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Abstract 

This paper addresses the problem of handling the uncertainty of demand in a 
one-supplier-one-retailer supply chain system. Demand variation often makes the real production 
different from what is originally planned, causing a deviation cost from the production plan. Assume 
the market demand is sensitive to the retail price in a nonlinear form, we show how to effectively 
handle the demand uncertainty in a supply chain, both for the case of centralized-decision-making 
system and the case of decentralized-decision-making system with perfect coordination.  
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1. Introduction  
Uncertainty plays an important role in the 

modern supply chain systems. Handling 
uncertainty in an efficient and effective way is 
becoming more and more important to the 
success of supply chain management. 
Traditionally, uncertainty is studied by 

stochastic models with some appropriate pro- 
bability assumptions. In this paper, we present 
an alternative model, the so-called disruption 
management, to approach the demand 
uncertainty.  

Generally speaking, disruption manageme- 
nt studies the situation where an operational 
plan has to be made before the uncertainty is 
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resolved, and deviation costs will be occurred 
for revising the operational plan in its 
execution period with the resolution of the 
uncertainty. In the supply chain model 
considered in this paper, a production plan (the 
quantity of the product) has to be made before 
the selling season based on market estimations 
while the real market demand is yet unknown. 
When the selling season comes, the real market 
demand is known. Then it may be necessary to 
adjust the production plan (producing more or 
less) to respond to the resolved market demand. 
Very often, we need to consider the case that 
the adjustment to the original production plan 
will cause deviation costs. 

The supply chain model contains one 
supplier and one retailer, where the supplier 
produces one type of product and sells the 
product to the retailer by a wholesale price, the 
retailer then sells the product to an open 
market by a retail price. Both the supplier and 
the retailer are independent decision makers 
seeking for maximizing their individual profits. 
There are two cases of the sequence of 
decisions, static case and dynamic case. In 
both cases, we assume the supplier and the 
retailer have the same information about the 
demand. 

The static case (deterministic demand) can 
be described as a Stackelberg game led by the 
supplier and followed by the retailer. In this 
context, the supplier first declares a wholesale 
policy; the retailer then decides the quantity to 
purchase from the supplier and the retail price 
to set. Finally, the supplier needs to produce 
the quantity that the retailer orders. Due to the 
well-known double marginalization phenome- 
non, if the retailer and the supplier make 

decisions independently, the total supply chain 
profit may be less than the case if there is a 
central decision maker who seeks to maximize 
the profit of the whole supply chain. Therefore, 
a coordination scheme is needed so that both 
the supplier and the retailer can make decisions 
in a cooperative way. While there are many 
possible coordination schemes, a commonly 
used way is by a wholesale quantity discount 
policy. 

In the dynamic case, there is an additional 
step for the supplier to make a production plan 
before the demand is known. After the demand 
is known, the supplier and the retailer will play 
the above Stackelberg game. It should be noted 
that in this case, if the retailer places an order 
that is different from the production plan of the 
supplier, the supplier has to bear additional 
costs to this deviation, either producing more 
or handling the leftover inventory.  

The purpose of demand disruption 
management studied here is to model and 
optimize the situation of the above dynamic 
case. The problem is originally studied by Qi 
et al. (2002(a)) where more detailed 
background and motivations of the model can 
be found. For related supply chain literatures, 
we refer to Jeuland and Shugan (1983), Weng 
(1995), Chen et al. (2001), Milner and 
Rosenblatt (2002), and Boyaci and Gallego 
(2002). In the model of Qi et al., they assume 
that the market demand is a downside linear 
function of the retail price, kpDd −= , where 
D is the maximum market scale, p is the retail 
price, k is a coefficient of price sensitivity, and 
d is the real demand under retail price p. While 
such a linear demand function is used in many 
literatures, another popular, or maybe more 
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realistic, demand function is in a nonlinear 
form such as kDpd 2−= (k>=1)(For example, 
Weng 1995). As pointed by many researchers, 
the results obtained from a linear demand 
function may not be able to be directly applied 
to the case of a nonlinear demand function. To 
this reason, we will investigate the case of the 
nonlinear demand function of kDpd 2−=  in 
this paper. We will show how and to what 
extent of the results of a linear model can be 
applied to the nonlinear case, and what new 
findings we may have. 

Before going into technique details of the 
model, we would like to give a brief review of 
the researches on disruption management. The 
concept of disruption management appears in 
airline flight and crew scheduling problems 
(for examples, Thengvall et al. 2000, Clausen 
et al. 2001), and has been successfully applied 
for many years (Yu et al. 2002). Recently, 
people begin to study disruption management 
in many other areas, such as production 
planning (Yang et al. 2001), machine 
scheduling (Qi et al. 2002(b)), and supply 
chain management (Qi et al. 2002(a)). It is 
anticipated that disruption management is 
becoming a more and more important, both in 
theoretical researches and practical 
applications. 

The rest of the paper is organized as 
follows. In Section 2 we formally define the 
model and discuss its coordination policy in 
the static case. The centralized decision 
making policy with demand disruptions will be 
given in Section 3. In Section 4, we consider 
coordination mechanisms under the case of 
de-centralized decision-making. We illustrate 
our results in Section 5 by some numerical 

examples. Section 6 concludes this paper. 

2. Deterministic Model 
We first introduce the supply chain model 

in which the price-demand function is 
deterministic and known. The supplier 
manufactures a product that is purchased by 
the retailer who then sells it to consumers. In 
the Stackelberg game, both players are 
independent decision makers seeking to 
maximize their individual profit where the 
supplier declares a wholesale policy first and 
the retailer makes his decisions of placing 
orders.  

We assume the market demand Q (or the 
production quantity of the supplier) is a 
decreasing function of the retail price p such as 

kDpQ 2−=  with 1≥k , or equivalently  
k

Q
Dp 2

1
)(=  

Suppose the unit production cost of the 
supplier is a constant c. Then the profit of the 
supply chain can be written as 

     ])[()( 2
1

c
Q
DQQf k −=         (1) 

It is easy to see that )(Qf  is strictly 
concave over Q, so there must be a unique 
optimal point Q  to maximize the supply 
chain’s total profit. By the first order condition, 
we have that the supply chain profit is 
maximized at 

k

ck
kDQ 2)
2

12( −=  

with optimal retail price  

12
2
−

=
k
ckp  

and the maximum supply chain profit is  
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kSC

ck
k

k
Dcf 2

max )
2

12(
12

−
−

=  

When the supply chain profit is maximized, 
how to share the maximum profit of the supply 
chain between the supplier and the retailer and 
how to make incentives to the retailer so that 
the retailer would like to place an order of Q  
and accordingly set the retail price to p  are 
two important issues. The problem is called 
supply chain coordination. In this study, we 
introduce a wholesale quantity discount policy 
to coordinate the supply chain. 

Suppose Sf  is the profit that the supplier 
wants to earn. Then Sf can be written as 

SCS ff maxη=  with 10 <<η , where η is the 
ratio of total supply chain profit that the 
supplier takes. The following theorem 
indicates that the supplier can set an all-unit 
quantity discount to induce the retailer to place 
a “right” order and set a “right” retail price so 
that the supplier’s goal of profit and the 
maximum supply chain profit can be achieved.  

An all-unit quantity discount policy, 
denoted by AQD(w1,w2,q0) with w1>w2, works 
as follows. If the retailer orders Q < q0, the unit 
wholesale price is w1. If the retailer orders 
Q≥q0, the unit wholesale price becomes w2. 

Theorem 1 For SCS ff maxη= , 10 <<η , the 
supply chain can be coordinated under the 
quantity discount policy ),,( 21 QwwAQD  
where 1w  is large enough and  

122 −
+=

k
ccw η . 

Proof. Suppose the retailer wants to take the 
wholesale price 2w , then he needs to order no 
less than Q  from the supplier. His profit can 
be written as  

])[()( 2
2

1
1 w

Q
DQQf kr −=  with QQ ≥ ,  

which is maximized at  

Q
w
cQ

w
c

ck
kDQ kkk <=−= 2

2

2

2

2
1 )()()

2
12(  

So the retailer cannot maximize his profit by 
ordering 1Q  and taking the price 2w . Because 

)(1 Qf r  is a concave function and its feasible 
domain is QQ ≥ , the retailer should order Q  
to maximize his profit if he wants to take the 
price 2w , and his profit is  

SC

SC

k

kr

f

c
k
ckQf

k
cc

Q
DQ

w
Q
DQQf

max

max

2
1

2
2

1
1

)1(

)
12

2(

]
12

)[(

))[()(

η

η

η

−=

−
−

−=

−
−−=

−=

 

If the retailer orders less than Q  and takes 
the unit wholesale price 1w , his profit can be 
written as  

])[()( 1
2

1
2 w

Q
DQQf kr −=  with QQ < , 

which is maximized at  

k

w
cQQ 2

1
2 )(= . 

With a sufficient large 1w , we have that  

)(])()[()()( 11
12

12

1
22 Qfwc

w
Q
D

w
cQQf rkkr <−=  

Therefore the retailer would like to order 
Q  to maximize his own profit. As a result, the 
supplier’s desired profit is achieved and the 
maximum supply chain profit is also obtained. 
          ■ 

We now use the following analysis to 
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illustrate the importance of supply chain 
coordination. To do so, we suppose the 
supplier uses a linear wholesale policy with the 
unit wholesale price of w . Then the retailer’s 
profit function can be written as 

kr Dpwppf 2)()( −−=                 (2) 
and the supplier’s profit function is 

kS Dpcwwf 2)()( −−=                (3) 
In the Stackelberg game, the supplier can 

determine his optimal wholesale price w 
assuming that he knows the retailer’s optimal 
reaction with a given w. 

For (2), using the first order condition 
0))(( =′pf r , we get the optimal retail price 

12
2~
−

=
k
wkp  

and the optimal ordering quantity  
k

wk
kDQ 2)

2
12(~ −=  

Thus )(wf S  becomes 
kS

wk
kDcwwf 2)

2
12()()( −−=          (4) 

According to the retailer’s pricing policy, 
the supplier can decide the wholesale price to 
maximize his own profit in (4). Similarly, it 

can be shown (4) is maximized at 
12

2~
−

=
k
ckw  

As a consequence, the real retail price and the 

order quantity are respectively 2)
12

2(~
−

=
k

kcp  

and kk

ck
kDcQ 42 )
2

12(~ −= , and the maximum 

profits of the retailer and the supplier are 
respectively 

142

2
12

12
~ −

⎟
⎠
⎞⎜

⎝
⎛ −

−
=

kkr

ck
k

k
Dcf , 

kkS

ck
k

k
Dcf

412

2
12

12
~

⎟
⎠
⎞⎜

⎝
⎛ −

−
=

+
, 

and the total profit of the supply chain is 

142

2
12

)12(2
)14(~ −

⎟
⎠
⎞⎜

⎝
⎛ −

−
−

=
kk

ck
k

kk
Dck

f  

which can be shown less than the maximum 
profit SCfmax  under the coordination 
mechanism ),,( 021 qwwAQD . This indicates 
the importance of supply chain coordination.  

3. Centralized Decision Making 
with Demand Disruptions 
In Section 2, we discuss the supply chain 

model as a static model where the demand 
function is assumed deterministic and 
accurately known. In reality, the real demand 
function may be different from what has been 
estimated in the planning period. In this section, 
we consider the case of market scale change, 
where the resolved market scale becomes 

DD ∆+ , with a positive D∆  representing an 
increased market, and a negative D∆  
representing a decreased market. Thus the 
demand function becomes kpDDd 2)( −∆+=  
with 0>∆+ DD . 

We start with the discussion on the case 
that there is a central decision maker in the 
supply chain who seeks to maximize the total 
profit of the supply chain. Let Q be the real 
demand under the new demand function with 
probably a new retail price p, where 

k
Q

DDp 2
1

)( ∆+=  

Because of the variety of market scale, 
there may be a production deviation 

QQQ −=∆ . If 0<∆Q , there is some leftover 
inventory which has to be sold to a secondary 
market with a very low price. If 0>∆Q , more 
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products than the planned Q have to be 
produced to meet the unplanned demand 
increase. In either case, the demand disruption 
will cause disruptions to the original 
production plan and certain extra costs and 
efforts beyond the planned resources may be 
required, and should be included when making 
the new price and production decisions.  

The supply chain profit with the production 
deviation cost considered under demand 
disruption can be written as 

++ −−−

−−∆+=

)()(

])[()(

21

2
1

QQQQ

c
Q

DDQQf k

λλ
    (5) 

where 0, 21 >λλ  are marginal extra costs of 
increased and decreased production from the 
original plan respectively, and 

}0,max{)( xx =+ . 
For their practical meanings, 1λ  is the unit 
extra production cost more than what has been 
planned, and 2λ  is the unit cost of handling 
the leftover inventory less than what has been 
planned. We assume c<2λ , i.e., the leftover 
inventory can be sold on a secondary market 
and has some salvage value.  

In order to investigate how demand 
disruptions influence production plan, we have 
the following lemma.  

Lemma 1 Suppose f (Q) in (5) is maximized at 
an optimal ordering quantity *Q . Then  

1)when 0>∆D , we have QQ ≥* , and 

2)when 0<∆D , we have QQ ≤* . 

Lemma 1 says that when the market scale 
increases, the production quantity cannot be 
decreased; when the market scale decreases, 

the production quantity cannot be increased. 
This is consistent with the common intuition. 
The proof is omitted because it is similar to the 
analysis in Qi et al. (2002(a)). 

From Lemma 1, when 0>∆D , we can 
reduce the objective function of the problem to 

)(])[()( 1
2

1
1 QQc

Q
DDQQf k −−−∆+= λ   (6) 

with the constraint of QQ ≥ . Using the first 
order condition 0)(1 =′ Qf , we have 

k

kc
kDDQ

2

1
1 )(2

12)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−∆+=
λ

       (7) 

For f1(Q) in (6), we see that it is strictly 
concave with the constrain of QQ ≥ . 
Therefore, if QQ ≥1 , or equivalently,  

⎥
⎦

⎤
⎢
⎣

⎡ −+≥∆ 1)1( 21 k

c
DD

λ
 

f1(Q) in (6) is maximized at Q1; if QQ ≤1 , or  

⎥
⎦

⎤
⎢
⎣

⎡ −+≤∆< 1)1(0 21 k

c
DD

λ  

f1(Q) is maximized at Q  because of 
concavity. 

Therefore when 0>∆D  we have two 
cases, 

Case 1. 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ +>∆ 11

2
1

k

c
DD λ , and 

Case 2. 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ +≤∆< 110

2
1

k

c
DD λ  

The optimal production quantity is  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−∆+=

=

2Casefor   ,
2

12

1Casefor,
)(2

12)(

2
*
2

2

1

*
1

*
k

k

ck
kDQ

kc
kDDQ

Q
λ  
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We see that the original plan should not 
increase unless the increase of the market scale 

D∆  is large enough. On the contrary, the 
optimal retail price *p  always has a chance to 
increase as long as the market scale increases.  

For Case 1, the optimal retail price is 

12
2

12
)(2 11*

1 −
+=

−
+

=
k

k
p

k
kc

p
λλ

, 

and the maximum total profit of the supply 
chain is 

k

k

ck
kD

kc
k

k
cDD

f

2

1

2

1

1*
1

2
12

)(2
12

12
))((
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⎠
⎞

⎜
⎝
⎛ −+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−
+∆+

=

λ

λ
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For Case 2, the optimal retail price is 

kk

D
Dp

D
D

k
ckp

2
1

2
1

*
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12
2

⎟
⎠
⎞

⎜
⎝
⎛ ∆+=⎟
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⎜
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−
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and the maximum supply chain profit is 

⎥
⎥

⎦
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⎢
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−
⎟
⎠
⎞

⎜
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⎠
⎞

⎜
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D
D
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12
21
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12 2
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2

Now we consider the case of a negative market 
change. When 0<∆D , the objective function 
is reduced to 

)(])[()( 2
2

1
2 QQc

Q
DDQQf k −−−∆+= λ  (8) 

with the constraint of QQ ≤ . Similarly, we 
have two cases, 

Case 3:
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ −>∆> 110
2

2
k

c
DD λ , and  

Case 4: 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −≤∆ 11

2
2

k

c
DD λ .  

Using the first order condition 0)(2 =′ Qf , 
we have the solution 

k

kc
kDDQ

2

2
2 )(2

12)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−∆+=
λ

       (9) 

Thus when 0<∆D , the supply chain is 
maximized at 

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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For Case 3, the optimal retail price is 
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and the maximum profit of the supply chain is 
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For Case 4, the optimal retail price is 

12
2

12
)(2 22*
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−
−

=
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k
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k
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p
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and the maximum supply chain profit is 
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Note that for the four cases above, the retail 

prices are always positive, implying they are 

feasible in practice. But it cannot guarantee 

that the retail prices are larger than the unit 

production cost c for Case 3 and Case 4, 

implying that the total supply chain profit may 

be negative if the market scale becomes too 

small. For Case 3, cp >*
3  is equivalent to 

]1
2

12[
2
−⎟

⎠
⎞⎜

⎝
⎛ −>∆

k

k
kDD . 
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If kc 22λ≥ , the supply chain profit is 
positive; if kc 22 2λλ << , the profit of the 
supply chain is negative if and only if 

]1
2

12[
2
−⎟

⎠
⎞⎜

⎝
⎛ −<∆

k

k
kDD  

For Case 4, it derives from cp >*
4  that 

kc 22λ> . 
Summarize the above results, we have 

Theorem 2 When the stated demand-price 
relationship is kpDDd 2)( −∆+= , the total 
supply chain profit is maximized at 
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Theorem 2 indicates how to correctly 
respond to a demand disruption. (1) When the 
market scale change is small, keeping the 
original production plan Q  and revising the 
retailing price is optimal. This shows that the 
original production plan has certain robustness 
under the variable market scale. (2) When the 
market scale changes large enough, adjusting 
both production quantity and the retail price 
becomes necessary. However, though the 
production quantity change is proportional to 
the market scale change ∆D, the retail price 
change is a constant independent to ∆D. For 
the case of a positive ∆D, this explains the 

practical phenomenon that the retail price 
cannot become arbitrarily high no matter how 
hot a product is. For the case of a negative ∆D, 
this is consistent with the fact that setting a too 
low retail price is less profitable than selling 
the product in a secondary market. 

At the end of this section, we make a brief 
comparison between the model of a linear 
demand function (Qi et al. 2002(a)) and our 
model of a nonlinear demand function. We 
have some common findings such as the 
optimal solutions for both models have the 
same structure (the market scale change is 
categorized into four cases according to its 
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magnitude), and the production plan has 
certain robustness when the disruption is small. 
On the other hand, the nonlinear model does 
reveal some different results, an interesting one 
of which is that the retail price cannot become 
arbitrarily high enough. 

4. Coordinating the Supply 
Chain under Demand 
Disruptions 
In this section, we discuss how the supplier 

should devise a new scheme (a new quantity 
discount policy) to achieve the supply chain 
coordination for the disrupted demand. 
Accordingly, there are four cases. 
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where 10 <≤η . 

Theorem 3 When 
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the supply chain can be coordinated by the 
all-unit quantity discount policy 
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Proof. If the retailer takes the wholesale 
price 2w , he should order more than *

1Q  from 
the supplier and his profit can be written as  
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It can be shown that *
11 QQ < , so the retailer 

can’t maximize his profit by ordering 1Q  and 
taking the price 2w . By concavity of )(1 Qf r , 
the retailer would like to order *

1Q  if he takes 
the price 2w , and his profit is 
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If the retailer orders less than *

1Q , he has to 
take the wholesale price 1w  and his profit can 
be written as  
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with the constraint of QQ < , which is 
maximized at  
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kDDQ 2

1
2 )

2
12)(( −∆+=  

Since 1w  is large enough, it is easy to 
know that  

)(])[()( *
111
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2
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Q
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Therefore the retailer would like to order 
*
1Q  to maximize his own profit. As a result, 

the supplier’s desired profit and the maximum 
supply chain profit are achieved.  

We have given the detailed proof of 
Theorem 3, which shows the general idea of 
designing a coordination scheme under 
demand disruptions. For the following cases, 
we will only present the corresponding 
theorems and omit the proofs because their 
proofs take very similar approaches. 
Case 4.1.2 Qf S
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 Then Sf  can be written as  
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For this case, we need to introduce another 
wholesale price policy, the capacitated linear 
price, denoted by CLP (w, q). A CLP works as 
follows. The supplier charges the retailer a 
constant unit wholesale price w, but the retailer 
cannot place an order more than q. 
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Then we have the following theorem. 
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the supply chain can’t be coordinated by the 
policy ),,( 21 QwwAQD , but it can be 
coordinated by the policy ),( 2 QwCLP , 
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Similar to Theorem 5, we have the 

following results.  
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and Sf  defined in (12), the supply chain can 
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In this case, the retailer would order 
nothing because he cannot make any profit. If 
the retailer does so, the supplier will have to 
put all his planned production Q  to the 
secondary market with a negative profit of 

Q2λ− . In order to reduce his own loss, the 
supplier would like to take certain coordination 
policy and give the retailer some incentives so 
that the retailer can make some profit and then 
the supplier can reduce his own loss too. 

Consider the wholesale pricing from the 
retailer’s perspective. Suppose the desired 
profit of the retailer is 
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Then the supplier’s profit is 
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In fact, if the retailer asks to earn too much, 
i.e. µ is too large, the supplier would like to 
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sell all the Q  products at the secondary 
market. Therefore the condition Qf S
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should be met, which turns out to be 
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the supplier would like to sell all the Q  
products at the secondary market, where 1w  
is large enough and  

]
12

2)1[(

12
2)1(

2
1

2
1

2

c
k
ck

D
D

k
ck

D
Dw

k

k

−
−

∆++

−
∆+=

µ
 

4.4 Case 4: 
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We still consider from the retailer’s 
perspective. Suppose the desired profit of the 
retailer is  
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It should be positive, i.e. 
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Note that when 1<µ , the supplier’s profit 
is negative. Similar to Case 3, Sf  should 
satisfy that Qf S

2λ−> , i.e., 0>µ . Therefore, 
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0<µ , the supplier would like to dispose of all 
his Q  products rather than supply them to the 
retailer for sale.  
Theorem 8 For the case  
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and rf  defined in (15), we have that 
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0<µ , the supplier would like to sell all of the 
Q products at the secondary market. 

As a final remark, we would like to point 
out that the coordination schemes (wholesale 
quantity discount policy with various 
parameters) developed in our model again have 
similar structures as those in the linear demand 
model (Qi et al. 2002(a)). The contribution of 
this research shows that the wholesale quantity 
discount policy can be used as an effective 
scheme to coordinate supply chain in a large 
range of situations.  

5. Numerical Examples 
In this section, we present some numerical 

examples to illustrate the theoretical results 
obtained in the previous sections. In particular, 
we are interested in the effect of the disruption 
management after various demand changes. 
Knowing a demand change, the supplier will 
adopt an appropriate new discount policy to 
re-coordinate the supply chain. On the contrary, 
if the supplier does not know the demand 
change, he will keep the pre-assumed discount 
policy, and the retailer has the freedom to 

make any order according to the real market. 
For these two cases, we will compare the profit 
difference from the perspective of the supplier, 
the retailer, and the whole supply chain.  

In all the following examples, we assume 
the originally estimated market scale D=1000, 
the price sensitive coefficient 1=k . Thus the 
demand function becomes 21000 −= pd . Let 
the unit production cost 1$=c . In the 
deterministic case, the supply chain profit is 
maximized at 250=Q , the optimal retail price 
is 2$=p , and the maximum profit of the 
supply chain is 250$max =SCf . For the marginal 
cost of deviation from the production plan, we 
assume that λ1=$0.1, and λ2=$0.2. In other 
words, producing one unit of the product more 
than the original plan costs the supplier $1.1, 
and handling one unit leftover inventory costs 
the supplier $0.2.  

Recall that the profit that the supplier wants 
to earn can be represented by SCS ff maxη= . We 
fix η = 0.4. Under the assumption of 
symmetric information, it means that the 
supplier and the retailer agree to share the total 
supply chain profit as 4:6.  

We have considered various magnitudes of 
possible disruptions of the market scale, i.e., 
different ∆D’s. We calculate the profit 
differences of the supplier, the retailer and the 
supply chain between taking disruption 
management and keeping the original 
wholesale quantity discount policy in Table 1. 
In the table, we list the absolute difference in 
terms of dollars and the relative percentage 
difference. 

In Table 1, the rows of ∆D=500 and ∆D=300 
belong to Case 1, i.e., a large demand change. 
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Table 1  The Effect of Disruption Management for Different Demand Changes 
Profit difference 

Disruptions D∆  
Supplier retailer supply chain 

500 $46.36 (46.36%) $−42.82 (−16.32%) $3.54 (0.97%) 
300 $28.18 (28.18%) $−27.82 (−12.64%) $0.36 (0.11%) 
100 $9.76(9.76%) $−9.76(−5.60%) 0 (Coordination) 
−200 $−21.11(−21.11%) $21.11(21.72%) 0 (Coordination) 
−450 $−51.25 (−51.25%) $52.32 (251.39%) $1.065 (0.88%) 
−550 $86.25 $54.375 $140.625 

We can see that the maximum supply chain 
profit is not achieved without the right 
coordination. Moreover, without the right 
coordination, more profit would go to the 
retailer. By the right coordination scheme, the 
supplier can take back some profit that he may 
have lost.  

The rows of ∆D=100 and ∆D=−200 belong 
to Cases 2 and 3, respectively. In these cases of 
small demand changes, the maximum supply 
chain profit can be reached under the original 
discount policy, i.e., the supply chain can be 
coordinated. However, the profit sharing ratio 
is not 4:6 as it should be. For a positive 
demand change, the supplier can get more 
profit in the new discount policy; while for a 
negative demand change, the retailer is 
benefited in the new discount policy. 

The rows of ∆D=−450 and ∆D=−550 
belong to Case 4, a large negative demand 
change. Like in Case 1, the new discount 
policy can gain more profit to the whole supply 
chain, but now the supplier has to move part of 
his profit to the retailer in order to keep the 
profit sharing ratio as 4:6. For the row of 
∆D=−550, we do not report the percentage 
difference. The reason is that keeping the 
original discount policy becomes infeasible in 

that the retail price would be lower than the 
wholesale price, then the retailer would order 
nothing from the supplier, and finally the 
supplier has to bear the loss of putting all the 
planned product in the secondary market. In 
the new discount policy, the retailer can make 
some profit by selling the product, and the 
supplier’s loss is reduced.  

From the above examples, we can see that 
the disruption management, i.e., adjusting the 
wholesale discount policy according to the 
demand change, has two main advantages, to 
achieve the maximum supply chain profit, and 
to correctly allocate profits between the 
partners. 

6. Conclusions 
In this paper, we have investigated the 

demand disruption management problem for a 
supply chain system. The market demand 
change may cause the production quantity 
differing from what has been planned, and 
changing the production plan will cause a 
deviation cost that needs to be considered 
under the demand change. While previous 
research on this topic assumes the demand is a 
linear decreasing function of the retail price, 
this paper has addressed the case that the 
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demand is a nonlinear decreasing function.  
Besides systemically analyzing the demand 

disruption problem with nonlinear demand 
function, this paper has two additional 
contributions. First, we show that the idea of 
handling demand disruptions for linear demand 
functions can also be applied to the case of 
nonlinear demand functions by appropriate 
implementations, which implies that the 
methodology has some universality in coping 
with similar circumstances. Second, the 
nonlinear model does reveal some new 
findings different from the linear model, which 
can give a better description of the reality in 
certain situations. 

With more and more people realizing the 
importance of studying disruptions in supply 
chain systems, extending the one-supplier-one- 
retailer model to more complicated and 
practical models are worthy to do as interesting 
future works. Currently, we are working on the 
models with multiple players in the game, and 
various other possible disruptions. 
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