
J Syst Sci Syst Eng (Jun 2011) 20(2): 193-216 ISSN: 1004-3756 (Paper) 1861-9576 (Online)
DOI: 10.1007/s11518-011-5164-z CN11-2983/N

© Systems Engineering Society of China and Springer-Verlag Berlin Heidelberg 2011

VARIABILITY MODELING TO DEVELOP FLEXIBLE
SERVICE-ORIENTED APPLICATIONS∗

Joonseok PARK1 Mikyeong MOON2 Keunhyuk YEOM1
1Department of Computer Science and Engineering, Pusan National University, Busan, 609-735, Korea

pjs50@pusan.ac.kr, yeom@pusan.ac.kr ()
2Division of Computer and Information Engineering, Dongseo University, Busan, 617-716, Korea

mkmoon@dongseo.ac.kr

Abstract
To cope with requirement changes flexibly and rapidly, the existing component-based paradigm is

being evolved into a service-oriented computing paradigm. The main characteristic of the
service-oriented computing paradigm is that service-oriented applications are developed as loosely
coupled services that reflect business concerns. This paradigm also promotes business agility,
facilitating quick reactions to business changes. Therefore, to enhance and support the benefits of the
service-oriented computing paradigm, we must consider how to improve flexibility and reusability
during the development of service-oriented applications. We propose the variability modeling approach
to specify and control the common and distinguishing characteristics of service-oriented applications.
That is, the key concepts of product-line technology can be used to make service-oriented applications
more flexible and reusable. This paper describes variability modeling at two levels; the composition
level and the specification level. At the composition level, we describe the variability of composition
and the flow of domain services that fulfill business processes. At the specification level, we present a
domain service that is an abstract service with variability. The use of our systematic variability
modeling approach can greatly increase the flexibility, applicability, and reusability of service-oriented
applications.
Keywords: Variability, software product line, reuse, service oriented software, flexible service model

∗This work was supported by the Grant of the Korean Ministry of Education, Science and Technology(The
Regional Core Research Program/Institute of Logistics Information Technology) and by the National Research
Foundation of Korea Grant funded by the Korean Government(MEST) (NRF-2010-20100328000)

1. Introduction
The existing component-oriented paradigm

(Kwon et al. 1999) focuses on information
technology (IT) concepts. It has a limited ability
to reflect requirement changes easily and allow

business flexibility. A service-oriented
architecture (SOA) (Erl 2008) has been
proposed to support the emerging
service-oriented computing paradigm and hence
reduce the gap between business and IT

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
194 J Syst Sci Syst Eng

concepts (Huhns et al. 2005, Bichler et al. 2006).
SOA is an architectural paradigm and

discipline that may be used to build
infrastructures that enable those with needs
(consumers) and those with capabilities
(providers) to interact via services across
disparate domains of technology and ownership
(Nickul et al. 2007). For most businesses, SOA
offers considerable flexibility in aligning IT
functions with business processes and goals
(Arsanjani et al. 2007). In general, SOA can be
considered as comprising of four layers, as
shown in Figure 1 (Rosen 2006). The first layer
is the business layer, which shows the business
processes. The second layer is the service layer,
which defines the services that realize the
business processes. The third layer is the
application layer. A service is realized as an IT
component. The lowest layer illustrates the
applications, packages, and databases that might
be called upon by various components.

Figure 1 Service-oriented architecture (Rosen 2006)

In SOA environments, service-oriented
applications are developed as loosely coupled
services. Therefore, the new service-oriented
application can be developed by replacing
loosely coupled services. Notionally and ideally,
the SOA environments pursue structural
flexibility, facilitating the development of new

service-oriented applications by replacing
loosely coupled services. However, currently,
difficult technical issues are encountered with
regard to replacing loosely coupled services.
Furthermore, we need to redesign and redevelop
the services each time to develop
service-oriented applications that reflect
somewhat different functions in each application,
but that performs similar functions in a domain.
For example, consider that a previously
developed order service has functions providing
offline ordering, such as functions associated
with a telephone or fax. When we require
another order application that provides for
online ordering, we should redevelop and
recompose an order service that provides the
online order function. In addition, many recently
proposed approaches (Arsanjani 2004,
Papazoglou et al. 2006, Mittal 2006) are not
sufficient when dealing with service-oriented
applications that provide similar functionality,
and can be replaceable in a domain. In other
words, these approaches are lacking when it
comes to flexibility and reusability in
application development. When the
requirements in a system change, the function of
a pre-existing service is added or a new service
is developed. Therefore, to systematically
develop service-oriented application families
that provide similar functionality and provide
better reusability and flexibility, we need an
approach that interpret and control the common
and distinguishing characteristics of services and
service-oriented applications. One of the
approaches that aim to extend and maximize
flexibility and reusability is the variability
concept, which has been proposed in software
product line engineering (SPLE).

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 195

SPLE (Clements et al. 2002) is an approach
used for developing software families using core
assets. Its key concept is analyzing commonality
(common features) and variability
(distinguishing features) (Moon et al. 2005) in
software development. This is called variability
modeling (Clauß 2001, Sinnema et al. 2007); it
helps in identifying and systematically
developing common parts for reusability and is
used in approaches involving product lines and
system families. By using common and variable
assets, various similar software families that are
reusable and flexible can be developed in a short
time. Therefore, we need to combine these
commonality and variability concepts into
service- oriented application development.

This paper focuses on variability modeling
that can be used to support the development of
service-oriented applications. By designing and
developing domain services that have common
and variable features, service reusability is
increased through the reuse of existing common
features and domain services to generate various
services. In addition, service flexibility is
achieved by selecting variable features, which
enables the developers to respond more

promptly to a business change.
To extend flexibility and service reusability,

we propose using variability modeling at both
the composition level and the specification level.
This variability modeling approach uses key
concepts from product-line engineering, namely,
commonality and variability. We propose a
metamodel that describes the two-level
variability modeling that is explicitly explained
by commonality and variability. In addition, we
illustrate our variability modeling approach via a
case study in the supply-chain domain. We
define a common variability model that can be
reused as a core asset. The core assets for the
development of service-oriented applications are
the services and the loose coupling of these
services. Therefore, by combining the
product-line variability concept with these two
types of core assets, we can construct new types
of concrete service-oriented applications. Figure
2 shows how flexible service-oriented
applications can be constructed from these assets.
From this common model, we can generate
loose couplings of services by selecting variable
services, as shown on the right-hand side of
Figure 2. In addition, each service that is

Figure 2 Development of service-oriented applications with flexibility based on product-line concepts

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
196 J Syst Sci Syst Eng

constructed in a loosely coupled manner has a
variable operation. As shown at the bottom of
Figure 2, we can generate different services by
selecting variable operations. Therefore, by
using a common variability model, we can
realize a flexible service-oriented application.

It is difficult to develop service-oriented
applications that provide similar functionality,
but that change parts of a service. In other words
identifying and modeling variability is
complicated. Therefore, in this paper, we
propose an approach that explicitly represents
variability by analyzing it. By explicitly
analyzing the predictable variable part of the
variability modeling approach, we can design
and develop services that reflect both the
predictable variable part and the changeable part
of the system, according to changing business
requirements. By reusing these services as
business requirements change, we promote
business agility, and maximize flexibility
through service replacement. In addition, we can
increase productivity when developing
service-oriented applications using this
approach.

The rest of this paper is organized as follows.
Section 2 introduces related works. Section 3
explains our metamodel for variability modeling.
Specification-level and composition-level
variability for the supply-chain domain are
presented in detail in Section 4. Section 5
describes a case study and supporting tools for
the proposed variability modeling. Our
conclusions are given in Sections 6.

2. Related Works
Before explaining our variability modeling

approach, we explain related works on SOA and

services, software product line engineering, and
service modeling.

2.1 SOA and Services
SOA establishes an architectural model that

aims to enhance the efficiency, agility, and
productivity of enterprise software systems by
positioning services as the primary focus (Erl
2008). In service-oriented computing, the basic
element is the service.

Similar to the term “component”, there exist
various definitions of a service. Bichler et al.
(2006) defines a service in terms of being
assigned its own distinct functional context and
being comprised of a set of capabilities related
to this context. Papazoglou et al. (2007) defines
services as well-defined, self-contained modules
that provide standard business functionality and
are independent of the state or context of other
services. Fremantle et al. (2002) defines services
in terms of being described in a standard
definition language, having a published interface,
and communicating with each other to request
execution of their operations, aiming to
collectively support a common business task or
process. From these perspectives, a service is an
execution task that reflects more business
aspects than IT concepts. In this paper, we
define a domain service as an abstract and
generalized service that has commonality and
variability and that defines and generates the
service layer’s service.

Next, we describe service level variability
analysis (Chang et al. 2007, Segura et al. 2007).
Chang et al. (2007) focus on service adaptation,
classifying workflow, composition, interface,
and logic variability. This approach focuses on
the unit service. However, our model focuses on

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 197

the domain service, from which the model can
generate unit service variants. In addition,
Chang et al. (2007) use a simple tag
representation for variability, whereas our model
has more refined and specific model elements to
represent variability. Segura et al. (2007) focus
on web services and unit service invocation,
classifying a binding time that divides design
time and runtime, partner selection criteria,
message exchanges, and protocols. However,
their approach does not consider variability
types at our level, and does not show how to
represent variability. Our variability analysis
approach views variability from two aspects,
namely, a specification level and a composition
level. We also present explicit methods and
elements to represent variability.

2.2 Software Product Line Engineering
A product line is a set of software intensive

systems sharing a common, managed set of
features, which satisfy the specific needs of a
particular market segment or mission, and which
are developed from a common set of core assets
in a prescribed manner (Clement et al. 2002). A
product line comprises two steps, namely,
domain engineering and application engineering.
Reusable core assets are developed in the
domain engineering step. In the application
engineering step, core assets are customized and
new applications are developed according to
application-specific requirements. In this
approach, the key concept is variability, which
refers to assumptions about how members of a
family may differ from each other (Weiss et al.
1999). Figure 3 shows a metamodel of the
fundamental concepts of product-line
architecture.

Figure 3 Variability metamodel for a product-line

artifact
An asset provides a collection of artifacts.

An artifact is a work product that can be created,
stored, and manipulated. The artifact contains
elements that specify the model in a specific
domain. An artifact context helps explain the
meaning of the elements in the artifact. A
variation point (VP) is the point at which variant
binding occurs. Variants refer to particular
instances of realized variability. VP Cardinality
denotes the number of variants that can be
applied to the variation points. In this paper, we
include the product line concept in our proposed
variability model.

The Process Family Engineering in
Service-Oriented Applications (PESOA) group
has proposed the variability mechanism for
modeling process family architectures (Bayer et
al. 2005). Their product family architecture
contains information about the realization of
variability in contrast to other variability
mechanisms. This approach focuses on business
processes. However, our approach performs
analysis at a different abstract level that is based
on a domain service. In addition, we refine
variability at the domain service level and
present an explicit model. In particular, with
respect to the product line architecture, an
important task is the analysis of the domain and
the identification of the commonality and
variability of the domain.

The Feature-Oriented Reuse Method (FORM)
(Kang et al. 1998) was developed as an

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
198 J Syst Sci Syst Eng

extension of the Feature-Oriented Domain
Analysis (FODA) method (Kang et al. 1990).
The main characteristic of FORM is its
four-layer decomposition, which describes
different points of view for product development.
However, this does not explicitly address the
variations in the reference architectures, and
leads to complexity when many variants must be
represented. Keepence et al. (1999) represented
variation using patterns associated with
discriminates. A discriminate has three types,
namely, single, multiple, and optional, and is
closely related to the division of feature
properties into mandatory, optional, and
alternative. However, it does not emphasize the
characteristics of variation at the design level.

Gomma (2004) explained the product line
design phase in connection with features. He
endeavored to describe design models with
explicit variations in structural and dynamic
views. However, all possible variants appear at
the same level in these models, and consequently,
they are complex, even for simple case studies.

2.3 Service Modeling
A number of researchers have investigated

the service composition modeling approach
using business process execution language for
web services (BPEL, WS-BPEL or BPEL4WS)
(Alvis et al. 2007, Zhai et al. 2008, Saab et al.
2009, Michlmayr et al. 2010), web service
choreography interface (WSCI) (Arkin et al.
2002), and Petri nets (Hamadi et al. 2003, Valero
et al. 2009). BPEL is an XML-based
specification language for specifying business
processes that are exclusively based on web
services. In addition, BPEL has been proposed
by leading players in industry (BEA, IBM, and

Microsoft), and has quickly become a standard
(Alvis et al. 2007), and supports
process-oriented service-composition. WSCI
specifies the overall collaboration between web
service providers and web service users by
describing message exchanges between those
involved. The proposed BPEL and WSCI
approaches are based on XML. An XML-based
representation has the advantage of being a
universal representation for data exchange, but it
can be difficult to understand and write for
non-XML experts (Skogan et al. 2004). In
addition, this modeling approach only considers
the single composition case of a service-oriented
application. In contrast, our approach considers
multiple composition cases, and shows
replaceable relationships of services using
explicit types of variability. Furthermore, with
respect to composition, we extended UML
activity diagrams, which are a standard in
graphical modeling languages. Therefore, a user
can easily and efficiently model the composition
of a system.

A Petri net is a directed, connected, and
bipartite graph. Service composition is modeled
as a Petri net by assigning transitions to methods
and places to states. This approach focuses on
formalism and does not consider interpreting
and controlling the common and distinguishing
characteristics of services. In addition, there is a
graph-based approach (Liang et al. 2006, Liu et
al. 2006, Hashemian et al. 2005, Lang et al.
2005) dealing with the service composition
problem. Liang et al. (2006) propose four
classes of service specification graphs:
single-source single-destination (SSSD),
multiple-source single-destination (MSSD),
multiple-source multiple-destination (MSMD),

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 199

and directed acyclic graphs (DAGs). This
approach focuses on finding low-cost service
composition solutions. However, our approach
focuses on designing and developing a flexible
service. Liu et al. (2006) propose that for
composite service discovery, web services be
represented as graphs. In their approach, each
node denotes a web service, and each arc
denotes the relationship between web services.
In addition, its focus is using a web service
graph for service discovery, whereas our model
focuses on variability modeling of service
composition. Hashemian et al. (2005) use a
dependency graph in which a node represents
the inputs and outputs of web services and edges
represent the associated web services. This
dependency graph is used for searching among
web services to find those whose composition
provides a specific behavior. These proposed
approaches use a graph for searching and
discovering service-composition aspects. In
addition, Lang et al. (2005) propose using
general AND/OR graph to represent all possible
input-output dependencies among the web
services registered in some selected service
categories. It presents AND/OR graph search
algorithms used for composite service discovery.
In addition, it expresses operation nodes as AND
nodes and data entity nodes as OR nodes. This
approach focuses on searching for, and
discovering of a service.

Tut et al. (2002) propose using patterns in
service composition. They propose a payment
mechanism pattern, and the two generic patterns:
a project pattern and a maintain pattern. The
payment mechanism pattern shows that different
mechanisms can be carried out for billing and
payments. The project pattern describes a

systematic method of making and following a
plan. The maintain pattern describes how to
assess a situation and make a decision to repair
or improve the situation. This approach shows
that patterns can be applied to some composition
aspects, such as payment. Zirpins et al. (2004)
introduce service interaction patterns that
specify generic process characteristics. It
proposes generic mechanisms that allow us to
represent relationships, or coordination policies
within the abstract service composition logic,
which are the interaction patterns and their
concrete coordination choices, or coordination
idioms. These pattern-based approaches can
represent static-type replacement, which means
identifying a matching composition case, and
then having the user represent it according to
this fixed pattern. In addition, it is difficult to
patternize composition cases. However, our
approach offers more dynamic replacement, in
which replaceable services can be bound to
variation points. The main difference is that our
approach deals with the predictable variable
aspects of developing service oriented
applications with similar functionality in a
domain.

In this paper, we use a UML activity diagram
and expand it to model and design
service-composition aspects. By considering the
variability in service composition, we can
generate different cases of service-composition,
so as to deal with a change in requirements.
Therefore, our approach focuses more on the
method of developing and designing a reusable
composite service than do other approaches.

3. Domain Service MetaModeling
In this section, we present a two-level

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
200 J Syst Sci Syst Eng

variability metamodel for a domain service to
support the development of flexible
service-oriented applications. For this, we
extend the variability metamodel for a
product-line artifact shown in Figure 3 to obtain
the two-level variability metamodel shown in
Figure 4, which driven by the metamodel of a
product-line artifact shown in Figure 3. Our
metamodel for a domain service is expressed as
a specialized version of that shown in Figure 3.
Each concrete concept has a stereotype, which
indicates the corresponding concept in the
metamodel for a product-line artifact. As shown
in Figure 4, our variability metamodel for a
domain service is specified at two levels, namely,
the composition level and the specification level.

The composition level shows the
domain-service flow and the composition
variability. A domain composition model is
represented in terms of domain services and
their flow, and the composition relationship
variability information describes how domain
services are loosely coupled and composed to

realize flexible service-oriented applications.
Therefore, by selecting composition-level
variability, we can generate new versions of one
or more variants of domain-service
compositions.

At the specification level, we focus on those
domain services that comprise the
domain-service composition model. It has the
domain-service specification model, which
describes domain service information, such as
variation points and variants. This level specifies
details of a domain service, such as the
properties, operation, and messages. By
selecting variability in domain services, we can
generate new versions of one or more variants of
the domain services.

Therefore, our proposed metamodel is
sufficiently flexible to handle changing
requirements because it has predictable
differences as variability. Similar to a Lego
block, at the composition level, we consider
many different flow compositions for domain

Figure 4 Two-level variability metamodel for a domain service

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 201

services. For example, the purchasing
application consists of optional and common
domain services: authentication, buying,
payment, and delivery. According to the
requirements authentication may be an optional
service, and the flows between payment and
delivery may be indeterminate. Therefore,
purchasing applications may employ different
orders. For example, one type of the purchasing
application may follow the flow authentication,
buying, payment, and delivery, whereas another
may follow buying, delivery and payment, but
not authentication. Thus, to represent these
changeable statuses, our model has a domain
service composition model with a
domain-service variation point, and
domain-service variants, and shows the flow of
these domain services. Furthermore, at the
specification level, a domain service itself has a
predictable difference. For example, the
interface for the authentication service includes
operations that to authenticate by password or
certificate of authentication. According to
requirements, the interface may consist of just
one default operation called authenticate by
password. Furthermore, it may also have two
types of operations. To represent these options,
our model has a domain service specification
model, which contains the variability
information of a domain service, the operation
type, and the message type.

As shown in Figure 4, the basic elements for
constructing a variability model are the domain
service, the interface, the operation type, and the
message type.

Domain service: an abstraction and
generalization of services that uses commonality
and variability to define and generate the service

layer’s service. It expresses its variability in
terms of the CV_property, which can be
common or optional. It is a reusable and
executable business activity, and it can be
invoked or used by other users for business task
execution.

Interface: an access and connection point for
outside elements. A domain service has one
interface.

Operation type: an abstraction and
generalization of a domain service operation that
can be invoked or provided.

Message type: the input or output data type
for an operation.

In addition, the shaded parts of Figure 4
show the expanded elements for construing a
variability model.

Domain-service composition model: one
common model that can be reused as a core
asset for developing loose coupling of domain
services. It shows domain services and their
flow, and the composition relationships.

Domain-service specification model: one
common model that can be reused as a core
asset for developing a domain service. It shows
the basic information of the domain services,
with variability such as operation type and
message type.

Domain-service specification: one
specification that explains a domain service.

Domain-service variation point: there are
four types of variation points, namely,
addition/omission variability, alternative
variants, flow decision and flow condition.

Operation type variation point: this implies
that the operation type of a domain service is
realized as mandatory or optional for selective
candidate operations.

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
202 J Syst Sci Syst Eng

Boolean decision: a decision on whether or
not to use domain service variant.

Selection decision: a decision on whether to
select a single or multiple domain service
variants.

Flow decision: a decision that selects
between sequence, parallel, or condition
relationships between domain services.

Variability modeling that is based on this
proposed metamodel is explained further in
Section 4.

4. Variability Modeling
Variability modeling is explained at both the

composition and the specification level. We
describe variability modeling in detail using
supply chain management applications, i.e., the
supply chain domain. A supply chain
management application manages and controls
the overall distribution from warehouse to
markets, retail outlets, and convenience stores.
The system provides services, such as the
warehousing of goods, taking goods out of the
warehouse, returning goods, and ordering goods.

4.1 Variability Modeling at the
Composition Level
A domain-service composition model is

defined as one common model that can be
reused as a core asset for developing loosely
coupled domain services. To explain our
domain-service composition model, we use the
Unified Modeling Language (UML) activity
diagram notation, and expand it to describe the
variability concept proposed by Moon et al.
(2008).

Table 1 shows the expanded UML elements
and their meaning. A domain action can be

common or optional. A common action is one
that should be included in most applications. An
optional action is one that may only be included
in specific applications.

As shown in Figure 5, a domain-service
composition model includes domain services
and the relationship between them. That is, it
comprises domain actions and their relationship.
Domain actions are mapped to each
domain-service operation type. Therefore, each
domain action is expressed as a domain-service
name and a domain-service operation type. In
the case of the variability of alternative variants,
the domain action is expressed as an abstracted
action name. We explain addition/omission
variability, variability of alternative variants,
flow condition variability, and variability of flow
decisions further in Section 4.2.

4.2 Variation Point Type at the
Composition Level

To represent composition-level variability, we
use and refine the variability concept proposed
by Moon et al. (2008). Here, the
composition-level variability type is subdivided
into four subtypes, namely, addition/omission
variability, variability of alternative variants,
variability of flow decision, and flow condition
variability. We represent these types of
variability in the domain-service composition
model. The different types of variability at the
composition level are as follows:

Addition/Omission variability: a domain
action or grouped domain action, is added to, or
omitted from the domain-service flow. Figure 6
shows an order business flow. In this case, the
common domain action is that of receiving
orders from stores, retail outlets, and markets.

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 203

Table 1 Notation for domain service composition model
Element Description Notation
Optional domain action Represented by a dashed ellipse
Domain action variation point A box labeled VP is attached to a domain action at the

variation point
Variation point binding Binds a variation point and a variation
Variant region A rectangle surrounds a grouped domain action

Figure 5 Domain-service composition model based on proposed notation

However, according to the requirements, an
optional offline order may also be included.
Therefore, Order(domain service
name).opOfflineOrder(domain service operation
type) represents the optional domain action.
There is also a group addition/omission for a
domain action. For example, if orders are
approved for registered users, registration will
be an expanded business task. We model the
expanded domain action group by using a
variant region. In this manner, registration
domain actions can be added or omitted.

Variability of alternative variants: this
indicates that one or more domain actions have
alternative or replacement relationships that can
be generalized into abstract domain actions. In

Figure 7, one replacement means that only one
replaceable domain action variant can be
selected. In the supply chain domain, order
information checking is a common domain
action. In this situation, checking per time
period and checking per day are alternative
domain actions. Therefore, the abstract domain
action is the accept order and Order.opPerTime
and Order.opPerDay are the replaceable domain
actions. There are also one-to-many replaceable
relationships. A variation point with cardinality
1..2 means that one or two variants are available
for selection.

Variability of flow decision: this indicates
that the related domain action flow cannot yet be
decided. This type of variability decision is

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
204 J Syst Sci Syst Eng

delayed as long as necessary. Undecided domain
actions are grouped in a variant region, as shown
in Figure 8. When the order is completed, we are
not able to decide on certain domain actions,
such as send order invoice, update order records,
and review order records, because the flow
relationship depends on the option that is most
preferable. Therefore, these domain actions
remain open. These flow relationships can be
decided as sequential, parallel, conditional, or
compound (a composition of sequential, parallel,
and conditional flow elements).

Figure 6 Example of addition/omission variability

Figure 7 Examples of variability of alternative variants

Figure 8 Example of flow decision variability

Flow condition variability: this indicates that
the domain action has a conditional branch. The
guard condition for a decision node generates
another path of domain action flow. Therefore,
we define this variability as flow condition
variability. Figure 9 shows the conditional
acceptance of a decided provider list. If

acceptance occurs, the request order domain
action is invoked.

Figure 9 Example of flow condition variability

4.3 Variability Modeling at the
Specification Level
A domain-service specification model is

defined as one common model that can be
reused as a core asset for developing the domain
service. Based on the proposed variability
metamodel, we define a notation for
representing the domain-service specification
model, as listed in Table 2.

Using the notation proposed in Table 2, the
domain-service specification model is
represented as shown in Figure 10.
Common/optional variability and operation-
type variability of a domain service are
explained further in Section 4.4.

4.4 Variation Point Type at the
Specification Level
To represent specification-level variability,

we divide the variability type into three subtypes,
namely, common/optional variability, operation
type variability, and message type variability.
These types of variability are represented in the
domain-service specification. Variability at the
specification level is classified and explained as
follows:

Domain-service common/optional variability:
this indicates that variability occurs in the
domain service itself. If the domain service is a

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 205

specific service, and the domain service is to be
included in most service-oriented applications in
the domain, it is a common (mandatory) domain
service. Otherwise, it is an optional domain
service.

Operation type variability: this is expressed
in terms of the CV property, which can be
common, denoted by <<c>>, or optional,
denoted by <<p>>. The variation point
comprises a generalization of two or more
candidate operations. This variability means that
a domain service’s operation type is realized as
mandatory or optional for selective candidate
operations. There are four possible cardinalities:
[1, 0..1, 0..N, 1..N]. Cardinality [1] means that
this operation type is specified as one mandatory
candidate operation. Cardinality [0..1] means
that this operation type can be specified as one
optional candidate operation. This cardinality
type candidate operation cannot have a variation
point. Cardinality [0..N] means that this
operation type can be specified as two or more
alternative candidate optional operations.
Cardinality [1..N] means that this operation type
can be specified as two or more alternative
mandatory operations. For the [0..N] or [1..N]
relation, one default candidate operation can be
specified. We denote this operation as
<<default>>. Each candidate operation is

documented as operation_name(in:MessageType,
out:MessageType). Operation type (in:) means it
is an input message, and (out:) means it is an
output message.
Message type variability: this involves the input
and output messages of an operation type. Input
and output messages can differ in either number
or type. In the case of variability in number, we
generalize this message as being of a complex
type. Message type variability comprises the
message property, the complex type name, and
the message structure. The message property
describes this message as an input or output. The
complex type name describes the complex type.
The message structure is documented as
<<variability info>>element name:type. For
cases that include options, we describe the
<<variability info>> part as <<optional>>.

Table 3 shows a domain-service specification
template that involves variability information.
Each domain service is described using the
proposed template. In this table, operation type
variability is represented in the operation type
part, and message type variability is represented
in the message type.

Based on the proposed domain-service
specification template, Table 4 shows an
example of order domain service specifications
in the supply chain domain.

Table 2 Notation for domain-service specification model

Element Description Notation
Domain Service Represented as a rectangle containing

common/optional property
<<common|optional>>
Domain Service Name

Interface Represented by a lollipop shape

Operation Type Represented by a rounded rectangle. It shows the
common/optional property, denoted by <<c|p>>, and
the binding cardinality, represented by
[vpCardinality] operationName with
input(in)/output(out) messages.

<<c|p>>[vpCardinality] operationName (in message, out message)

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
206 J Syst Sci Syst Eng

Figure 10 Domain-service specification model based on the proposed notation

Table 3 Domain-service specification template
Domain-service name Describe domain-service

name
Describe domain-service
information

Property Describe domain service’s
CV_property (common|optional)

Domain-service interface Describe domain-service interface
Operation Type
Operation Property Variation Point Cardinality Operation
Describe Operation type’s
CV_property – denote <<c>> in
case of common, <<o>> in case
of optional

Describe Generalized
Operation. In case of
cardinality [1],[0..1],
Operation is described

1
0..1
1..N
0..N

Operation1(in:MessageType,
out:MessageType)
Operation2(in:MessageType,
out:MessageType)
Operation3(in:MessageType,
out:MessageType)
:

Message Type
Message Property Complex Type Name Message Structure
Describe message as input or
output – in: in case of input
message, out: in case of output
message

Describe complex type name Element name : type
<<optional>>Element name : type
:

Operation type variability is shown in the
order domain-service example in Table 4. Here,
the order operation can be online
[opOnlineOrder] or offline [opOfflineOrder].
Online ordering can be a common operation
with binding cardinality [1], and offline ordering
is selective, i.e., with binding cardinality [0..1].
One common or optional candidate operation’s

variation point is not assigned. In addition, the
Accept order variation point is a common
operation in cases in which there are alternative
relations, such as checking per time period
[opPerTime] or checking per day [opPerDay].
Note that we describe the default operation
using the <<default>> notation. Message type
variability is also shown in the example in Table

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 207

4. The operation input message, ProductInfo, for
opOnlineOrder and opOfflineOrder contains
mandatory data [orderer, productid, quantity]
and the optional data [message, payment
method]. Note that we describe the optional data
using the <<optional>> notation.

5. CASE Study and Supporting Tool
To investigate the effectiveness of our

variability model, we conducted a case study
involving a supply chain system. In addition, we
developed a supporting tool to support our
two-level variability modeling. Figure 11 shows
the scenario for using the supporting tool. As
shown in this figure, a user can model the

proposed variability model at the composition
level and the specification level. In addition, the
user can decide the variability of the model.
Therefore, this case study shows how to
explicitly represent variability. This means that
our variability modeling approach represent and
explicitly analyzes the predictable variable part,
with respect to designing and developing similar
service-oriented applications.

We organized two development groups in
terms of similar education backgrounds,
programming skills, and knowledge of the
service-oriented computing environment. Figure
12 shows the domain services for the supply
chain system. For example, Order is a domain

Table 4 Order domain service
Domain-service name Order

This domain order service
encapsulates the order business task.

Property Common

Domain-service interface Order Interface
Operation Type
Operation Property Variation Point Cardinality Operation
<<c>> opOnlineOrder(in:productInfo,out:on

lineorderInfo)
1 -

<<p>> opOfflineOrder(in:productInfo,out:
offlineorderInfo)

0..1 -

<<c>> Accept order 1..2 <<default>> opPerTime(in:time)
opPerDay(in:date)

<<p>> Verify order 0..3 opConfirmMsg(in:orderInfo,
out:confirmstatus)
opConfirmSMSmsg(in:orderInfo
, out:confirmstatus)
opConfirmMailmsg(in:orderInfo
,out:confirmstatus)

..

Message Type
Message Property Complex Type Name Message Structure

in

productInfo orderer:string
poductid:string
quantity:int
<<optional>>message:string
<<optional>>payment method:string

out

confirmstatus confirm:bool
rserved:bool
cancel:bool

..

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
208 J Syst Sci Syst Eng

Step 1: Model variability at the composition level Step 2: Decide variability at the composition level

Variability Modeling at the Composition Level

Step 1: Model variability at the specification level Step 2: Decide variability at the specification level

Variability Modeling at the Specification Level

Figure 11 Scenario for using the supporting tool

Figure 12 Domain services

service name, (10) means that the number of the
order domain service’s candidate operation is 10,
and description means the order domain service
handles the ordering of goods.

Figure 13 shows a snapshot of the
variability-modeling tool used with a
service-composition model of the ordering
operation of supply-chain management. It
reflects the variability at the composition level,
as described previously. Specifically, it shows an
explicit representation of variability types at the
composition level, expressed using the VP and
variability notation, for example, optionalAction,
variationPoint, variantsRegion, and VPBinding.
Step 1: Model the variability at the
composition level

As shown in Figure 13, the right-hand

column shows the modeling notation, and the
bottom pane defines the properties of the
composition model. By dragging and dropping
the modeling notation, the user can model the
composition model in the center pane. In
addition, the left-hand pane shows the object
generated by the composition model. Therefore,
Figure 13 shows the composition model that
enables us to produce an ordering
service-oriented application. The application has
similar functionality within a domain, as
mentioned in the core asset shown in Figure 2,
which implies a loose coupling of services, with
variability.
Step 2: Decide the variability at the
composition level

The composition model for the variability of
the ordering application is decided by the
supporting tool. Figure 14 shows a snapshot
depicting the task of deciding the variability at
the composition level. The left-hand pane of the
figure shows the variability at the composition
level. The right-hand pane shows the decision
result, and the bottom pane shows, the properties
of the variability information.

A variability decision is made by selecting
the list of variabilities. As shown on the
right-hand side of the window, a user can make a
Boolean decision. That is, the user can decide
whether to use a variant in the case of
addition/omission variability. Furthermore, in
the case of variability of alternative variants, the
user can decide between a single selection and
multiple selections based on the binding
cardinality. After deciding on the variability, the
window displays the generation case of the
composition model, which shows the
composition flow of a domain service. Thus, as

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 209

Figure 13 Composition model for an ordering application

business requirements change, we can relatively
easily generate different service-oriented
applications which providing an ordering
function by selecting the correct variable service
(refer to Figure 2). This case study shows how
variability modeling at the composition level
supports and guides the generation of
composition models by deciding on variability.
Step 3: Model the variability at the
specification level

Figure 15 shows a snapshot of the tool used
for variability modeling at the specification level.
Similar to the tool used for modeling
composition variability, the user can drag and
drop the modeling notation in the left-hand pane
and model the variability at the specification
level. Figure 15 shows the order services that
have variable operations in the composition

model shown in Figure 13.
As shown in Figure 15, the order

domain-service has common and optional
operation types. Its common operation types are
opOnlineOrder, opCollectOrder,
opRequestOrder, opRequestOnlinOrder,
opDisplay order and a variant point named
Accept order, which has variant operations
opPerTime and opPerDay. In addition, its
optional operation types are opOfflineOrder,
opRequestOfflineOrder, opDisplayOrder,
opWishlistOrder, opRearrangeOrder and a
variant point named Verify order, which has
variant operations opConfirmMsg,
opConfirmSMSmsg, and opConfirmMailmsg.
This domain service shows how to represent
variability types at the specification level,
including types such as <<common>>, <<c>>,

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
210 J Syst Sci Syst Eng

and <<p>>, with binding cardinalities. Therefore,
it shows variable services that enable us to
generate new services in a domain, as mentioned
in the core asset shown in Figure 2 named
Service A, which produced types named service
A-1, service A-2, and service A-N.
Step4: Decide the variability at the
specification level

Figure 16 shows that variant services can be
generated by using reusable domain services, as
explained in Figure 2. The variant service named
order is an example of a common selection
operation type. It comprises the common
operations opOnlineOrder, opCollectOrder,
opRequestOnlineOrder and opDisplayOrder.
The variant operation opPerTime is also selected.
Therefore, it shows how to reuse a domain
service to generate new services.

Group A did not use variability model while
Group B used the order domain-service
composition variability model. In the first

development application (Number of
Applications 1), Group A developed their
applications more quickly than Group B. This
was because Group B had to spend time
analyzing and constructing a variability model.
However, in the later order supply chain
applications (Number of Applications 2 and 3),
Group B’s development time was much shorter
than that of Group A. Once the variability model
had been developed, new service applications
derived from the variability model can be
developed easily and quickly. This is because
Group B could reuse many pre-developed
domain services, thereby reducing the
development time for the similar applications.

After completing the development, groups
agreed that, in similar service-oriented
application families, our variability model is
very helpful. This is because it contains
systematic and well-organized variability

Figure 14 Snapshot depicting the task of deciding composition level variability

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 211

Figure 15 Specification model of the order domain service

Figure 16 Order variant service generation based on order domain service

information, and indicates how the system can
be constructed. Table 5 shows various variant
generation cases of compositions and services
that can be generated using the proposed case
study. From this table, we recognize that our
variability model can enhance the flexibility,
applicability, and reusability of service-oriented
applications. From common, well-defined
variability models, we can generate various
variants by deciding on the variability at the
model level alone. This reduces the time

required to design and develop variant
applications in a domain. Therefore, our
variability modeling can guide, support, and be
applied to the design and development of
flexible service-oriented applications
systematically and efficiently.

6. Conclusion
We have proposed a variability modeling

approach to supporting the development of
flexible service-oriented applications. First, we

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
212 J Syst Sci Syst Eng

Table 5 Variant Case
Composition level Composition model – Figure 13 Case of variant composition
Addition/omission Order.opOfflineOrder

Order.opRequestOfflineOrder
RetrieveList1.opProvider

-none: 3C0
-one of them: 3C1
-two of them: 3C2
-three of them: 3C3
Total: 8 type

Alternative Order.opOnlineOrder-VP -Use or Ignore
Total: 2 type

Accept order
-Order.opPerTime
-Order.opPerDay

-one of them: 2C1
-two of them: 2C2
Total: 3type

Decide provider
-Management.opMemeber
-Management.opPrice
-Management.opDistance

-one of them: 3C1
-two of them: 3C2
-three of them: 3C3
Total: 7type

Inform order status
-alert.sendProvider
-alert.sendOrderStore

-one of them: 2C1
-two of them: 2C2
Total: 3type

Specification level Specification model – Figure 15 Case of variant service
Operation type [0..1]

opOfflineOrder
opRequestOfflineOrder
opWishlistOrder
opRearrangeOrder

-none: 4C0
-one of them: 4C1
-two of them: 4C2
-three of them:4C3
-four of them: 4C4
Total: 15type

[0..3] Verify order
opConfirmMsg
opConfirmSMSmsg
opConfirmMailmsg

-none: 3C0
-one of them: 3C1
-two of them: 3C2
-three of them: 3C3
Total:8type

[1..2]Accept order
opPerTime
opPerDay

-one of them: 2C1
-two of them: 2C2
Total: 3type

define a metamodel for variability modeling,
which incorporates the concept of two-level
variability modeling. Second, we systematically
and explicitly classify the variability types and
present an approach to realize the specification
and representation of this variability modeling.
Within composition-level variability modeling,
we identify addition/omission variability,
variability of alternative variants, variability of
flow decisions, and flow condition variability. In
addition, we represent specification-level
variability modeling in terms of domain-service
common/optional variability, operation type

variability, and message type variability. Third,
we develop a supporting tool based on the
proposed variability modeling. Using this
variability modeling, we develop several types
of supply-chain service-oriented applications.
By using the proposed variability model, we can
develop flexible service-oriented applications.
This can enhance both efficiency and
productivity in service-oriented software design
and development.

We are now studying the methods and
approaches to realize this domain service as an
implementation-level service component. As

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 213

part of future work, we intent to design an
explicit method for deploying and searching a
domain service. In addition, these studies on the
variability modeling approach, domain service
realization, and deploying and searching will be
extended to and integrated with process
environments for flexible development of
service oriented applications.

Acknowledgment
The authors would like to thank the

anonymous reviewers for their valuable
comments.

References
[1] Alves, A., Arkin, A., Askary, S., Barreto, C.,

Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Guízar, A., Kartha, N., Liu, C.K., Khalaf, R.,
König, D., Marin, M., Mehta, V., Thatte, S.,
Rijn, D.V.D., Yendluri, P. & Yiu, A. (2007).
Web services business process execution
language, version 2.0. Available via
DIALOG.
http://docs.oasis-open.org/wsbpel/2.0/OS/ws
bpel-v2.0-OS.html. Cited April 11, 2007

[2] Arsanjani, A. (2004). Service-oriented
modeling and architecture: how to identify,
specify and realize services for your SOA.
IBM Developer Works. Available via
DIALOG.
http://www.ibm.com/developerworks/library
/ws-soa-design1/. Cited November 9, 2004

[3] Arkin, A., Askary, S., Fordin, S., Jekeli, W.,
Kawaguchi, K., Orchard, D., Pogliani, S.,
Riemer, K., Struble, S., Takacsi-Nagy, P.,
Trickovic, I. & Zimek, S. (2002). Web
Service Choreography Interface (WSCI) 1.0.
Available via DIALOG.
http://www.w3.org/TR/wsci/. Cited August 8,

2002
[4] Arsanjani, A., Zhang, L.J., Ellis, M., Allam,

A. & Channabasavaiah, K. (2007). S3: a
service oriented reference architecture. IT
Professional, 9 (3): 10-17

[5] Bayer, J., Buhl, W., Giese, C., Lehner, T.,
Ocampo, A., Puhlmann, F., Richter, E.,
Schnieders, A., Weiland, J., & Weske, M.
(2005). Process family engineering-
modeling variant-rich processes.
PESOA-Report No. 18/2005, September 1,
2005

[6] Bichler, M. & Lin, K.J. (2006).
Service-oriented computing. Computer, 39
(3): 99-101

[7] Chang, S., La, H. & Kim, S. (2007). A
comprehensive approach to service
adaptation. In: International Conference on
Service Oriented Computing and
Applications, 191-198, Newport Beach,
California, USA, June 19−20, 2007, IEEE
Computer Society

[8] Clauß, M. (2001). Generic modeling using
UML extension for variability. In:
Proceedings of OOPSLA Workshop on
Domain Specific Visual Languages, 11-18,
Tampa Bay, Florida, USA, October 14−18,
2001

[9] Clements, P. & Northrop, L. (2002).
Software Product Lines Practices and
Patterns. Addison-Wesley

[10] Erl, T. (2008). SOA Principles of Service
Design. Prentice-Hall

[11] Fremantle, P., Weerawarana, S. & Khalaf,
R. (2002). Enterprise services.
Communications of the ACM, 45 (10): 77-82

[12] Gomma, H. (2004). Designing Software
Product Lines with UML: From Use Cased
to Pattern-Based Software Architectures.

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
214 J Syst Sci Syst Eng

Addison-Wesley
[13] Hamadi, R. & Benatallah, B. (2003). A

Petri net-based model for web service
composition. In: Australasian Database
Conference, 17: 191-200, Adelaide,
Australia, February, 2003, Australian
Computer Society

[14] Kang, K., Cohen, S., Hess, J., Novak, W.
& Peterson, S. (1990). Feature-Oriented
Domain Analysis (FODA) feasibility study.
Software Engineering Institute, Carnegie
Mellon University technical report
CMU/SEI-90-TR-21, November 1990

[15] Hashemian, S.V. & Mavaddat, F. (2005). A
graph-based approach to web services
composition. In: 2005 Symposium on
Applications and the Internet, 183-189,
Trento, Italy, January 31−February 4, 2005,
IEEE Computer Society

[16] Kang, K., Kim, S., Lee, J., Kim, K., Shing,
E. & Huh, M. (1998). Form: a reature
oriented reuse method with domain specific
reference architectures. Annals of Software
Engineering, 5 (1): 143-168

[17] Keepence, B. & Mannion, M. (1999).
Using patterns to model variability in
product families. IEEE Software, 16 (4):
102-108

[18] Huhns, M. & Singh, M.P. (2005).
Service-oriented computing: key concepts
and principles. Internet Computing, 9 (1):
75-81

[19] Kwon, O., Yoon, S. & Shin, G. (1999).
Component-based development environment:
an integrated model of object-oriented
techniques and other technologies. In:
International Workshop on
Component-Based Software Engineering,
47-53, May 17−18, 1999

[20] Lang, Q.A. & Su, S.Y.W. (2005).
AND/OR graph and search algorithm for
discovering composite web services.
International Journal of Web Services
Research, 2 (4): 46-64

[21] Liang, J. & Nahrstedt, K. (2006). Service
composition for generic service graphs.
International Journal on Multimedia Systems,
11 (6): 568-581, Springer Berlin/Heidelberg

[22] Liu, J. & Chao, L. (2006). Web services as
a graph and its application for service
discovery. In: International Conference on
Grid and Cooperative Computing, 293-300,
Changsha, Hunan, China, October 21−23,
2006, IEEE Computer Society

[23] Michlmayr, A., Rosenberg, F., Leitner, P.
& Dustdar, S. (2010). Web services
compositions modelling and choreographies
analysis. International Journal of Web
Services Research, 7 (2): 87-110

[24] Mittal, K. (2006). Service oriented unified
process. Available via DIALOG.
http://www.kunalmittal.com/html/soup.html

[25] Moon, M., Hong, M. & Yeom, K. (2008).
Two-level variability analysis for business
process with reusability and extensibility. In:
International Conference on Computer
Software and Applications, 263-270, Turku,
Finland, July 28−August 1, 2008, IEEE
Computer Society

[26] Moon, M., Yeom, K. & Chae, H.S. (2005).
An approach to developing domain
requirements as a core asset based on
commonality and variability in a product line.
IEEE Transactions on Software Engineering,
31 (7): 551-569

[27] Nickul, D., Reitman, L., Ward, J. & Wilber,
J. (2007). Service Oriented Architecture
(SOA) and specialized messaging patterns.

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
J Syst Sci Syst Eng 215

Adobe Systems Incorporated White Paper.
Available via DIALOG.
http://www.adobe.com/enterprise/pdfs/Servi
ces_Oriented_Architecture_from_Adobe.pdf.
Cited, December 7, 2007

[28] Papazoglou, M.P. & Van Den Heuvel, W.J.
(2006). Service-oriented design and
development methodology. International
Journal of Web Engineering and Technology,
2 (4): 412-442

[29] Papazoglou, M.P. & Van Den Heuvel, W.J.
(2007). Service-oriented architectures:
approaches, technologies and research issues.
International Journal on Very Large Data
Bases, 16 (3): 389-415, Springer
Berlin/Heidelberg

[30] Rosen, M. (2006). BPM and SOA – where
does one end and the other begin? BPTrends
Columns& Article. Available via DIALOG.
http://www.bptrends.com. Cited January,
2006

[31] Saab, C.B., Coulibaly, D., Haddad, S.,
Melliti, T., Moreauz, P. & Rampacek, S.
(2009). An integrated framework for web
services orchestration. International Journal
of Web Services Research, 6 (4): 1-29

[32] Segura, S., Benavide, D., Ruiz-Cortes, A.
& Trinidad, P. (2007). A taxonomy of
variability in web services flows. In: Service
Orietned Architectures and Product Lines −
What Is the Connection? (SOAPL-07),
Kyoto, Japan, September 10, 2007

[33] Sinnema, M. & Deelstra, S. (2007).
Classifying variability modeling techniques.
Information and Software Technology, 49
(7): 717-739

[34] Skogan, D., Grønmo, R. & Solheim, I.
(2004). Web service composition in UML. In:
International Enterprise Distributed Object

Computing Conference, 47-57, Monterey,
California, USA, September 20−24, 2004,
IEEE Computer Society

[35] Tut, M.T. & Edmond, D. (2002). The use
of patterns in service composition, web
services, E-business, and the semantic web.
LNCS2512:28-40

[36] Valero, V., Cambronero, M.E., Diaz, G. &
Macia, H. (2009). A Petri net approach for
the design and analysis of web services
choreographies. The Journal of Logic and
Algebraic Programming, 78: 359-380

[37] Weiss, D.M. & Lai, C.T.R. (1999).
Software Product-Line Engineering: A
Family Based Software Development
Process. Addison-Wesley

[38] Zhai, Y., Su, H. & Zhan, S. (2008). A
reflective framework to improve the
adaptability of BPEL-based web service
composition. In: International Conference on
Services Computing, 1: 343-350, Honolulu,
Hawii, USA, July 8−11, 2008, IEEE
Computer Society

[39] Zirpins, C., Lamersdorf, W. & Baier, T.
(2004). Flexible coordination of service
interaction patterns. In: International
Conference on Service oriented Computing,
49-56, New York, USA, November 15−18,
2004, ACM Press

Joonseok Park received the bachelor’s degrees
in computer engineering from the Pukyong
National University in 1999 and the MS degree
in Computer engineering from the Pusan
National University in 2002. Currently, he is a
doctoral candidate in the Computer Engineering
Department at the Pusan National University.
His research interests include service oriented
computing, ubiquitous computing, software

Park et al.: Variability Modeling to Develop Flexible Service-oriented Applications
216 J Syst Sci Syst Eng

architecture, and product-line engineering.

Mikyeong Moon is an associate professor of
computer and information engineering at the
Dongseo University in Busan, KOREA. She
received the BS degree in 1990 and the MS
degree in 1992, both in computer science from
the Ewha Womans University, Seoul, Korea, and
the PhD degree in computer science and
engineering from Pusan National University in
2005. Her current research interests include
software reuse, product line engineering,
requirement engineering, and RFID solutions.
She is a member of the Korea Information
Science Society.

Keunhyuk Yeom received the bachelor’s degree

in computer science and statistics from Seoul
National University in 1985 and the MS and
PhD degrees in computer and information
science and engineering from the University of
Florida in 1992 and 1995, respectively. He is
professor of computer science and engineering
at the Pusan National University in Busan,
Korea. From 1985 to 1990, he was with LG
Electronics Research Institute. His research
interests include software product lines,
component-based software development,
software reuse, self-adaptive software,
situation-aware framework for RFID/USN
Solutions, etc. He is a member of the ACM, the
IEEE Computer Society, and the Korea
Information Science Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

