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Abstract 

In this paper we consider a single machine multi-product lot scheduling problem in which defective 

items are produced in any production run of each product. In each cycle after the normal production of 

each product the machine is setup for the rework of the defectives of the same product and then the 

rework process starts. We assume that the setup time for the normal production process as well as the 

rework process is non-zero. Further we consider the waiting time cost of defectives for rework. This 

paper has two objectives. The first objective is to obtain the economic batch quantity (EBQ) for a 

single product. The second objective is to extend the result of the first objective to the multi-product 

case. Adopting the common cycle scheduling policy we obtain optimal batch sizes for each product 

such that the total cost of the system per unit time is minimized. 
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1. Introduction 
Consider the problem of obtaining a low cost 

schedule for a production system in which a 

number of products are manufactured on a 

single facility in a fixed sequence repeatedly 

from cycle to cycle. This problem is known as 

economic lot scheduling problem (ELSP). There 

is, at the present time, no algorithm available 

which solves the problem optimally, and several 

different types of approaches have been 

presented in the literature, see Elmaghraby 

(1978) for a comprehensive literature review 

through 1978; for recent contribution see (Cook 

1980, Dobson 1987, Gallego and Shaw 1997, 

Glass 1992, Graves 1979, Gunter 1986, Haessler 

1979, Haji and Mansuri 1995, Park and Yun 

1988, Roundy 1988, and Zipkin 1988) among 

others.  

In the ELSP, it is assumed that a perfectly 

reliable facility produces items at a fixed 

production rate and the products produced are 

all non-defective. But in practice there are many 
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situations in which a certain amount of defective 

products results due to various reasons including 

poor production quality and material defects. 

Depending on the proportion of defectives, the 

amount of optimal batch sizes also varies 

depending on several cost factors such as setup 

cost, processing cost, and inventory carrying 

cost. In a production system where there is no 

repair facility, defective items are wasted as 

scrap, and as a result, they lose a big share of 

profit margin. Researchers that consider rework 

option are meager (Jamal et al. 2004).  

A study by Goyal and Gunashekharan (1990) 

showed the effect of process control and they 

ignored the situation of producing defects. The 

issue of imperfect production and quality control 

in a lot-sizing problem had been addressed in the 

literature by Hayek and Salameh (2001), Lee 

(1992), and Lee and Rosenblatt (1986). Lee et al. 

(1997) developed a model of batch quantity in a 

multi-stage production system considering 

various proportions of defective items produced 

in every stage, but they did not consider the 

rework option of the defective items. In a recent 

paper, Jamal et al. (2004) considering the 

reworking of defective items for the case of a 

single product, developed two models for 

obtaining the economic batch quantity for the 

single product. In their derivation of EBQ, they 

ignored the following 3 points; (a) The setup 

time and setup cost for rework of the defective 

units, (b) The cost of waiting time of defective 

units for rework during the production run of the 

product, and (c) the different inspection costs 

during production and rework processes. In a 

recent effort, Haji et al. (2006) investigated the 

economic production quantity with accumulated 

rework for a single product. They considered the 

case in which defective items from each cycle 

are accumulated until N equal cycles are 

completed after which all defectives are 

reworked in a new cycle, called rework cycle. 

In this paper we do not ignore the above 3 

points. We first, obtain EBQ for the case of a 

single product. Then, we extend these results for 

the case of a multi-product single machine 

system. To do this, we adopt the common cycle 

time approach for ELSP proposed by Hanssman 

(1962). This approach is to schedule exactly one 

lot of each product in a time interval called 

common cycle ( CC ) or T . The CC  approach 

always finds a feasible schedule and consists of 

a very simple procedure. Jones and Inmann 

(1989) have shown that the CC  approach 

produces optimal and near optimal schedules in 

many realistic situations. Adopting the CC  

approach for all products, allowing non-zero 

setup times for the normal production and 

rework process for each product, we obtain the 

optimal common cycle time, hence the optimal 

batch sizes for all products, which minimize the 

sum of inventory holding cost, setup cost, 

production process and inspection costs and 

waiting time cost of defectives for rework. 

2. Assumptions 
In this paper, all the standard assumptions of 

the general ELSP hold true (see for example, 

Johnson and Montgomery 1974). The most 

relevant assumptions used in this paper are as 

follows: 

− There are n products, all of which must be 

produced on a single machine, which can 

make only one product at a time. 

− Demand rates for all products are constant, 

known, and finite. 
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− Production rates for all products are 

constant, known, and finite. 

− All demands must be filled immediately, so 

no shortages are permitted. 

Furthermore, it is assumed that for product j , 

1,...,j n= : 

− Proportion of defective is constant in each 

cycle, 

− The production rate of non-defectives is 

greater than the demand rate, 

− Scrap is not produced at any cycle, 

− No defectives are produced during the 

rework, 

− Production and rework are done using the 

same resources.  

3. Notations 
In this paper the following notations is used 

for product j , 1,...,j n= : 

Pj Production rate, units/year 

Prj Production rate of non-defectives, 

units/year 

Dj Demand rate, units/year 

Cj Processing cost for each unit of product, 

$/unit 

Qj Batch quantity per cycle, units/batch or 

units/cycle 

βj Proportion of defectives in each cycle 

A1j Setup cost for normal production, $/batch 

A2j Setup cost for rework process, $/batch 

Hj Inventory carrying cost, $/unit/year 

Wj Waiting time cost, $/unit/year 

S1j Setup time for normal production, 

year/setup 

S2j Setup time for rework process, year/setup 

Lj Inspection cost for normal process, $/unit 

Mj Inspection cost for rework process, $/unit 

4. Model 
In this model, we consider a common cycle 

time T  for all products as depicted in Figure 1. 

Each product is produced only once in each 

cycle T . We assume all the defective items for 

each product during cycle T  are reworked 

within the same cycle. After the normal 

processing time, the machine is immediately set 

up for the rework of the defective units. At the 

end of this setup time the rework process starts. 

For the feasibility of the problem, we assume 

that for each 1,...,j n= . 

(1 )j j jP Dβ− >  (1) 

From Fig.1, we see that during the interval 

1 jt  the product j  is produced at rate jP , but 

the value of non-defectives of this product is 

produced at rate (1 )j jP β−  in the same interval. 

Hence, the inventory of non-defective units of 

product j  will increase at rate [ (1 ) ]j j jP Dβ− − . 

After 1 jt , immediately the setup time for rework 

process on defective items produced in 1 jt  

starts. Thus, during the interval 2 jS  the 

inventory of non-defective items decreases at 

rate jD− . After this setup time the rework 

process starts on defective items produced in t1j. 

Therefore, the inventory of non-defective items 

increases at rate rj jP D− . It is assumed that no 

defective occurs during the rework process time, 

i.e., during 2 jt , because of the careful operation 

or special attention. 

We can easily show that in each cycle, the 

length of the first phase of production of 

product j , 1 jt  and the length of the rework 

processing time of defectives of the same 

product, 2 jt , is respectively equal to 

1
j j

j
j j

Q D T
t

P P
= =  (2) 
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2
j j j

j j
rj rj

Q D T
t

P P

β
β= =   

or from (2) 

2 1
j j j

j j j
rj rj

D P
t T t

P P

β
β= =  (3) 

For product j, define the on hand inventory 

of non-defective items at the end of 1 jt , at the 

end of 2 jS , and at the end of 2 jt respectively 

by 1 jh , 2 jh , and 3 jh . Now from Fig.1 we can 

write 

   
1 1

1

[ (1 ) ]

      ( )

j j j j j

j j j j j

h P D t

P D P t

β
β

= − −

= − −
  (4) 

and 

2 1 2j j j jh h D S= −   (5) 

3 2 2( )j j rj j jh h P D t= + −  

      1 2 2( )j j j rj j jh D S P D t= − + −  

or from (3) and (4) 

3 1 2

1

[ (1 ) ]

        ( )

j j j j j j j

j
rj j j j

rj

h P D t D S

P
P D t

P

β

β

= − − −

+ −
 

1 2( )j
j j j j j j j

rj

P
P D D t D S

P
β= − − −     (6) 

The total cost of product j , denoted by jK , 

consists of setup costs, processing cost, 

inspection costs, waiting time cost of defectives 

for rework, and inventory carrying cost for the 

product.  

Let for product j , 1,...,j n= : 

jsK   = Total set up cost per year, 

jI    = Average on hand inventory, 

jHK  = Average inventory carrying cost per 

year,  

Then, we can write 

1 2( )( )js j j j jK D Q A A= +  

or 

1 2j j
js

A A
K

T

+
=                     (7) 

In which, 1j jD Q T= , stands for the 

number of cycles per year. We also can write 

jH j jK H I=                           (8) 

where jI is the average inventory of product j 

and jH  is the inventory holding cost for a unit 

of product j per unit time (year).  

From Fig.1, the average inventory of product 

j can be written as: 

1 1 1 2 2

2 3 2

3 1 2 2

( ) ( )( )
1

( )( )
2

( ) )

j j j j j

j j j j

j j j j

h t T h h S T

I h h t T

h T t S t T

⎡ ⎤+ +
⎢ ⎥

= + +⎢ ⎥
⎢ ⎥+ − − −⎢ ⎥⎣ ⎦

 

or equivalently 

1 1 1 2 2 2 3 2

3 1 2 2

( ) ( )1

( )2

j j j j j j j j
j

j j j j

h t h h S h h t
I

h T t S tT

+ + + +⎡ ⎤
= ⎢ ⎥+ − − −⎢ ⎥⎣ ⎦

 

Substituting 1 jt  and 2 jt  from (2) and (3), 

1 jh , 2 jh  and 3 jh  from (4), (5) and (6) in the 

above relation we can write 

1
(1 )

2
j j

j j j j j j
rj j

P D T
I P D D

P P
β β

⎡ ⎤
= − − +⎢ ⎥

⎢ ⎥⎣ ⎦
 

  2j j jD Sβ−                         (9) 

Thus, from (8) and (9) we have 

(1 )
2

j j j
jH j j j j j

rj j

H P D
K P D D T

P P
β β

⎡ ⎤
= − − +⎢ ⎥

⎢ ⎥⎣ ⎦
 

2j j j jH D Sβ−                   (10) 

Let joK denote the sum of operation 

processing cost and inspection cost per year for 

product j . To obtain joK  first we note that in 

each cycle time T  the cost of operation process 

and inspection during 1 jt  is equal to 
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( )j j jC L Q+  and the cost of operation process 

and inspection during 2 jt , for j jQβ  defective 

units, is equal to ( )j j j jC M Qβ+ . Thus the sum 

of these two costs in each cycle T  is 

[ (1 ) ( )]j j j j j jC L M Qβ β+ + + . Therefore, the 

total production process and inspection cost per 

year is: 

[ (1 ) ]jo j j j j j jK C L M Dβ β= + + +         (11) 

Let, ( )jK T  denote the waiting time cost of 

defective units for rework in a cycle. Then 

( )jK T  is the product of jW , waiting cost per 

unit time (year) of a defective unit for rework, 

and the area of the shaded part in Fig. 1. That is,  

1 2
2( ) ( )

2
j j

j j j j j

t t
K T W Q Sβ

+
= +  

Substituting (2) and (3) in ( )jK T and noting 

that jQ D T= , we obtain  

2

( )
( ) [ ]

2
j rj j j

j j j j j
j rj

D T P P
K T W D T S

P P

β
β

+
= +  

or equivalently 
2

2( ) [(1 ) ]
2

j j
j j j j j

rj j

P D T
K T W T S

P P
β β= + +  

If we denote the total waiting time of 
defective units in a year by jWK , then 

( )jW jK K T T= , 

or 
2

2[(1 ) ]
2

j j
jW j j j j j j j

rj j

P D T
K W W D S

P P
β β β= + +  

(12) 

Now, jK , the total cost per unit time (year) 

for product j , can be written as: 

j js jH jo jWK K K K K= + + +            (13) 

 

 

Figure1 On-hand inventory in one cycle 

T 
 

Prj-Dj 

 

Pj(1-βj)-Dj 

 

Pj-Dj 

 

h1j  

 h2j 

 

h3j 

 

t1j 

 
t2j 

 
S2j 

 
T- t1j – S2j - t2j 
 

-Dj 

 



Haji, Haji, Sajadifar and Zolfaghari: Lot Sizing with Non-Zero Setup Times for Rework 
J Syst Sci Syst Eng (Jun 2008) 17(2):230-240  235 

 

  
Thus, from (7), (10), (11), (12), and (13) we 

have 

1 2

2

2 2

( )

       (1 )
2

       (1 )
2

       [ (1 ) ]

       

j j j

j j j
j j j j j

rj j

j j
j j j

rj j

j j j j j j

j j j j j j j j

K A A T

H P D
P D D T

P P

P D T
W

P P

C L M D

H D S W D S

β β

β β

β β
β β

= +

⎡ ⎤
+ − − +⎢ ⎥

⎢ ⎥⎣ ⎦

+ +

+ + + +

− +

 

5. EBQ for a Single Product  
It can easily be shown that the second 

derivative of jK  with respect to T  is positive 

[see (A1) in appendix]. Thus jK  is a convex 

function and by letting the first derivative of 

jK  with respect to T  be equal zero, we can 

obtain the optimal value of T , denoted by jTo , 

which minimizes jK . Therefore from the 

minimization of jK  with respect to T , we 

have 

jT =o   

1 2

2

2( )

[ (1 )] (1 )

j j j

j j
j j j j j j j j j j j

rj rj

A A P

P P
H D P D D W D

P P
β β β β

+

− − + + +

 
or 

1 22( ) /

( ) ( ) (1 )

j j j j
j

j
j j j j j j j j

rj

A A P D
T

P
H P D H W D

P
β β

+
=

− − − +
o

 

This value of 0 jT is the optimal cycle time if 

it is a feasible solution. In fact, an arbitrary cycle 

time with length T  is a feasible solution if the 

sum of the setup time and production time of the 

product in that cycle is not greater than the 

length of the cycle time T. That is, a cycle time T 

is a feasible solution if it satisfies the following 

relation 

1 2 1 2j j j jS S t t T+ + + ≤   

From (2) and (3) we can write the above 

relation as: 

1 2 (1 )j j
j j j

rj j

P D
S S T T

P P
β+ + + ≤  

or equivalently 

1 2

1 (1 )

j j

j j
j

rj j

S S
T

P D

P P
β

+
≥

− +
. 

Let 1 2

1 (1 )

j j
mj

j j
j

rj j

S S
T

P D

P P
β

+
=

− +
.  

Then, since jK  is a convex function, we can 

obtain the optimal value of T , denoted by jT ∗ , 

as follows: 

0j jT T∗ =   if     0 j mjT T≥  

j mjT T∗ =   if   0 j mjT T<  

The optimal batch size for the product j is: 
*
j j jQ D T ∗= . 

Thus when there is only a single product j 

then for 0 j mjT T≥   

1 22( )

( ) ( ) (1 )

j j j j
j

j
j j j j j j j j

rj

A A P D
Q

P
H P D H W D

P
β β

∗ +
=

− − − +

 

and for 0 j mjT T<  

1 2*

1 (1 )

j j
j j j j mj j

j j
j

rj j

S S
Q D T D T D

P D

P P
β

∗ +
= = =

− +
 

In the next section we adopt the common 
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cycle time approach and obtain the EBQ for the 

multi-product case. 

6. Multi-Product Case  
In the case of multi-product, the total cost 

per year for all products, K  can be written as: 

1

n

j
j

K K
=

=∑  

or 

1 2
1

2

2 2

( )

(1 )
2

(1 )
2

[ (1 ) ]

       

{

}

n

j j
j

j j j
j j j j j

rj j

j j
j j j

rj j

j j j j j j

j j j j j j j j

K A A T

H P D
P D D T

P P

P D T
W

P P

C L M D

H D S W D S

β β

β β

β β

β β

=
= +

⎡ ⎤
+ − − +⎢ ⎥

⎢ ⎥⎣ ⎦

+ +

+ + + +

− +

∑

   

                            (14) 

One can easily show that the second 

derivative of K with respect to T  is positive. 

Hence K  is a convex function. Therefore, 

letting the first derivative of K with respect to 

T  to be equal to zero, we can obtain the 

optimal value of T , denoted by 0T , which 

minimizes K . Thus, letting the first derivative 

of K  equal to zero, we obtain  

1 2
1

0

1

2 ( ) /

[ ] [ ] (1 )

n

j j j j
j

n
j

j j j j j j j j
rjj

A A P D

T
P

H P D H W D
P

β β

=

=

+
=

⎧ ⎫⎪ ⎪− − − +⎨ ⎬
⎪ ⎪⎩ ⎭

∑

∑

                                    (15) 

Note that for the case 0jβ = , j=1, 2,…,n, 

(15) gives the optimal value of the common 

cycle time for the case that no defectives are 

produced (Johnson and Montgomery 1974). 

That is, 

1
1 1

2 [1 ( ]
n n

j j j j j
j j

T A H D D P
= =

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑    (16) 

The value of 0T  in (15) is the optimal cycle 

time if it is a feasible solution. In fact, an 

arbitrary cycle time with length T  is a feasible 

solution if the sum of the setup times and 

production times of all products in that cycle is 

not greater than the length of the cycle time T. 

That is, a cycle time T is a feasible solution if it 

satisfies the following relation 

1 2 1 2
1

( )
n

j j j j
j

S S t t T
=

+ + + ≤∑                (17) 

Now from (2) and (3) we can write (17) as: 

1 2
1

1

( )

1 (1 )

n

j j
j

n
j j

j
rj jj

S S

T
P D

P P
β

=

=

+

≥
⎡ ⎤

− +⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
            (18) 

let  

1 2
1

1

( )

1 (1 )

n

j j
j

m
n

j j
j

rj jj

S S

T
P D

P P
β

=

=

+

=
⎡ ⎤

− +⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
           (19) 

Then, since K is a convex function, we can 

obtain the optimal value of T, denoted by T*, as 

follows: 

0T T∗ =   if     0 mT T≥  

mT T∗ =   if   0 mT T<  

Finally, the optimal batch size for 

product j , 1,...,j n= , is: 
* *
j jQ D T= . 

Thus, for 0 mT T≥ , 0 ,j jQ D T∗ = j = 1,2, …, 

n, that is, for 1, 2,...,j n= , we have 
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jQ ∗ = 

1 2
1

1

2 ( ) /

( ) ( ) (1 )

n

j j j j
j

j n
j

j j j j j j j j
rjj

A A P D

D
P

H P D H W D
P

β β

=

=

+

⎧ ⎫⎪ ⎪− − − +⎨ ⎬
⎪ ⎪⎩ ⎭

∑

∑
 

and for 0 mT T< ,   we have 

, 1,2,...,j j mQ D T j n∗ = = , 

or 

1 2
1

1

( )

, 1,2,...,

1 (1 )

n

j j j
j

j
n

j j
j

rj jj

D S S

Q j n
P D

P P
β

=∗

=

+

= =
⎡ ⎤

− +⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
 

7. Example 
In this section we provide an example to 

show how the model determines the optimal 

order quantities for all products. In this problem 

there are four different items which are produced 

on a single machine. The constant proportions of 

defectives, βj , j=1,2,3, and 4, are 0.05, 0.05, 

0.04 and 0.04 respectively. Other parameters of 

problem are given in the Table 1.  

In this case we have:  

1 1 1(1 ) 23000 0P Dβ− − = ≥  

2 2 2

3 3 3

4 4 4

(1 ) 19500 0

(1 ) 37250 0

(1 ) 27100 0

P D

P D

P D

β
β
β

− − = ≥
− − = ≥
− − = ≥

 

and the idle time of the machine in each cycle is: 

4

1

1 (1 ). 0.1524 0j j
j

rj jj

P D

P P
β

=
− + = ≥∑  

Then from (15) we can find that 

0 0.2051T = . On the other hand we obtain from 

(19) that 0.2165mT = . Since 0 mT T≤ , then we 

will have * 0.2165T = . Thus the associated 

EBQs in this case are as follows: 

1 1

2 2

3 3

4 4

. 5500 0.2165 1190.75

. 4500 0.2165 974.25

. 15000 0.2165 3247.5

. 6500 0.2165 1407.25

Q D T

Q D T

Q D T

Q D T

∗ ∗

∗ ∗

∗ ∗

∗ ∗

= = × =

= = × =

= = × =

= = × =

 

Finally the optimal total cost in this case is:  

3471237.562K∗ = . 

8. Conclusion  
In the general economic lot size scheduling 

(ELSP), it has been assumed that the items 

produced are non-defective and do not need any 

rework. In this paper, we address the rework of 

defective items in a multi-product single 

machine system. Adopting the common cycle 

time approach for all products, allowing 

non-zero set up times for normal production and 

 

Table 1 Characteristics of four items to be produced on a single machine 

j Pj Prj Dj Cj A1j A2j Hj Wj S1j S2j Lj Mj 

1 30000 45000 5500 50 700 1000 10 30 0.001 0.002 10 15 

2 25000 35000 4500 200 500 1500 40 55 0.002 0.004 15 22.5 

3 55000 80000 15000 50 800 2000 10 25 0.005 0.010 5 7.5 

4 35000 50000 6500 150 1200 2100 30 50 0.003 0.006 20 30 

 



Haji, Haji, Sajadifar and Zolfaghari: Lot Sizing with Non-Zero Setup Times for Rework 
238  J Syst Sci Syst Eng (Jun 2008) 17(2):230-240 

 

rework process for each product, we obtain the 

optimal common cycle time, hence the optimal 

batch sizes for all products, which minimizes the 

sum of inventory holding cost, setup cost, 

production process and inspection cost and 

waiting time cost of defectives for reworks. 

Appendices 
To show that K,  
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is a convex function we take the first and second 

derivative of K with respect to T. 

The first derivative of K with respect to T is  
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The second derivative of K with respect to T 

is  

2
3

1 22
1

2( )
n

j j
j

K
A A T

T =

∂ = +
∂

∑  

From this relation it is clear that the second 

derivative of K for all values of T >0 is positive 

which implies that K is a convex function and 

has a unique solution. 
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