

ISSN 1004-3756/03/1201/73 JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING
CN11- 2983/N ©JSSSE 2003 Vol. 12, No.1, pp73-81 March, 2003

SCHEDULING TWO GROUPS OF JOBS WITH

INCOMPLETE INFORMATION∗

Guochuan ZHANG1 Xiaoqiang CAI C.K. WONG2

Department of Mathematics, Zhejiang University
Hangzhou 310027, P.R. China

Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Department of Computer Science and Engineering, The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

zgc@math.zju.edu.cn xqcai@se.cuhk,edu.hk wongck@cse.cuhk.edu.hk

Abstract

In real world situations, most scheduling problems occur neither as complete off-line nor as
complete on-line models. Most likely, a problem arises as an on-line model with some partial
information. In this article, we consider such a model. We study the scheduling problem P(n1,n2),
where two groups of jobs are to be scheduled. The first job group is available beforehand. As soon as
all jobs in the first group are assigned, the second job group appears. The objective is to minimize the
longest job completion time (makespan). We show a lower bound of 3/2 even for very special cases.
Best possible algorithms are presented for a number of cases. Furthermore, a heuristic is proposed for
the general case. The main contribution of this paper is to discuss the impact of the quantity of
available information in designing an on-line algorithm. It is interesting to note that the absence of
even a little bit information may significantly affect the performance of an algorithm.

Keywords: Machine scheduling, worst-case analysis, on-line algorithm

∗ Research partially supported by a Hong Kong Government RGC Earmarked Grant. Ref. No. CUHK356/96E
1.Part of this work was done while visiting The Chinese University of Hong Kong. Research partially supported

by National 973 Fundamental Research Project of China and National Natural Science Foundation of China
(19801032)

2On leave from IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A

1. Introduction
In classical scheduling models, it is assumed

that full information on the jobs to be scheduled
is available in advance. Such a situation is

termed off-line scheduling. In many applications,
however, this is not realistic because decisions
have to be made before information on the jobs
is known. In contrast to off-line scheduling, such
a situation is termed on-line scheduling. In most

Scheduling Two Groups of Jobs with Incomplete Information

74 JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / VOL. 12, NO.1, MARCH, 2003

on-line scheduling problems, it is assumed that
jobs become available one by one. The
information on the next job is not known until
the current job is assigned. As soon as a job has
been assigned, it cannot be moved again. For a
survey of the results of various on-line
paradigms reported in the literature, we refer to
Sgall (1998).

In this article, we consider a scheduling
model with two groups of jobs, where
information on the jobs in the first group is
known whereas information on those jobs in the
second group is not available beforehand.
Specifically, the problem can be stated as
follows: A number of jobs are to be processed by
m identical parallel machines. Each job needs
the processing of one and only one machine. The
decision to assign (dispatch) a job to a machine
is irrevocable, i.e., as soon as such a decision is
made, the job will be dispatched and the decision
cannot be changed any more. The jobs can be
classified into two groups. The particulars of the
first group of jobs are completely known to the
scheduler and jobs can be assigned immediately.
The second group of jobs, however, is not
available (or released) until all jobs in the first
group have been assigned. The objective is to
schedule all jobs such that the maximum
completion time (makespan) is minimized. For
brevity, we use L1 and L2 to denote the first and
second groups of jobs, respectively. Furthermore,
we denote the model described above by P(n1,
n2), where n1 and n2 are the numbers of jobs in
L1 and L2, respectively. Assume that n1 and n2
are known beforehand.

The P(n1, n2) model is a generalization of the
traditional model of off-line scheduling. If n1=0
or n2=0, P(n1, n2) reduces to the traditional

off-line scheduling problem of minimizing the
makespan on a number of parallel machines (see,
e.g., Gary and Johnson 1978). If the first group
of jobs has been scheduled and the goal is to
optimally schedule the second group of jobs, the
problem becomes the one considered by Lee
(1991), named parallel machines scheduling
with nonsimultaneous machine available time.
On the other hand, the P(n1, n2) model is also a
new variant of on-line scheduling over a list (see,
for example, Sgall 1998), where jobs are ordered
in some list (of which the scheduler is not aware)
and are released one by one. The P(n1, n2) model
addresses the situations where some jobs are
given but some are unknown. It can thus be
viewed as a model in between off-line and
on-line scheduling,

Noting the NP-hardness results that have
been established for the off-line scheduling
problem with parallel machines (see Gary and
Johnson 1978, 1979), we know that P(n1, n2) is
NP-hard in the strong sense in general (Gary
and Johnson 1978), and NP-hard in the ordinary
sense in the two-machine case (Gary and
Johnson 1979). Furthermore, a pseudo-polyno-
mial algorithm can be derived if the number of
machines is fixed. Many heuristic results have
been developed. Among them, the most popular
approach is list scheduling. In a list scheduling
algorithm, jobs are placed into a list, often in an
arbitrary order. The algorithm always schedules
the first available job on the list of unscheduled
jobs whenever a machine is idle. If a list
scheduling algorithm works with an arbitrary list
of jobs, we name this algorithm LS. Since LS
requires no knowledge of active and future jobs.
It is obviously an on-line algorithm. If
processing times of the jobs are known and the

ZHANG, CAI and WONG

JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 12, No.1, March, 2003 75

job list is sorted in non-increasing order of
processing times, then such a list scheduling
algorithm is known as LPT (Longest Processing
Time job first), which works much better than
LS. Clearly, LPT is an off-line algorithm since it
sorts all jobs in some order, based on the known
information, before scheduling them. In the next
section we will further discuss the two
algorithms LS and LPT and the possibility of
applying them to our problem P(n1, n2).

The rest of this paper is organized as follows.
Section 2 analyzes LPT-class algorithms, which
are shown no better than LS algorithm in terms
of worst-case performance when applied to our
problem. Section 3 provides a lower bound 3/2
for the problem. This lower bound remains true
even for some special cases. In Section 4, we
design and analyze on-line algorithms for these
special cases, respectively. All algorithms have
worst-case ratios matching the lower bound, and
therefore they are the best possible. Section 5
investigates the general case. Several strategies
are analyzed. Conclusions are given in Section 6.

2. Notation and Preliminary
Analysis
Let C*(L) and CA(L) denote, respectively, the

makespan given by an optimal algorithm and the
makespan produced by an approximation
algorithm A for an input job list L. The
worst-case ratio ρA of algorithm A is defined as

)}(*/)({sup LCLCA
L

A =ρ (1)

Clearly, ρA≥1. The worst-case ratio is the
usual measure for the quality of an
approximation algorithm for scheduling
problems. The smaller the ratio, the better the
approximation algorithm.

To measure the quality of on-line algorithms,
we usually adopt the so-called competitive ratio,
where C*(L) is provided by an off-line optimal
algorithm and CA(L) is given by an on-line
algorithm A. In this paper, for convenience we
use the term “worst-case ratio” for both off-line
and on-line algorithms. For simplicity, in the
following instead of C*(L) and CA(L), we
usually use C* and CA to denote the
corresponding makespans without causing any
confusion.

In the first paper on the worst-case analysis
of scheduling heuristics, Graham (1966) showed
that algorithm LS has a worst-case ratio of
2−1/m, where m is the number of machines.
Faigle, Kern and Turan (1989) proved that for
m=2 and 3, LS is the best possible; In other
words, no on-line algorithms exist such that their
worst-case ratios are less than 2−1/m for m=2
and 3. For m≥4, Chen, Van Vliet and Woeginger
(1994) provided algorithms with better
worst-case ratios than LS. However, similar to
LS, their algorithms still approach 2 as m
increases.

Now we turn to the off-line algorithm LPT.
LPT was shown by Graham (1969) to have a
worst-case ratio of 4/3−1/(3m). For more
information on parallel machine scheduling, one
can refer to a recent survey paper by Chen, Potts
and Woeginger (1998). Since our problem P(n1,
n2) has two groups of jobs, one may suggest to
apply the algorithm LPT twice. Such a heuristic,
denoted by Two-phrase LPT, first applies LPT
to the first job group; afterwards applies LPT
again to the second job group. It may be
expected that the Two-phrase LPT could
perform like the algorithm LPT. However, the
following instance shows that it is not better than

Scheduling Two Groups of Jobs with Incomplete Information

76 JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / VOL. 12, NO.1, MARCH, 2003

LS in terms of worst-case ratio, and
consequently some other approaches should be
sought to tackle the problem P(n1, n2).

Assume that in an instance of P(n1, n2) the
first job group consists of m(m−1) identical jobs,
each with processing time 1 and the second job
group only contains one long job with
processing time m. Obviously, the makespan
given by Two-phrase LPT is 2m−1 while the
optimal makespan is m. It implies that the
worst-case ratio of Two-phrase LPT is not better
than 2−1/m, the same worst-case ratio as that of
LS. This worst-case result even holds when L2
contains only one job. In other words, LPT is of
no help even for the problem P(n1, 1). We
realize that we cannot simply apply LPT to the
first job group (or try to assign the first job
group optimally). To design better algorithms,
we must save some space for possible jobs with
long processing times appearing in the second
job group, i.e., at least one machine should be
reserved in some way to accommodate possible
long jobs in the second job group. This will be
the main idea to design the algorithms proposed
in the sections below.

3. A Lower Bound
Throughout the rest of this paper we always

assume that n1≥2, n2≥1 and n1+n2≥m+1 (m is the
number of machines). Obviously, if n1≤1 or n2=0,
the problem P(n1, n2) is equivalent to the off-line
problem; if n1+n2≤m, we can arrange each job to
a single machine which results in an optimal
schedule.

Lemma 1 For any given positive integer n1≥2
and n2≥1, where n1+n2≥m+1 (m is the number
of machines), there does not exist any on-line
algorithm with worst-case ratio less than 3/2 for

problem P(n1, n2).
Proof. Let ε be an arbitrarily small positive
number. Consider any heuristic H with the
following instances. The first job group L1 only
contains two kinds of jobs: One is called long
jobs, each with processing time 1 while the other
is called short jobs, each with processing time ε.
If n1≤m, let L1 contain n1 long jobs; otherwise,
let L1 have m long jobs and n1−m short jobs. In
the case where two long jobs are put together to
a machine by H, the next job group L2 becomes
available and it only consists of n2 short jobs,
each with processing time ε. Then we come to
the following result: the makespan produced by
H is at least 2 while the optimal makespan is
close to 1. If H assigns long jobs to different
machines, L2 contains k huge jobs, each with
processing time 2 and n2−k short jobs. If n1≤ m,
k=m+1−n1; otherwise, k=1. In this case, H
produces a schedule with a makespan no better
than 3 while the optimal value is close to 2. It
implies that the worst-case ratio of any heuristic
H is at least 3/2. ■

Note that Lemma 1 holds for any fixed n1
and n2 as long as n1≥2, n2≥1 and n1+n2≥m+1. In
particular, the following corollaries hold. Recall
that in problem P(n1,1), it is known to the
scheduler that the second job group consists of
only one job, but the processing time of such a
job is not known before the first job group has
been assigned.
Corollary 2 There does not exist any on-line
algorithm with worst-case ratio less than 3/2 for
problem P(n1,1), where n1≥m.

Recall that for the off-line problem, a
pseudo-polynomial algorithm exists for any
fixed number of machines. However, it follows
from Corollary 2 that, if the information on the

ZHANG, CAI and WONG

JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 12, No.1, March, 2003 77

last job (only one job!) is unknown beforehand,
no on-line algorithm can produce a makespan
less than 3/2 times that of the optimum
makespan in terms of worst-case performance.
Corollary 3 There does not exist any on-line
algorithm with worst-case ratio less than 3/2 for
the problem P(n1, n2). If 2≤n1≤m and
n1+n2≥m+1.

Note that P(n1, n2) is equivalent to the
off-line problem, if L1 has only one job. But if L1
has one more job, i.e., n1=2, the worst-case
performance of an on-line algorithm becomes
much worse. From the two corollaries, we
realize that in terms of worst-case performance,
the on-line problems with partial information
can differ significantly from the off-line
problems even if the partial information
available is almost complete.

It is well known that algorithm LS has a
worst-case ratio 3/2 for m=2. We thus get that
for m=2, LS is still a best possible algorithm for
our problem. Throughout the rest of this paper,
we always assume that m≥3. Denote jobs by J1,
J2,…, Jn and their respective processing times by
p1, p2,…, pn, where n is the total number of jobs
in two groups, i.e., n=n1+n2.

In the next section we will give, respectively,
two on-line algorithms for problems P(n1,1) and
P(n1,n2) (2≤n1≤m) and show that their worst-case
ratios are exactly 3/2.

4. Special Cases
We first consider the special case P(n1,1). As

discussed above, at least one machine (denoted
as a waiting machine) should be lightly loaded
for L1.

Algorithm LPTW (LPT with a waiting machine)
Step 1. Reindex the jobs of L1 in non-increasing

order of processing times. If n1≤m, assign all
jobs each in a machine; otherwise, assign the
first m jobs each in a machine.
Step 2. Let Mi be the current workload of
Machine i(i=1,…, m), where M1≥M2≥ ··· ≥ Mm. If
there are no unscheduled jobs of L1, go to Step 4.
Step 3. Apply LS to the remaining jobs in L1 to
Machines 1,…, m−1. The m-th machine is set to
be a waiting machine.
Step 4. Assign the job of L2 to Machine m.
Theorem 4 The worst-case ratio of algorithm
LPTW is not greater than 3/2. Moreover, it is a
best possible on-line algorithm.
Proof. We prove this theorem in the following
two cases.
Case 1. The makespan CLPTw is determined by a
job of L1. Without loss of generality, assume that
the completion time of the last job

1nJ of L1 is
CLPTw. Let s be the starting time of

1nJ . If s=0,
then CLPTw=

1np and algorithm LPTW provides
an optimal makespan. Now assume that s>0,
thus C*≥2

1np due to the LPT rule. If
1np >s/2,

then on the same machine, there is just one job
scheduled before

1nJ due to the LPT rule.
Hence

2/3
2*

1

1 <
+

≤
n

nLPTw

p
ps

C
C

Consider the case
1np ≤s/2. Note that the

total workload of Machines 1,…,m−1, is not less
than (m−1)s+

1np and the workload of Machine
m is pm+pn where pn is the processing time of
the job

1nJ in L2. We have

mpmsm

mpppsmC

n

nmn

/2/)1(

/))1((*

1

1

+−≥

+++−≥

and

1nLPTw psC +=

Scheduling Two Groups of Jobs with Incomplete Information

78 JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / VOL. 12, NO.1, MARCH, 2003

Note that m≥3.

2/3
2)1(

)(
*

1

1 ≤
+−

+
≤

n

nLPTw

psm
psm

C
C

Case 2. The makespan CLPTw is determined by
the job Jn of L2, i.e., CLPTw= pm+pn. Note that
C*≥pn. If pn ≥2pm, then

2/3
*

≤
+

≤
n

nmLPTw

p
pp

C
C

Now we assume that pn < 2pm. In an optimal
schedule, two of the jobs among {J1, J2,…, Jm ,Jn}
will be assigned on the same machine. Then C*≥
pm+pn or C*≥2pm.

Observe that (pm+pn)/(2pm)<3/2. Thus we get
CLPTw /C*≤3/2.

From Corollary 2, we have shown that LPTW
is a best possible algorithm. ■

In algorithm LPTW, we set the machine
which has accepted job Jm to be the waiting
machine. To see this is crucial, we give two
remarks as follows.

Remark 1. If we set an empty machine as the
waiting machine, then the algorithm will have a
worst-case ratio of 2. This bound is reached by
Instance (L1, L2) where L1 consists of m jobs,
each with processing time 1 and L2 has only one
job with processing time ε (an arbitrarily small
positive number).
Remark 2. If we set the machine which has
accepted job Ji (i< m) to be the waiting machine,
then the algorithm will have a worst-case ratio
not less than 2m/(m+1). This bound is reached
by Instance (L1, L2), where L1 consists of m−1
jobs, each with processing time 1 and m jobs,
each with processing time 1/m, where L2 has
only one job with processing time 1.

We now turn to another special case P(n1, n2)

where 2≤n1≤m.
Theorem 5 The worst-case ratio of algorithm
Two-phrase LPT for P(n1, n2)(2≤n1≤m) is not
greater than 3/2. Thus it is a best possible
on-line algorithm.
Proof. Let Cmax denote the makespan produced
by algorithm Two-phrase LPT. Clearly, after L1
is assigned, each machine has at most one job to
be scheduled. Without loss of generality, the
completion time of the last job Jn (of L2) is Cmax.
Let s be the starting time of Jn. Then Cmax =s+pn.
Note that C*≥pn and C*≥s+pn/m. When pn≥2s or
s≥2pn, it follows that Cmax/C*≤3/2. In the
following we only consider the case where s/2<
pn <2s. It implies that some other jobs are
assigned to the same machine as Jn is. From LPT
rule, among L2, Jn is one of the shortest jobs.
Assume that Jn is assigned to Machine i.

Case 1. On Machine i, a job from L2 is
scheduled before Jn. Denote this job by Ji.
Immediately before Jn is scheduled, each
machine contains either a job from L2 or a job of
L1 with processing time not less than pi. Note
that pi≥pn. There are at least m+1 jobs with
processing time not less than pn. Thus C*≥2pn,
Since s<2pn, Cmax/C*≤3/2 holds.

Case 2. On Machine i, a job from L1 is
scheduled before Jn. Such a job is denoted by Jj.
Clearly pj=s. Before Jn is assigned, every
machine must have a job from L1 with a
processing time not less than s or from L2 with a
processing time not less than pn. Optimally
scheduling those jobs will result in a makespan
C*≥2s or C*≥2 pn. Note that (s+ pn)/2s<3/2 and
(s+ pn)/(2pn)<3/2. Thus Cmax/C*<3/2.

From Corollary 3, we conclude that
Two-phrase LPT is a best possible algorithm. ■

ZHANG, CAI and WONG

JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 12, No.1, March, 2003 79

5. The General Case
From Lemma 1, algorithm LS is the best

possible for m=2. In this section, we will only
consider the case m≥3 and extend algorithm
LPTw to the general problem P(n1, n2).
Algorithm GLPTw
Step 1. Reindex the jobs of L1 in non-increasing
order of processing times. If n1≤m, assign all
jobs each in a machine; otherwise, assign the
first m jobs each in a machine.
Step 2. Let Mi be the current workload of
Machine i (i=1,…, m) where M1≥M2≥ ··· ≥ Mm. If
there are no unscheduled jobs of L1, go to Step 4.
Step 3. Apply LS to the remaining jobs in L1 on
Machines 1,…, m−1. The m-th machine is set to
be a waiting machine.
Step 4. Apply LPT to job group L2.
Theorem 6 For problem P(n1, n2), the
worst-case ratio of algorithm GLPTw is
2−1/(m−1) for m≥3.

Proof. Omitted. ■
Corollary 7 Algorithm GLPTw is a best possible
on-line algorithm for m=3.
Proof. It follows from the fact that the
worst-case ratio of GLPTw is 3/2 for m=3. ■

Note that for m≥4, algorithm GLPTw does
not work. The point is that only one waiting
machine is set. However if we set more waiting
machines to accept few jobs, the worst-case ratio
can not be improved. It can be observed by
considering the following instance: Group L1
consists of a large number of tiny jobs. Suppose
that the number of waiting machines is k. Then
L2 comes with k+1 long jobs. One can select
appropriate job length to get a worst-case bound.
From the above observation, we realize that the
crucial point is how to “aptly” schedule the first

job group. We have to keep the largest
difference of the workloads among the machines
in an appropriate range. For the second job
group we can always apply LPT. Below may be
a possible way to get a better algorithm. Let α be
a parameter.

Find a near optimal makespan C1 for group
L1.

Let q = C1.
Consider the following multiple Knapsack

problem: Given m knapsacks with capacity of
C1(1+α) and a set of items L1U L0, where L0 is a
set of m identical dummy items with size q. Find
near optimal solution for this problem.

If all items can be packed into those
knapsacks, remove those dummy items and
arrange the remaining items (jobs) of each
knapsack to a machine; otherwise decrease the
size g of dummy items and back to 3.

Based on the schedule for L1, apply LPT to
L2.

Finally we guess that there exists an on-line
algorithm with a worst-case ratio 3/2 for the
general case.

6. Concluding Remarks
In this article, we discussed the impact of the

quantity of available information in designing an
on-line algorithm. It is interesting to note that
the absence of even a little bit information may
significantly affect the performance of an
algorithm. We studied the scheduling problem
P(n1, n2), where two groups of jobs are to be
scheduled. The first job group is available
beforehand. As soon as all jobs in the first group
are assigned, the second job group appears. A
lower bound 3/2 was given even for two special

Scheduling Two Groups of Jobs with Incomplete Information

80 JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / VOL. 12, NO.1, MARCH, 2003

cases P(n1,1) and P(n1, n2)(2≤n1≤m). Two
on-line algorithms LPTw and Two-phrase LPT
were provided and were shown to match the
lower bound for the two special cases,
respectively. Finally, the general problem was
considered.

References

[1] Chen, B., A. Van Vliet and G.J. Woeginger,
“New lower and upper bounds for on-line
scheduling”, Operations Research Letters,
Vol. 16, pp221-230, 1994.

[2] Chen, B., C.N. Potts and G.J. Woeginger, “A
review of machine scheduling: Complexity,
algorithms and approximability”, D.Z. Du
and P. Pardalos, Handbook of Combinatorial
Optimization, Kluwer Academic Publishers,
1998.

[3] Faigle, U., W. Kern and G. Turan, “On the
performance of on-line algorithms for
partition problems”, Acta Cybernetica, Vol.
9, pp107-119, 1989

[4] Graham, R.L., “Bounds for certain
multiprocessing anomalies”, Bell System
Technical J., Vol. 45, pp1563-1581, 1966.

[5] Graham, R.L., “Bounds on multiprocessing
timing anomalies”, SIAM Journal on Applied
Mathematics, Vol. 17, pp416-429, 1969.

[6] Gary, M.R., and D.S. Johnson, “Strong
NP-completeness results: motivation,
examples and implications”, Journal of ACM,
Vol. 25, pp499-508, 1978.

[7] Gary, M.R., and D.S. Johnson, Computers
and Intracability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco,
1979.

[8] Lee, C.Y., “Parallel machines scheduling
with nonsimultaneous machine available
time”, Discrete Applied Mathematics, Vol.
30, pp53-61, 1991.

[9] Sgall, J., “On-line scheduling”, In A. Fiat
and G, J. Woeginger, Online Algorithms -
The state of the art, Lecture Notes in
Computer Science, Vol. 1442, pp196-231,
1998.

Guochuan Zhang is Professor of Department of
Mathematics, Zhejiang University, China. He
received his Ph.D. in Operations Research from
Academia Sinica (Beijing) in 1995, and was
awarded Alexander-von-Humboldt Research
Fellowship in 2000. His current research
interests are in on-line algorithms and
approximation algorithms for hard optimization
problems. He has published papers in journals
such as Naval Research logistics, Operations
Research Letters, Discrete Applied Mathematics,
etc.

Xiaoqiang Cai is Professor and Chairman of the
Department of Systems Engineering and
Engineering Management, The Chinese
University of Hong Kong. He received his Ph.D
from Tsinghua University, Beijing, in 1988. His
current research interests include scheduling
models and applications, time-varying network
optimization, and portfolio optimization. He has
published over 50 papers in journals such as
Management Science, Operations Research,
Naval Research Logistics, IIE Transactions,
IEEE Transactions, Discrete Applied
Mathematics, European Journal of Operational
Research, etc. He is on the editorial board of IIE
Transactions on Scheduling and Logistics,

ZHANG, CAI and WONG

JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING / Vol. 12, No.1, March, 2003 81

Journal of Scheduling, and several other
journals.

C.K. Wong is Professor of Computer Science
and Engineering at The Chinese University of
Hong Kong and served as Chairman of the
Department of Computer Science and
Engineering from 1995 – 1997. He received the
B.A. degree (First Class Honors) in mathematics
from University of Hong Kong in 1965, and the
M.A. and Ph.D. degrees in mathematics from
Columbia University in 1966 and 1970,
respectively. He is a Fellow of the Institute of
Electrical and Electronic Engineers (IEEE) and a
Fellow of the Association for Computing
Machinery (ACM). He had ever been Chair of
the IEEE Computer Society Technical
Committee, Editor of “IEEE Transactions on
Computers”, Associate Editor of “IEEE
Transactions on VLSI Systems, and an Editorial

Board Member of the international journal
“Fuzzy Sets and Systems” and “Networks”. He
is also the founding Editor-in-Chief of the
international journal “Algorithmica” and an
Advisory Board Member of “ACM Journal of
Experimental Algorithmics”. His current
research is mainly focused on algorithms, in
particular, VLSI design algorithms, Steiner tree
problems in non-Euclidean metrics and
scheduling problems in various settings. He
holds four U.S. patents and has published more
than 200 papers and two books. He received an
Outstanding Invention Award, an Outstanding
Technical Achievement Award and four
Invention Achievement Awards from IBM. At
the 1995 IEEE International Conference on
Computer Design: VLSI in Computers &
Processors (ICCD’ 95), he received a best paper
award for his work on FPGA design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

