 

It was shown that the minimal solutions of a 
system of sup-T equations correspond 
one-to-one to the irredundant coverings of a set 
covering problem when the involved t-norm is 
Archimedean and correspond to a subset of 
constrained irredundant coverings of a set 
covering problem when the t-norm is 
non-Archimedean (Li and Fang 2008). 

The problem of minimizing a linear 
objective function subject to a consistent system 
of sup- MT  equations was first investigated by 

Fang and Li (1999). Most recently, it was shown 
(Li and Fang 2008) that the problem of 
minimizing a linear objective function subject to 
a system of sup-T equations can be reduced to a 
0-1 mixed integer programming problem in 
polynomial time. The procedure for solving 
sup-T equation constrained linear optimization 
problems can be directly extended to the case 
where the objective function is separable and 
monotone in each of the variables, i.e., 

( )j jj Jz f x
∈

= ∑  with [ ]: 0,1jf R→  being a 

monotone function for every .j N∈  Without 

loss of generality, we may assume that (0) 0jf =     

for every .j N∈  A systematic and unified result 

for solving the sup-T equation constrained 
optimization problem can be described as 
follows: 
Theorem 3.2 Let x=bA  be a consistent 
system of sup-T equations with T being a 
continuous t-norm. Denote x̂ its maximum 
solution. For a given function ( )j jj Jz f x

∈
= ∑  

with jf : [0, 1] → R being a monotone function 

for every ,j N∈  let { |N j N− ∈ 𝑓𝑓𝑗𝑗  is a 

decreasing function} and N+
 N \ N−. 

Consider the following sup-T equation 
constrained optimization problem: 

min  (x)PIS
Pd  

 s.t.  A x=b,               (11) 

      x [0,1] .n∈   
(i)When T is a continuous Archimedean t-norm, 
any optimal solution 1 2u ( , ,..., )T

nu u u∗ ∗ ∗ ∗=  to 
the set covering problem 

ˆmin ( )u j j jj Nz f x u+
+

∈
= ∑  

{ }
(SCP Ar) . . ,

0,1 ,

m

n

s t Qu e

u

− ≥

∈
 

defines an optimal solution 1 1 2 2ˆ ˆx ( , ,...,x u x u∗ ∗ ∗=  

ˆ )T
n nx u∗ to problem (11), where Q is the 

associated simplified characteristic matrix of 
x=b.A  

(ii)When T is a continuous non-Archimedean 
t-norm, any optimal solution to the set covering 
problem 

{ }

ˆmin ( )

(SCP nAr) . . ,

0,1 ,

j

u i jk jk
j Kj N

m

r

z f v u

s t Qu e

u

+

+

∈∈

=

− ≥

∈

∑ ∑

 

defines an optimal solution 

1 2

1 1 2 2x ( , ,..., )
n

T
k k k k nk nk

k K k K k K
v u v u v u∗ ∗ ∗ ∗

∈ ∈ ∈
= ∑ ∑ ∑     

to problem (11), where Q is the associated aug- 
mented characteristic matrix of x=bA . 

Once the optimal solution 1 2x ( , ,...,x x∗ ∗ ∗=    

)T
nx∗ to problem (11) is obtained, the 

corresponding optimal solution that minimizes 
the objective function ( )j jj J f x

∈∑  over S(A, 

b), i.e., 1 2x ( , , , )T
nx x x∗ ∗ ∗ ∗=  can be obtained by 
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,   if  ,

ˆ ,    if  . 
j

j
j

x j N
x

x j N

∗ +
∗

−

 ∈= 
∈



 

Proof. The results are direct consequences of 
Theorems 3.4, 3.7 and 4.2 of Li and Fang 
(2008). 

The following example studied in Hu and 
Fang (2011) illustrates the result of Theorem 
3.2. 
Example 2. Consider the system of sup- MT  
equations with a separable and monotone 
objective function in each of the variables 
described as below. 

( ) ( ) ( )2 22
1 1 2 3 4 5 6min  ( 4)xz x x x x x x x= − + + + + +

0.6 0.5 0.6 0.6 0.6 0.2 0.6
0.1 0.6 0.8 0.5 0.6 0.7 0.7
0.8 0.8 0.5 0.8 0.2 0.8 0.8

s.t.   x ,
0.8 0.95 0.1 0.3 0.9 0.9 0.9
0.9 0.8 0.4 0.95 0.4 1 0.95
1 0.8 0.4 1 1 0.5 1

   
   
   
   

=   
   
   
      
   



 [ ]0,1 ,  1, 2,...,6.jx j∈ =
 

            
(12) 

According to Theorem 3.1, the system of sup-

MT equations has the maximum solution
x̂ (1,0.9,0.7,1,1,0.95) .T= Its associated 
characteristic matrix is  

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ]
[ ] [ ]

[ ]

0.6,1 0.6,0.7 0.6,1 0.6,1
0.7 0.7,0.95

0.8,1 0.8,0.9 0.8,1 0.8,0.95
.

0.9 0.9,1 0.9,0.95
0.95,1 0.95

1 1 1

Q

φ φ
φ φ φ φ

φ φ
φ φ φ
φ φ φ φ

φ φ φ

 
 
 
 

=  
 
 
  
 



In this case, {1},  {2,3,4,5,6}N N− += =  and 

11 12 13 21 22 31 32 41 42 43( , , , , , , , , , ,v v v v v v v v v v v=                   

44 51 52 53 61 62 63 64, , , , , , , )Tv v v v v v v v         

(0.6,0.8,1,0.8,0.9,0.6,0.7,0.6,0.8,0.95,

1,0.6,0.9,1,0.7,0.8,0.9,0.95) .T

=
    

According to Theorem 3.2, the associated set 
covering problem of (12) can be described as 
below. 

21 22 31 32

41 42 43 44 51

52 53 61 62 63 64

min 0.64 0.81 0.36 0.49
0.6 0.8 0.95 0.36
0.81 0.7 0.8 0.9 0.95 .

uz u u u u
u u u u u
u u u u u u

+ = + + + +

+ + + + +

+ + + + +

1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1
0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1

s.t.  ,
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1

u

   
   
   
   

≥   
   
   
      
   

11 12 13 21 22 31 32 41 42 43
18

44 51 52 53 61 62 63 64

( , , , , , , , , , ,

, , , , , , , ) {0,1} .T

u u u u u u u u u u u

u u u u u u u u

=

∈
  

 
   Based on the above discussion, the 

problem of minimizing a separable and 
monotone objective function in each of the 
variables subject to a system of sup-T equations, 
with T being a continuous t-norm, can be 
polynomially reduced to a set covering problem. 
The set covering problem is a well-known 
NP-hard problem and, hence, difficult to solve. 
Consequently, large set covering problems are 
usually solved by means of greedy type 
heuristics for quickly identifying a near optimal 
solution. However, classical greedy algorithms 
seldom provide high quality solutions. An 
effective heuristic approach based upon 
continuous surrogate relaxations and subgradient 
optimization has been proposed for solving set 
covering problems (Lopes and Lorena 1994). 
The computational results in Lopes and Lorena 
(1994) indicate that the surrogate heuristic is 
faster and more stable than the known heuristics 
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based on Lagrangian relaxations. 

3.2. A Surrogate Heuristic for Solving Set 
Covering Problems 

In this section, an analogical discussion of 
the surrogate heuristic in Lopes and Lorena 
(1994) for solving the resulting sup-T equation 
con- strained optimization problem in view of 
the set covering problem is introduced. 

Consider a set covering problem in the 
following form:                     

{ } { }

'
1min

. . ,
0,1 , 1, 2,..., ' ,

n
j jj

m

j

z c u

s t Qu e
u j n

=
=

≥

∈ ∀ ∈

∑
    (13) 

where jc ≥ 0 represents the weight associated 

with the variable { }, 1, 2,..., ' ,ju j n∈ Q is an m × 

n′ matrix of zeros and ones, and me is the 
m-vector of 1’s. 

The continuous surrogate relaxation of the 
set covering problem (13) can be defined as  

{ } { }

'
1min

( ) . . ,
0,1 , 1, 2,..., ' ,

n
j jj

T T m
w

j

z c u

S s t w Qu w e
u j n

=
=

≥

∈ ∀ ∈

∑
 

where 1 2( , ,..., ) RT m
mw w w += ∈w  is the 

surrogate multiplier vector. It is easy to see that 
the continuous surrogate relaxation, ( wS ), 
corresponds to a very particular case of a 
classical knapsack problem. In this case, its 
optimal solution can be achieved resorting to the 
well known properties established for such 
problems. To find the optimal solution of ( wS ), 
for a given w Rm

+∈ , the efficiency of the j-th 
variable of ( wS ) is defined by 

{ }, 1, 2,..., ' ,j
j T

j

c
d j n

w q
∀ ∈  

where jq  is the j-th column of matrix Q. If the 

optimal solution 1 2 '( , , , )T
w w w wnu u u u=   of 

( wS ) is assumed to be ordered according to 

efficiency, i.e., 1 2 '... ,w w wnd d d≤ ≤ then 

1
11,1,...,1, ,0,0,...,0 ,

jT m T
wjj

w T
wj

w e w q
u

w q

∗−
=

∗

 −
 =   
 

∑
  

where 
1

1 1
w w w

j j
T T m T

wj wj
j j

q e q
∗ ∗−

= =
≤ ≤∑ ∑  and wj∗  

is the index of the fractional variable. 
Let v(·) denote the optimal value of a given 

problem (·). The problem to find a surrogate 
multiplier vector w mR+∈  that maximizes v ( wS ) 
is called the surrogate dual problem. We assume 
the reader is familiar with the duality theory in 
the combinatorial optimization (see, e.g., Parker 
1988 for details). The surrogate heuristic is a 
procedure that approximates the solution of the 
surrogate dual and provides a lower bound for 
the set covering problem (13). A subgradient 
method is employed in the surrogate heuristic to 
determine the optimal (near optimal) surrogate 
multipliers for the surrogate dual. The use of 
subgradient procedure in the context of 
Lagrangian duality to solve structured 
combinatorial optimization problems has been 
shown to be very effective and to work better 
than classical gradient procedures or column 
generation techniques (Held et al. 1974, 
Nemhauser and Wolsey 1988). For a given w

Rm
+∈ , the subgradient procedure in the 

surrogate heuristic uses the direction 

( ) ( ) ( ) ( )( )1 2 ,..., ,T m
m wG w G w G w G w e Qu= −   

where wu  is the optimal solution of ( wS ) and 

wju ∗  is set to be 0. It generates a sequence of 

nonnegative surrogate multiplier vectors 
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(0) (1){ , , },w w   where (0)w is a given initial 

vector and ( 1)w l+  is updated from ( ) ,lw

0,1,2,...,l =  by the following formula: 

( 1) ( ) ( )
( ) 2max 0, ( ) ,

|| ( ) ||
1, 2,..., ,

l l lub lb
i i i il

f f
w w G w

G w
i m

ρ+  − ← + 
  

=

  

with ubf and lbf  being the upper and lower 
bounds of the set covering problem (13), 
respectively, and ρ being a parameter associated 
with the step size. It has been shown (Lorena 
and Plateau 1988) that the direction G(w), for w

R ,m
+∈  is a subgradient for the Lagrangian 

function of the problem ( )Lλ                   

{ } { }

'
1min ( )

. . 0,1 , 1, 2,..., ' ,

n T m
j jj

j

L z c u e Qu

s t u j n

λ λ
=

= + −

∈ ∀ ∈

∑  

by setting ( / w ) wT
wj wjc qλ ∗ ∗= ⋅ and ( )v Lλ =

( ).wv S As a consequence, it can be conjectured 

that the surrogate heuristic is also a Lagrangian 
heuristic. Computational tests in Lopes and 
Lorena (1994) for large scale set covering 
problems (up to 1,000 rows and 12,000 columns) 
indicate the surrogate heuristic produces 
better-quality results than algorithms based on 
Lagrangian relaxations in terms of final 
solutions and mainly in computing time.  

Based on the above discussion, a set 
covering-based TOPSIS algorithm with 
surrogate heuristic for finding the compromise 
solution of the sup-T equation constrained 
multi-objective optimization problem (1) can be 
organized as below. 
Set Covering-based TOPSIS Algorithm 
Step 1. Decision maker provides the relative 
importance kw  of the K objective functions. 
(There are various methods including the 

eigenvector, weighted least square, entropy and 
LINMAP methods for assessing kw  (Hwang 
and Yoon 1981). 
Step 2. Determine the positive ideal solution 
( )f ∗  by solving equation (2). 
Step 2.1. Construct the associated set covering 
problem of (2) and set C = 1. 
Step 2.2. Solve the associated set covering 
problem (SCP) with the weight vector 1 2( , ,c c  

'..., )T
nc and an m × n′ matrix Q of zeros and 

ones using the surrogate heuristic. 
Step 2.2.1. Initialize. Let ubf  = +∞, lbf  = −∞ 
and w = me , the m-vector of 1′s, (w ≥ 0 and w 
≠ 0). 
Step 2.2.2. Solve the associated surrogate 
relaxation ( wS ) of SCP and let the solution be 

1 2 'u ( , , , )T
w w w wnu u u=   with an optimal value 

v( wS ) and wj∗ being the index of the fractional 
variable. 
Step 2.2.3. Construct a feasible solution for SCP 
using wu . Set wju ∗ = 1 and construct a feasible 

solution 
1 2 '

u ( , ,..., )
n

T
f f f fu u u=  for SCP with 

value z(w) = '
1 .

j

n
j fj c u

=∑  

Step 2.2.4. Update ubf and lbf . Let ubf  = 
min( ubf , z(w)) and lbf  = max( lbf , v( wS )). 
Step 2.2.5. Check the following stopping rules. 
If (a) ub lbf f ε− <  with a sufficiently small ε > 

0, or (b) the value lbf  has not increased in the 

last 10 iterations, then output fu  as the 

optimal (near optimal) solution for SCP and go 
to Step 3. Otherwise, continue. 
Step 2.2.6. Find the subgradient direction G(w) 
and the step size wt . Set 0wju ∗ =  and define  

: / wjdρ α ∗= for the new step size 

: ( ),w ub lbt f fρ= −  

with α > 0 being a given parameter, and update 
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the vector w with 

2
( )

max 0, , 1, 2,..., ,
|| ( ) ||

w i
i i

t G w
w w i m

G w
  ← + = 
  

 

where 
'
1( ) .nm

wj wjjG w e q u
=

= −∑  

Return to Step 2.2.2. 
Step 3. If C = 1, then go to Step 4; else if C = 2, 
then go to Step 5. Otherwise, output the obtained 
solution fu  as the compromise solution of (1) 
and go to Step 6. 
Step 4. Determine the negative ideal solution 
( )f − by solving equation (3). 
Step 4.1. Construct the associated set covering 
problem of (3) and set C = 2. 
Step 4.2. Go to Step 2.2. 
Step 5. Substitute the positive ideal solution and 
the negative ideal solution obtained in Steps 2 
and 4 into problem (7), construct its associated 
set covering problem and set C = 3. Go to Step 
2.2. 
Step 6. If the compromise solution of (1) 
obtained by the set covering-based TOPSIS 
approach is satisfied, stop. Otherwise, the 
decision maker may like to change kw or the 
stopping rules of the surrogate heuristic. Then, 
go back to Step 1 or modify Step 2.2.5. The 
solution procedure is then repeated. 

4. Numerical Experiments 
In this section a numerical example is 

provided to illustrate the set covering-based 
TOPSIS for solving the sup-T equation 
constrained multi-objective optimization pro- 
blems. Computational experiences on solving 
randomly generated multi-objective optimiza- 
tion problems with sup-T equation constraints 
are also reported. 

Example 3 
Consider the following system of sup- MT  

equation constrained multi-objective optimiza- 
tion problem studied in Loetamonphong et al. 
(2002): 

[ ]

1 1 2 3 4

2 1 2 3 4

1

2

3

4

min   ( ) 0.6 0.5 0.1 0.3
min   ( ) 0.3 0.4 0.2 0.3

0.1 0.9 0.8 0.1 0.8
0.4 0.7 1 0.3 0.7

s.t     
0.5 0.2 0.5 0.5 0.5
0.1 0 0 0 0

0,1 , 1,2,3,4.j

f x x x x x
f x x x x x

x
x
x
x

x j

= + − −

= − − −

    
    
    =
    
    

    
∈ =



 

(14)
 

Let  

[ ]
1

4 2

3

4

0.1 0.9 0.8 0.1 0.8
0.4 0.7 1 0.3 0.7

0,1 , .
0.5 0.2 0.5 0.5 0.5
0.1 0 0 0 0

x
x

x X x
x
x

     
     
     ∈ ∈ =                

3   

Applying the basic principle of compromise 
of TOPSIS, problem (14) can be reduced to the 
following sup- MT  equation constrained 
optimization problem: 

1 1 2 2
1 1 2

1 1 2 2

( ) ( )
min ( )PIS

x
f X f f X fd X w w

f f f fΧ

∗ ∗

∈ − ∗ − ∗

   − −
= +   

− −      

 

(15) 
where 

1 1min ( ),xf f xΧ
∗

∈=        (16) 

  2 2min ( ),xf f xΧ
∗

∈=        (17)  
                     1 1max ( ),xf fΧ Χ−

∈=       (18)         

2 2max ( ),xf fΧ Χ−
∈=       (19) 

and  

1w = 2w = 1/2. 
The surrogate heuristic is then applied to 

solve the problems (16)-(19) in view of the 
associated set covering problems. 

Consider the sup- MT  equation constrained 
optimization problem (18): 
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1 2 3 4max 0.6 0.5 0.1 0.3 .x X x x x x∈ + − −  

The associated set covering problem becomes 

{ }

11 21 22 23 31 32

33 41 42 43

1011 21 22 23 31

32 33 41 42 43

min 0 0 0 0 0 0.05
0.07 0 0.15 0.3
0 0 0 1 0 0 0 0 0 0 1
0 0 1 1 0 0 1 0 0 0 1

s.t.   ,
0 0 0 0 0 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1

, , , , ,
0,1 .

, , , ,

T

u u u u u u
u u u u

u

u u u u u
u

u u u u u

− + + + + + +

+ + +

   
   
   ≥
   
   
   

 
= ∈ 
 

 

(20) 
Initial reduction tests are conducted for the 

set covering problem (20) before implementing 
the surrogate heuristic. Since row 1 is covered 
only by column 4, we have 23u∗ = 1 and the 
rows 1, 2, 4 and columns 1, 2, 3, 4, 5, 8 can be 
deleted from the problem. The reduced problem 
becomes           

{ }

32 33 41 42 43

32 33 42 43

11 21 22 23, 31 32 33 41 42 43

min 0.05 0.07 0 0.15 0.3
s.t. 1,

, , , , , , , , 0,1

u u u u u
u u u u
u u u u u u u u u u

− + + + +

+ + + ≥

∈

 

 (21) 
Applying the surrogate heuristic for the set 

covering problem (21), we first find the solution 
for the surrogate relaxation ( wS ) of (21). 

At iteration #1 : 
For a given w = 1, the continuous surrogate 
relaxation ( wS ) of (21) can be described as 

follows: 

{ }

32 33 41 42 43

32 33 42 43

11 21 22 23, 31 32 33 41 42 43

min 0.05 0.07 0 0.15 0.3
s.t. 1,

, , , , , , , , 0,1

u u u u u
u u u u
u u u u u u u u u u

− + + + +

+ + + ≥

∈

  

(22) 
Compute 

32 33 42 43
0.05 0.07 0.15 0.3 .

1 1 1 1
d d d d= ≤ = ≤ = ≤ =

Since 0 ≤ 1 ≤ 32
Tw q , we have wj∗  = 32. The 

optimal solution 

( )
( )

11 21 22 23 31 32 33 41 42 43, , , , , , , , ,

    0,0,0,1,0,1,0,0,0,0

T
w

T

u u u u u u u u u u u=

=

with the optimal value ( ) 0.05.wv S = −  

To construct a feasible solution for the set 
covering problem (21) using ,wu a feasible 
solution  

( )

( )
11 21 22 23 31 32 33 41 42 43, , , , , , , , ,

    0,0,0,1,0,1,0,0,0,0

T
f

T

u u u u u u u u u u u=

=  
is then obtained with the objective value 
z(w)=-0.05. 

Update ubf ←−0.05 and lbf ←−0.05. 
Since ubf = lbf , an optimal solution to problem 
(18) can be constructed as x (0,0.8,0.5,0)T∗ =
with the optimal value 1f

− = 0.35. The solutions 
of problems (16)-(19) can be obtained in an 
analogous manner and are shown in Table 2.

 
Table 2 The solutions of problems (16)-(19) 

 1f  2f  1x   2x   3x   4x   

1min ( )x f xΧ∈   1 0.03f ∗ =   -0.76 0 0.8 0.7 1 

2min ( )x f xΧ∈  0.03 2 0.76f ∗ = −   0 0.8 0.7 1 

1max ( )x f xΧ∈  1 0.35f − =   -0.42 0 0.8 0.5 0 

2max ( )x f xΧ∈  0.35 2 0.42f ∗ = −  0 0.8 0.5 0 
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Substituting the results of Table 2 into 
problem (15) with 1 2 1/ 2,w w= = we have the 
following sup- MT  equation constrained 
optimization problem: 
Let [ ] 0,1 , 1, 2,3, 4jx j∈ = , then 

1 2 3 4

1

2

3

4

min   1.3787 0.193 0.4504 0.9099 1.0708
0.1 0.9 0.8 0.1 0.8
0.4 0.7 1 0.3 0.7

s.t.  .
0.5 0.2 0.5 0.5 0.5
0.1 0 0 0 0

x x x x
x
x
x
x

+ − − +

    
    
    =
    
    

    



 

(23) 
Solving problem (23) by the surrogate heuristic, 
we obtain the optimal solution   

x (0,0.8,0.7,1) ,T∗ =  
which is consistent with the result of 
Loetamonphong et al. (2002). Notice that our 
result indicates that the surrogate heuristic finds 
the solutions of problems (15)-(19) at very early 
iterations.  

To investigate the prominent property of the 
proposed method, numerical experiments on 
solving randomly generated multi-objective 
optimization problems with sup-T equation 
constraints were carried out. The random 
generator of systems of sup-T equations 
developed in Hu and Fang (2012) was employed 
to randomly generate test problems. The 
algorithm was coded in Matlab and run on the 
HP Compaq dx2810 MT using the Windows 7 
operating system. Table 3 presents the 
computational results for test problems. 50 test 
problems were solved for each size. Columns 3 
and 4 of Table 3 represent the size of the 0-1 

constraint coefficient matrix of the associated set 
covering problem for test problems after the 
initial reduction. 

For the case of multi-objective optimization 
problems with sup- PT  equation constraints, 
after applying the initial reduction in the 
implementation, the 0-1 constraint coefficient 
matrix of the associated set covering problem 
becomes a square matrix with each row being 
covered by only one column. For example, a 0-1 
constraint coefficient matrix of the associated set 
covering problem of 100 rows and 200 columns 
could be reduced to a 0-1 matrix of 79 rows and 
79 columns with each row being covered by 
only one column after applying the initial 
reduction. It makes the surrogate heuristic stop 
and find the optimization solution at very early 
iterations. The case of multi-objective 
optimization problems with sup- MT  equation 
constraints is more complicated than the one 
with sup- PT  equation constraints. For example, 
a problem of sup- MT  case of 100 rows and 200 
columns could result in a set covering problem 
of size 100 × 10, 100. After applying the initial 
reduction of the surrogate heuristic, the 0-1 
constraint coefficient matrix of the associated set 
covering problem could be reduced to a 0-1 
matrix of size 100 × 186. Most of the test 
problems find the optimization solution in less 
than 10 iterations. Our computational results 
validate the property of faster convergence of 
surrogate heuristic and show that the proposed 
method is very promising. 
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Table 3 Computational results for test problems 

Problem 

size 

Type of 

equation 

constraints 

Average 

number of rows 

after reduction 

Average number 

of columns after 

reduction 

Average 

number of 

iterations 

Average 

computing 

time (sec.) 

20×40 sup- PT  16 16 1 0.0936 

40×80 sup- PT  32 32 1 0.1404 

60×120 sup- PT  46 46 1 0.1716 

80×160 sup- PT  66 66 1 0.2184 

100×200 sup- PT  79 79 1 0.3096 

20×40 sup- MT  15 16 2 0.2808 

40×80 sup- MT  29 31 3 0.5616 

60×120 sup- MT  45 49 4 0.8312 

80×160 sup- MT  54 59 6 1.3260 

100×200 sup- MT  71 78 7 1.8252 
 

5. Conclusion 
   This paper studies the compromise solutions 
to the sup-T equation constrained multi- 
objective optimization problems, with T being a 
continuous triangular norm. Taking advantage of 
the well developed techniques and clarity of 
exposition in the theory of integer programming, 
a set covering-based TOPSIS is proposed to 
solve the sup-T equation constrained 
multi-objective optimization problem. This 
study provides, for the first time, a systematic 
method for solving the sup-T equation 
constrained multi-objective optimization 
problems from an integer programming 
viewpoint. Our computational results confirm 
the efficiency of the proposed method and show 
its potential for solving large scale sup-T 

equation constrained multi-objective optimiza- 
tion problems. 

It should be noted that different p values 
provide decision makers with different 
compromise solutions. Among various p values, 
p = 1, 2 and ∞ are operationally and practically 
important and each exhibits its unique merit. 
The Euclidean distance (p = 2) is similar to the 
popular least-square approach and seems to be 
more acceptable in view of distance aspect. The 
case of p = ∞ emphasizes the maximum of 
individual regrets and the minimum of 
individual rewards. Future studies may consider 
models of different p values to provide 
compromise solutions for decision makers with  
specific interests.   
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