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Abstract 

In real world situations, most scheduling problems occur neither as complete off-line nor as 
complete on-line models. Most likely, a problem arises as an on-line model with some partial 
information. In this article, we consider such a model. We study the scheduling problem P(n1,n2), 
where two groups of jobs are to be scheduled. The first job group is available beforehand. As soon as 
all jobs in the first group are assigned, the second job group appears. The objective is to minimize the 
longest job completion time (makespan). We show a lower bound of 3/2 even for very special cases. 
Best possible algorithms are presented for a number of cases. Furthermore, a heuristic is proposed for 
the general case. The main contribution of this paper is to discuss the impact of the quantity of 
available information in designing an on-line algorithm. It is interesting to note that the absence of 
even a little bit information may significantly affect the performance of an algorithm. 
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1. Introduction  
In classical scheduling models, it is assumed 

that full information on the jobs to be scheduled 
is available in advance. Such a situation is 

termed off-line scheduling. In many applications, 
however, this is not realistic because decisions 
have to be made before information on the jobs 
is known. In contrast to off-line scheduling, such 
a situation is termed on-line scheduling. In most 
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on-line scheduling problems, it is assumed that 
jobs become available one by one. The 
information on the next job is not known until 
the current job is assigned. As soon as a job has 
been assigned, it cannot be moved again. For a 
survey of the results of various on-line 
paradigms reported in the literature, we refer to 
Sgall (1998).  

In this article, we consider a scheduling 
model with two groups of jobs, where 
information on the jobs in the first group is 
known whereas information on those jobs in the 
second group is not available beforehand. 
Specifically, the problem can be stated as 
follows: A number of jobs are to be processed by 
m identical parallel machines. Each job needs 
the processing of one and only one machine. The 
decision to assign (dispatch) a job to a machine 
is irrevocable, i.e., as soon as such a decision is 
made, the job will be dispatched and the decision 
cannot be changed any more. The jobs can be 
classified into two groups. The particulars of the 
first group of jobs are completely known to the 
scheduler and jobs can be assigned immediately. 
The second group of jobs, however, is not 
available (or released) until all jobs in the first 
group have been assigned. The objective is to 
schedule all jobs such that the maximum 
completion time (makespan) is minimized. For 
brevity, we use L1 and L2 to denote the first and 
second groups of jobs, respectively. Furthermore, 
we denote the model described above by P(n1, 
n2), where n1 and n2 are the numbers of jobs in 
L1 and L2, respectively. Assume that n1 and n2 
are known beforehand. 

The P(n1, n2) model is a generalization of the 
traditional model of off-line scheduling. If n1=0 
or n2=0, P(n1, n2) reduces to the traditional 

off-line scheduling problem of minimizing the 
makespan on a number of parallel machines (see, 
e.g., Gary and Johnson 1978). If the first group 
of jobs has been scheduled and the goal is to 
optimally schedule the second group of jobs, the 
problem becomes the one considered by Lee 
(1991), named parallel machines scheduling 
with nonsimultaneous machine available time. 
On the other hand, the P(n1, n2) model is also a 
new variant of on-line scheduling over a list (see, 
for example, Sgall 1998), where jobs are ordered 
in some list (of which the scheduler is not aware) 
and are released one by one. The P(n1, n2) model 
addresses the situations where some jobs are 
given but some are unknown. It can thus be 
viewed as a model in between off-line and 
on-line scheduling, 

Noting the NP-hardness results that have 
been established for the off-line scheduling 
problem with parallel machines (see Gary and 
Johnson 1978, 1979), we know that P(n1, n2)  is 
NP-hard in the strong sense in general (Gary 
and Johnson 1978), and NP-hard in the ordinary 
sense in the two-machine case (Gary and 
Johnson  1979). Furthermore, a pseudo-polyno- 
mial algorithm can be derived if the number of 
machines is fixed. Many heuristic results have 
been developed. Among them, the most popular 
approach is list scheduling. In a list scheduling 
algorithm, jobs are placed into a list, often in an 
arbitrary order. The algorithm always schedules 
the first available job on the list of unscheduled 
jobs whenever a machine is idle. If a list 
scheduling algorithm works with an arbitrary list 
of jobs, we name this algorithm LS. Since LS 
requires no knowledge of active and future jobs. 
It is obviously an on-line algorithm. If 
processing times of the jobs are known and the 
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job list is sorted in non-increasing order of 
processing times, then such a list scheduling 
algorithm is known as LPT (Longest Processing 
Time job first), which works much better than 
LS. Clearly, LPT is an off-line algorithm since it 
sorts all jobs in some order, based on the known 
information, before scheduling them. In the next 
section we will further discuss the two 
algorithms LS and LPT and the possibility of 
applying them to our problem P(n1, n2).  

The rest of this paper is organized as follows. 
Section 2 analyzes LPT-class algorithms, which 
are shown no better than LS algorithm in terms 
of worst-case performance when applied to our 
problem. Section 3 provides a lower bound 3/2 
for the problem. This lower bound remains true 
even for some special cases. In Section 4, we 
design and analyze on-line algorithms for these 
special cases, respectively. All algorithms have 
worst-case ratios matching the lower bound, and 
therefore they are the best possible. Section 5 
investigates the general case. Several strategies 
are analyzed. Conclusions are given in Section 6. 

2. Notation and Preliminary 
Analysis 
Let C*(L) and CA(L) denote, respectively, the 

makespan given by an optimal algorithm and the 
makespan produced by an approximation 
algorithm A for an input job list L. The 
worst-case ratio ρA of algorithm A is defined as 

)}(*/)({sup LCLCA
L

A =ρ             (1) 

Clearly, ρA≥1. The worst-case ratio is the 
usual measure for the quality of an 
approximation algorithm for scheduling 
problems. The smaller the ratio, the better the 
approximation algorithm. 

To measure the quality of on-line algorithms, 
we usually adopt the so-called competitive ratio, 
where C*(L) is provided by an off-line optimal 
algorithm and CA(L) is given by an on-line 
algorithm A. In this paper, for convenience we 
use the term “worst-case ratio” for both off-line 
and on-line algorithms. For simplicity, in the 
following instead of C*(L) and CA(L), we 
usually use C* and CA to denote the 
corresponding makespans without causing any 
confusion. 

In the first paper on the worst-case analysis 
of scheduling heuristics, Graham (1966) showed 
that algorithm LS has a worst-case ratio of 
2−1/m, where m is the number of machines. 
Faigle, Kern and Turan (1989) proved that for 
m=2 and 3, LS is the best possible; In other 
words, no on-line algorithms exist such that their 
worst-case ratios are less than 2−1/m for m=2 
and 3. For m≥4, Chen, Van Vliet and Woeginger 
(1994) provided algorithms with better 
worst-case ratios than LS. However, similar to 
LS, their algorithms still approach 2 as m 
increases. 

Now we turn to the off-line algorithm LPT. 
LPT was shown by Graham (1969) to have a 
worst-case ratio of 4/3−1/(3m). For more 
information on parallel machine scheduling, one 
can refer to a recent survey paper by Chen, Potts 
and Woeginger (1998). Since our problem P(n1, 
n2) has two groups of jobs, one may suggest to 
apply the algorithm LPT twice. Such a heuristic, 
denoted by Two-phrase LPT, first applies LPT 
to the first job group; afterwards applies LPT 
again to the second job group. It may be 
expected that the Two-phrase LPT could 
perform like the algorithm LPT. However, the 
following instance shows that it is not better than 
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LS in terms of worst-case ratio, and 
consequently some other approaches should be 
sought to tackle the problem P(n1, n2). 

Assume that in an instance of P(n1, n2) the 
first job group consists of m(m−1) identical jobs, 
each with processing time 1 and the second job 
group only contains one long job with 
processing time m. Obviously, the makespan 
given by Two-phrase LPT is 2m−1 while the 
optimal makespan is m. It implies that the 
worst-case ratio of Two-phrase LPT is not better 
than 2−1/m, the same worst-case ratio as that of 
LS. This worst-case result even holds when L2 
contains only one job. In other words, LPT is of 
no help even for the problem P(n1, 1). We 
realize that we cannot simply apply LPT to the 
first job group (or try to assign the first job 
group optimally). To design better algorithms, 
we must save some space for possible jobs with 
long processing times appearing in the second 
job group, i.e., at least one machine should be 
reserved in some way to accommodate possible 
long jobs in the second job group. This will be 
the main idea to design the algorithms proposed 
in the sections below. 

3. A Lower Bound 
Throughout the rest of this paper we always 

assume that n1≥2, n2≥1 and n1+n2≥m+1 (m is the 
number of machines). Obviously, if n1≤1 or n2=0, 
the problem P(n1, n2) is equivalent to the off-line 
problem; if n1+n2≤m, we can arrange each job to 
a single machine which results in an optimal 
schedule. 

Lemma 1 For any given positive integer n1≥2 
and n2≥1, where n1+n2≥m+1 (m is the number 
of machines), there does not exist any on-line 
algorithm with worst-case ratio less than 3/2 for 

problem P(n1, n2). 
Proof. Let ε be an arbitrarily small positive 
number. Consider any heuristic H with the 
following instances. The first job group L1 only 
contains two kinds of jobs: One is called long 
jobs, each with processing time 1 while the other 
is called short jobs, each with processing time ε. 
If n1≤m, let L1 contain n1 long jobs; otherwise, 
let L1 have m long jobs and n1−m short jobs. In 
the case where two long jobs are put together to 
a machine by H, the next job group L2 becomes 
available and it only consists of n2 short jobs, 
each with processing time ε. Then we come to 
the following result: the makespan produced by 
H is at least 2 while the optimal makespan is 
close to 1. If H assigns long jobs to different 
machines, L2 contains k huge jobs, each with 
processing time 2 and n2−k short jobs. If n1≤ m, 
k=m+1−n1; otherwise, k=1. In this case, H 
produces a schedule with a makespan no better 
than 3 while the optimal value is close to 2. It 
implies that the worst-case ratio of any heuristic 
H is at least 3/2.                         ■           

Note that Lemma 1 holds for any fixed n1 
and n2 as long as n1≥2, n2≥1 and n1+n2≥m+1. In 
particular, the following corollaries hold. Recall 
that in problem P(n1,1), it is known to the 
scheduler that the second job group consists of 
only one job, but the processing time of such a 
job is not known before the first job group has 
been assigned. 
Corollary 2 There does not exist any on-line 
algorithm with worst-case ratio less than 3/2 for 
problem P(n1,1), where n1≥m. 

Recall that for the off-line problem, a 
pseudo-polynomial algorithm exists for any 
fixed number of machines. However, it follows 
from Corollary 2 that, if the information on the 
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last job (only one job!) is unknown beforehand, 
no on-line algorithm can produce a makespan 
less than 3/2 times that of the optimum 
makespan in terms of worst-case performance. 
Corollary 3 There does not exist any on-line 
algorithm with worst-case ratio less than 3/2 for 
the problem P(n1, n2). If 2≤n1≤m and 
n1+n2≥m+1. 

Note that P(n1, n2) is equivalent to the 
off-line problem, if L1 has only one job. But if L1 
has one more job, i.e., n1=2, the worst-case 
performance of an on-line algorithm becomes 
much worse. From the two corollaries, we 
realize that in terms of worst-case performance, 
the on-line problems with partial information 
can differ significantly from the off-line 
problems even if the partial information 
available is almost complete. 

It is well known that algorithm LS has a 
worst-case ratio 3/2 for m=2. We thus get that 
for m=2, LS is still a best possible algorithm for 
our problem. Throughout the rest of this paper, 
we always assume that m≥3. Denote jobs by J1, 
J2,…, Jn and their respective processing times by 
p1, p2,…, pn, where n is the total number of jobs 
in two groups, i.e., n=n1+n2. 

In the next section we will give, respectively, 
two on-line algorithms for problems P(n1,1) and 
P(n1,n2) (2≤n1≤m) and show that their worst-case 
ratios are exactly 3/2. 

4. Special Cases 
We first consider the special case P(n1,1). As 

discussed above, at least one machine (denoted 
as a waiting machine) should be lightly loaded 
for L1. 

Algorithm LPTW (LPT with a waiting machine) 
Step 1. Reindex the jobs of L1 in non-increasing 

order of processing times. If n1≤m, assign all 
jobs each in a machine; otherwise, assign the 
first m jobs each in a machine. 
Step 2. Let Mi be the current workload of 
Machine i(i=1,…, m), where M1≥M2≥ ··· ≥ Mm. If 
there are no unscheduled jobs of L1, go to Step 4. 
Step 3. Apply LS to the remaining jobs in L1 to 
Machines 1,…, m−1. The m-th machine is set to 
be a waiting machine. 
Step 4. Assign the job of L2 to Machine m. 
Theorem 4 The worst-case ratio of algorithm 
LPTW is not greater than 3/2. Moreover, it is a 
best possible on-line algorithm. 
Proof. We prove this theorem in the following 
two cases. 
Case 1. The makespan CLPTw is determined by a 
job of L1. Without loss of generality, assume that 
the completion time of the last job 

1nJ of L1 is 
CLPTw. Let s be the starting time of 

1nJ . If s=0, 
then CLPTw=

1np  and algorithm LPTW provides 
an optimal makespan. Now assume that s>0, 
thus C*≥2

1np  due to the LPT rule. If 
1np >s/2, 

then on the same machine, there is just one job 
scheduled before 

1nJ  due to the LPT rule. 
Hence 

2/3
2*

1

1 <
+

≤
n

nLPTw

p
ps

C
C  

Consider the case 
1np ≤s/2. Note that the 

total workload of Machines 1,…,m−1, is not less 
than (m−1)s+

1np  and the workload of Machine 
m is pm+pn where pn  is the processing time of 
the job 

1nJ  in L2. We have 
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Note that m≥3. 

2/3
2)1(

)(
*

1

1 ≤
+−
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n

nLPTw

psm
psm

C
C  

Case 2. The makespan CLPTw is determined by 
the job Jn of L2, i.e., CLPTw= pm+pn. Note that 
C*≥pn. If pn ≥2pm, then 

2/3
*

≤
+

≤
n

nmLPTw

p
pp

C
C  

Now we assume that pn < 2pm. In an optimal 
schedule, two of the jobs among {J1, J2,…, Jm ,Jn} 
will be assigned on the same machine. Then C*≥ 
pm+pn or C*≥2pm. 

Observe that (pm+pn)/(2pm)<3/2. Thus we get 
CLPTw /C*≤3/2. 

From Corollary 2, we have shown that LPTW 
is a best possible algorithm.                   ■ 

In algorithm LPTW, we set the machine 
which has accepted job Jm to be the waiting 
machine. To see this is crucial, we give two 
remarks as follows. 

Remark 1. If we set an empty machine as the 
waiting machine, then the algorithm will have a 
worst-case ratio of 2. This bound is reached by 
Instance (L1, L2) where L1 consists of m jobs, 
each with processing time 1 and L2 has only one 
job with processing time ε (an arbitrarily small 
positive number). 
Remark 2. If we set the machine which has 
accepted job Ji (i< m) to be the waiting machine, 
then the algorithm will have a worst-case ratio 
not less than 2m/(m+1). This bound is reached 
by Instance (L1, L2), where L1 consists of m−1 
jobs, each with processing time 1 and m jobs, 
each with processing time 1/m, where L2 has 
only one job with processing time 1. 

We now turn to another special case P(n1, n2) 

where 2≤n1≤m. 
Theorem 5 The worst-case ratio of algorithm 
Two-phrase LPT for P(n1, n2)(2≤n1≤m) is not 
greater than 3/2. Thus it is a best possible 
on-line algorithm. 
Proof. Let Cmax denote the makespan produced 
by algorithm Two-phrase LPT. Clearly, after L1 
is assigned, each machine has at most one job to 
be scheduled. Without loss of generality, the 
completion time of the last job Jn (of L2) is Cmax. 
Let s be the starting time of Jn. Then Cmax =s+pn. 
Note that C*≥pn and C*≥s+pn/m. When pn≥2s or 
s≥2pn, it follows that Cmax/C*≤3/2. In the 
following we only consider the case where s/2< 
pn <2s. It implies that some other jobs are 
assigned to the same machine as Jn is. From LPT 
rule, among L2, Jn is one of the shortest jobs. 
Assume that Jn is assigned to Machine i. 

Case 1. On Machine i, a job from L2 is 
scheduled before Jn. Denote this job by Ji. 
Immediately before Jn is scheduled, each 
machine contains either a job from L2 or a job of 
L1 with processing time not less than pi. Note 
that pi≥pn. There are at least m+1 jobs with 
processing time not less than pn. Thus C*≥2pn, 
Since s<2pn, Cmax/C*≤3/2 holds. 

Case 2. On Machine i, a job from L1 is 
scheduled before Jn. Such a job is denoted by Jj. 
Clearly pj=s. Before Jn is assigned, every 
machine must have a job from L1 with a 
processing time not less than s or from L2 with a 
processing time not less than pn. Optimally 
scheduling those jobs will result in a makespan 
C*≥2s or C*≥2 pn. Note that (s+ pn)/2s<3/2 and 
(s+ pn)/( 2pn)<3/2. Thus Cmax/C*<3/2. 

From Corollary 3, we conclude that 
Two-phrase LPT is a best possible algorithm. ■ 
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5. The General Case 
From Lemma 1, algorithm LS is the best 

possible for m=2. In this section, we will only 
consider the case m≥3 and extend algorithm 
LPTw to the general problem P(n1, n2). 
Algorithm GLPTw 
Step 1. Reindex the jobs of L1 in non-increasing 
order of processing times. If n1≤m, assign all 
jobs each in a machine; otherwise, assign the 
first m jobs each in a machine. 
Step 2. Let Mi be the current workload of 
Machine i (i=1,…, m) where M1≥M2≥ ··· ≥ Mm. If 
there are no unscheduled jobs of L1, go to Step 4. 
Step 3. Apply LS to the remaining jobs in L1 on 
Machines 1,…, m−1. The m-th machine is set to 
be a waiting machine. 
Step 4. Apply LPT to job group L2. 
Theorem 6 For problem P(n1, n2), the 
worst-case ratio of algorithm GLPTw is 
2−1/(m−1) for m≥3. 

Proof. Omitted.         ■ 
Corollary 7 Algorithm GLPTw is a best possible 
on-line algorithm for m=3. 
Proof. It follows from the fact that the 
worst-case ratio of GLPTw is 3/2 for m=3.    ■ 

Note that for m≥4, algorithm GLPTw does 
not work. The point is that only one waiting 
machine is set. However if we set more waiting 
machines to accept few jobs, the worst-case ratio 
can not be improved. It can be observed by 
considering the following instance: Group L1 
consists of a large number of tiny jobs. Suppose 
that the number of waiting machines is k. Then 
L2 comes with k+1 long jobs. One can select 
appropriate job length to get a worst-case bound. 
From the above observation, we realize that the 
crucial point is how to “aptly” schedule the first 

job group. We have to keep the largest 
difference of the workloads among the machines 
in an appropriate range. For the second job 
group we can always apply LPT. Below may be 
a possible way to get a better algorithm. Let α be 
a parameter. 

Find a near optimal makespan C1 for group 
L1. 

Let q = C1. 
Consider the following multiple Knapsack 

problem: Given m knapsacks with capacity of 
C1(1+α) and a set of items L1U L0, where L0 is a 
set of m identical dummy items with size q. Find 
near optimal solution for this problem. 

If all items can be packed into those 
knapsacks, remove those dummy items and 
arrange the remaining items (jobs) of each 
knapsack to a machine; otherwise decrease the 
size g of dummy items and back to 3. 

Based on the schedule for L1, apply LPT to 
L2. 

Finally we guess that there exists an on-line 
algorithm with a worst-case ratio 3/2 for the 
general case. 

6. Concluding Remarks 
In this article, we discussed the impact of the 

quantity of available information in designing an 
on-line algorithm. It is interesting to note that 
the absence of even a little bit information may 
significantly affect the performance of an 
algorithm. We studied the scheduling problem 
P(n1, n2), where two groups of jobs are to be 
scheduled. The first job group is available 
beforehand. As soon as all jobs in the first group 
are assigned, the second job group appears. A 
lower bound 3/2 was given even for two special 
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cases P(n1,1) and P(n1, n2)(2≤n1≤m). Two 
on-line algorithms LPTw and Two-phrase LPT 
were provided and were shown to match the 
lower bound for the two special cases, 
respectively. Finally, the general problem was 
considered. 
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