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Abstract
Continuous blood pressure (BP) provides essential information formonitoring one’s health condition.However, BP is currently
monitored using uncomfortable cuff-based devices, which does not support continuous BP monitoring. This paper aims to
introduce a blood pressure monitoring algorithm based on only photoplethysmography (PPG) signals using the deep neural
network (DNN). The PPG signals are obtained from 125 unique subjects with 218 records and filtered using signal processing
algorithms to reduce the effects of noise, such as baseline wandering, andmotion artifacts. The proposed algorithm is based on
pulse wave analysis of PPG signals, extracted various domain features from PPG signals, and mapped them to BP values. Four
feature selection methods are applied and yielded four feature subsets. Therefore, an ensemble feature selection technique is
proposed to obtain the optimal feature set based on major voting scores from four feature subsets. DNN models, along with
the ensemble feature selection technique, outperformed in estimating the systolic blood pressure (SBP) and diastolic blood
pressure (DBP) compared to previously reported approaches that rely only on the PPG signal. The coefficient of determination
(R2) and mean absolute error (MAE) of the proposed algorithm are 0.962 and 2.480 mmHg, respectively, for SBP and 0.955
and 1.499mmHg, respectively, for DBP. The proposed approachmeets the Advancement ofMedical Instrumentation standard
for SBP and DBP estimations. Additionally, according to the British Hypertension Society standard, the results attained Grade
A for both SBP and DBP estimations. It concludes that BP can be estimated more accurately using the optimal feature set and
DNN models. The proposed algorithm has the potential ability to facilitate mobile healthcare devices to monitor continuous
BP.

Keywords Blood pressure · Photoplethysmogram · Feature extraction · Feature selection algorithm · Deep neural networks

1 Introduction

Hypertension or elevated blood pressure (BP) is a critical
medical condition that significantly enhances the risks of
developing brain, kidney, heart, and other diseases [1, 2].
Continuous BP measurement and monitoring the variations
in BP are essential for regulating high BP and early inter-
vention in hypertension and other cardiovascular disorders
[3]. Sphygmomanometery and oscillometry are frequently
used for monitoring BP at domicile and mobile [4, 5]. Inflat-
able cuffs are used to measure non-invasive BP, which can be
uncomfortable, especially for hypertensive patientswhoneed
regular readings. Since stress or anxiety can arise in patients

Extended author information available on the last page of the article

using the cuff-based approach, the measured BP results can
be influenced by this [6]. As a result, cuff-based methods
have been proven to be a hindrance to the widespread use
of BP monitoring. Therefore, non-invasive and continuous
methods for BP estimation are highly required for alleviat-
ing hypertension.

Recent advances in sensor technology have made it pos-
sible to monitor physiological parameters unobtrusively
anywhere, anytime [7–9]. In this regard, photoplethysmo-
gram (PPG) signal is crucial for the assessment of vital
health-related factors without a reference signal and clinical
condition [10]. PPG is a simple, low cost optical technique
having the ability to detect the variations in blood volume in
themicrovascular bed of tissue with each cardiac cycle [9]. A
typical two-pulse PPG signal with its characteristic points is
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depicted in Fig. 1. PPG’s simplicity, portability, and low cost
enable its integration into mobile and wearable devices, giv-
ing an alternative for ubiquitousmonitoring [7, 11].However,
despite these benefits, PPG technology’s susceptible nature
towards noise and motion artifacts caused by moving fin-
gers or hands extends the space between the sensor and the
user’s skin and alters the signal quality [12]. This hinders the
robust assessment of physiological parameters, making them
impracticable for clinical applications [13].

In recent years, machine learning approaches have been
used to attain excellent outcomes for continuousBPmeasure-
ment using PPG signals. Recent researches have established
the relation between the PPG signal and BP values [14–18].
Non-invasive BP estimation from PPG signals can be done
by analyzing two PPG pulse waves or a PPG pulse wave
along with an electrocardiogramwave [19]. Researches have
been continued to explore methods of estimating BP using
features of the PPG signal only. X. Teng and Y. Zhang in
[20] utilized only the PPG signals to measure BP for the first
time. N. Hasanzadeh et al. in [14] proposed a BP estimation
method using PPG signal and its morphological features. M.
H. Chowdhury et al. in [15] used 107 demographic features
for estimating BP from the PPG signal. In addition, ReliefF
feature selection (FS) method was applied to select optimal
feature set. P. Li et al. in [21] developed a feed-forward neu-
ral network to estimate the BP using PPG features extracted
by semi-classical signal analysis tools. Recently, deep neural
networks have become themost widely usedmethod because
of their accurate results and cost-effective alternative to con-
ventional machine learning methods [17, 21, 22]. A few BP
estimation techniques from PPG signals are described in the

Fig. 1 A typical two-pulse PPG signal with its characteristic points.
Here, x and y portrait the amplitudes of systolic and diastolic peaks,
respectively, and�T is the timeperiodbetween these twopoints. A1/A2
is the ratio of inflection

literature, but most of them used only traditional machine
learning methods and conventional feature selection tech-
niques [23].However, therewere no specific feature selection
algorithms to obtain the optimal feature set. Therefore, this
paper aims to develop the deep learning approach along with
an ensemble feature selection technique for the estimation of
BP.

This paper proposes a cuff-less and continuous BP mon-
itoring technique based on the characteristic features of
the PPG signal and deep neural network. PPG signals are
acquired from 219 subjects and checked the signal quality.
Various preprocessing algorithms are applied to reduce noise
and motion artifacts. After denoising, a total of 46 time and
frequency domain features are extracted from the PPG sig-
nal, as well as its derivatives and first Fourier Transformed
of PPG signal. An ensemble feature selection algorithm is
applied to select the optimal feature set based on the voting
of four FS techniques. Finally, DNNmodels are developed to
estimate the SBP and DBP values. The major contributions
of this paper are summarized as follows:

• Preprocessing the PPG signal, including the filtering,
removing baseline wander (BW), and PPGwave normal-
ization.

• Developing a peak detection algorithm and extracting a
single PPG wave cycle having the highest positive sys-
tolic peak from the overall PPG waveform using it.

• Extracting the various domain features from prepro-
cessed selected PPG cycle and its derivatives.

• Selecting the optimal features set through ensemble fea-
ture selection technique.

• Constructing DNN-based models with 10-fold cross-
validation to estimate the SBP and DBP.

The sequence of the remaining sections of the paper
is as follows: Section2 describes the background details
and motivation of the research. Section3 describes the pro-
posed methodology for cuff-less blood pressure estimation.
Section4 demonstrates feature selection results, the perfor-
mance of proposed algorithm and its comparison with health
standards and other works. Finally, Section5 terminates the
paper with future directions.

2 Background and related works

This section describes the recent studies that rely ononlyPPG
signals to estimateBP. In the recent decade,many approaches
for measuring cuff-less BP have been proposed as alterna-
tives to traditional methods. M. Kachuee et al. [8] extracted
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whole-based andphysiological features andused the adaptive
boosting algorithm (AdaBoost) to achieve a higher accuracy.
One of the limitations of the proposed method is that the
accuracy decreases due to lack of calibration. A. Gaurav
et al. [24] extracted 8 PPG signal magnitude and temporal
features and 19 more features from PPG’s second derivative,
called the acceleration plethysmogramwaveform. These fea-
tures were used to train and validate three artificial neural
network (ANN) regression models for each DBP and SBP.
However, the results for BP estimation were unsatisfactory
because age and gender were not used as features. In another
study, Y. Zhang and Z. Feng [16] applied a support vec-
tor machine (SVM) to predict BP, compared it with linear
regression and ANN, and achieved better accuracy. Features
were extracted frommore than 7000 heartbeats and 9 param-
eters. However, the results for the estimation of BP were
not good enough; mean error is 11.64 ± 8.20 mmHg for
SBP and 7.617 ± 6.78 mmHg for DBP. S. S. Mousavi et al.
[25] extractedwhole-based features proposed byM.Kachuee
et al. [8] and time or frequency domain features. N. Hasan-
zadeh et al. [14] presented a new algorithm for the robust
detection of PPG key points and extracted some morpholog-
ical key features. Therefore, the proposed method achieved
a good correlation between the estimated BP and its actual
value. The main drawback of their algorithm is that the accu-
racy of the algorithm decreases if the percentage of actual
class members decreases.

A. Chakraborty et al. [7] introduced two distinct approaches
for the estimation of SBP, MAP, and DBP, respectively.
The first method used the Two-Pulse Synthesis (TPS) model
based on the initialization method, while the second method
used a learning based non-parametric regression technique
for the measurement of BP. M. Panwar et al. [17] devel-
oped a model named PP-Net with a customized Long-term
RecurrentConvolutionalNetwork (LRCN), utilizing the con-
volutional neural network and long short-term memory for
estimating the physiological parameters using a single chan-
nel PPG signal.

For eachPPGsignal,M.H.Chowdhury et al. [15] retrieved
107 features, including 65 time-domain, 16 frequency-
domain, 10 statistical features along with 6 demographic
data. The ReliefF feature selection method with gaussian
process regression (GPR) showed promising results for intro-
ducing an accurate cuffless BP monitoring system. P. Li
et al. [21] used the semi-classical signal analysis (SCSA)
method to extract features from the PPG signal and com-
pared the output results, and SVM with SCSA produced
the overall highest accurate estimates among decision tree,
multiple linear regression, and SVM. In addition, a single
feed-forward neural network (FFNN) was utilized for BP

estimation with PPG features, which are extracted by SCSA.
S. Maqsood et al. [22] evaluated the performance of machine
learning approaches, including traditional machine learning
and deep learning. The experiment, which used the PPG-BP
dataset and MIMIC-II database, demonstrated that time-
domain characteristics performed better when deep learning
methods were used. For SBP and DBP estimation, Gated
Recurrent Units (GRU) and Bi-Directional Long Short-Term
Memory (Bi-LSTM) provided the best results using time-
domain features, respectively.

Table 1 represents several existingmethods to estimate the
blood pressure.Motivated by the advantages of PPG technol-
ogy and shortcomings of the existing studies, we focus on
developing an efficient deep learning framework with fea-
ture engineering for a better robust system. In addition, an
ensemble feature selection technique is proposed to obtain
the optimal features based on major voting scores.

3 Methodology

The overall architecture of the proposed cuff-less BP esti-
mation algorithm is shown in Fig. 2. The main steps of the
proposed method are as follows: (i) extracting the PPG sig-
nal as the primary input and checking the signal quality, (ii)
applying the preprocessing algorithms on PPG signal for
denoising and correcting the BW, (iii) extracting the char-
acteristic wave features from preprocessed PPG signals, (iv)
employing an ensemble feature selection strategy for select-
ing optimal feature set, (v) constructing DNN-based models
with 10-fold cross-validation, and (vi) finally evaluating esti-
mation accuracy of the models for SBP and DBP.

3.1 Basic principles

The fundamental principle of estimating BP with pulse tran-
sit time (PT T ) is based on evaluating the velocity of pulse
wave (PW ) from its traveling time between two specific
sections of the traveling path. The overall concept of pulse
wave propagation through an artery can be modeled by prop-
agating a pressure wave interior an elastic cylindrical tube
with mechanical properties similar to arterial walls to corre-
late wall elasticity to PT T . The elasticity of an artery and
the velocity of the pulse waves propagating through it are
profoundly related. At each ventricular contraction, blood is
ejected from the lower chambers of the heart to the arterial
system by affecting the velocity of the blood, resulting in a
pressure wave that travels along the elastic arteries [26]. It
has been shown that elastic modulus (E) of the tube is related
to the fluid pressure (P) for central arteries in an exponential
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Table 1 Brief summary of the related works

Authors Dataset Techniques Weakness/remarks

M. Kachuee et al.
(2016) [8]

MIMIC II database
(1000 subjects)

DWT, PCA, whole based
and physiological feature
extraction and regression
algorithms (AdaBoost)

Cannot ensure higher accuracy for lack of
calibration

A. Gaurav et al.
(2016) [24]

MIMIC II database
(3000 subjects)

Feature extraction and ANN Can improve accuracy with inclusion of
age and gender information

Y. Zhang and Z. Feng
(2017) [16]

University of
Queensland Vital
Signs Database (19
subjects)

Feature extraction and SVM Cannot perform well for shortage of data

S. S. Mousavi et al.
(2018) [25]

MIMIC II database
(441 subjects)

FFT, FFT−1, Feature extrac-
tion, PCA and regression
algorithms (AdaBoost)

Did not include data of healthy people for
training proposed model

N. Hasanzadeh et al.
(2019) [14]

MIMIC II (942 sub-
jects)

Type I Chebyshev low-
pass,morphological features
extraction, regression algo-
rithms (AdaBoost)

Did not include more low or high BP
dataset and results affected due to varia-
tions in recording errors

A. Chakraborty et al.
(2020) [7]

Own dataset (150
subjects)

Non-parametric regression
technique

Can ensure better performance of model
with more dataset

M. Panwar et al.
(2020) [17]

MIMIC II database
(1557 subjects)

LRCN deep learning algo-
rithm

Need to includewide range of patients such
as children, people lacking finemotor skills

M. H. Chowdhury et
al. (2020) [15]

PPG-BP (222 record-
ings, 126 subjects)

Feature extraction, statisti-
cal, and demographic fea-
tures, and GPR

Larger dataset fulfilling A grade require-
ment of BHS standard could be used

P. Li et al. (2021)
[21]

MIMIC II database
(8000 subjects)

SCSA feature extraction
tool, FFNN

Can ensure effectiveness of model with
larger dataset including healthy people and
different categories of BP

S. Maqsood et al.
(2021) [22]

PPG-BP (657 record-
ings, 219 subjects)

Temporal, statistical and fre-
quency features of PPG,
PPG′ and PPG′′, GRU and
Bi-LSTM models

Cannot show high accuracy for error in
more robust results

*DWT, discretewavelet decomposition;PCA, principal components analysis;FFT, Fast Fourier Transform; FFT−1 = Inverse Fast Fourier Transform;
PPG′, 1st derivative of PPG; PPG′′, 2nd derivative of PPG

Fig. 2 Block diagram of the proposed blood pressure estimation algorithm
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manner as

E = EO .eα.(P−PO ) (1)

where EO is the elastic modulus at zero fluid pressure PO
and α is a correction factor.

The elasticity of the tube is described as far as Compliance
(C), which is defined as the rate of change in cross-sectional
area (Am) of the tube with respect to pressure. C is deter-
mined by solving the conservation of mass and momentum
equations, and it can be expressed as the function of P as in
[8, 27]:

C(P) = Am

π P1[1 + ( P−P0
P1

)2] (2)

where Am , P0, and P1 vary from subject to subject.
Pressure wave propagating through a cylindrical shape

elastic tube (see Chapter 3 of [28] for derivation) can be
expressed mathematically as

P(x, t) = f (x ± t/
√
LC(P)) (3)

where x and t indicate space and time, respectively. Accord-
ing to this wave propagation equation, the velocity of pulse
traveling along an artery, PWV , is 1/

√
LC(P), where L =

ρ/A, in which ρ is the density of blood. Hence, PT T , the
time interim for navigating the pulse wave through a tube of
length k, is expressed as

PT T = K
√
LC(P) (4)

Substituting the value ofC(P) and L , Eq. 4 can be rewrit-
ten as

PT T = K

√
ρAm

π AP1[1 + ( P−P0
P1

)2] (5)

where P is mean BP. Thus, it is elucidated from Eq. 5 that
there exists an inverse relationship between PT T and BP.
By Eq. 5, we can only estimate the mean BP with PT T
based on arterial wave propagation model. However, DBP
and SBP can also be estimated by new proposing indicator,
PPG intensity ratio (P I R) [29] in terms of PT T . By solving
the M − K equation, we find that pulse pressure, PP , is
inversely proportional to PT T 2 [30]. PP can be expressed
in terms of PT T as

PP = PP0(
PT T0
PT T

)2 (6)

where PP0 and PT T0 are initial calibrated values of PP
and PT T , respectively. According to the two-elementWind-
kessel model, as shown in [31], DBP is inversely propor-
tional to the first power of P I R:

DBP ∝ 1

P I R
(7)

This indicates that DBP can easily be estimated from
Eq. 7 with the aid of initially calibrated values of DBP and
P I R are DBPO and P I RO , respectively.

DBP = DBP0
P I R0

P I R
(8)

Since PP is the difference between SBP and DBP [32],
so SBP can be derived from Eqs. 6 and 8 as

SBP = DBP0
P I R0

P I R
+ PP0(

PT T0
PT T

)2 (9)

3.2 Data description

In this paper, the online PPG-BP database was used as a
source for the PPG signals [33]. Liang et al. [34] analyzed
and evaluated the quality of these PPG signals. The authors
developed a custom portable hardware system that consisted
of a PPG sensor probe, a MSP430FG4618 microcontroller,
and a specialized Android application for data management.
The PPG sensor was equipped with dual LEDs with 660 nm
(red light) and 905 nm (infrared)wavelengths, offering a high
sampling rate of 1 kHz, a 12-bit analog-to-digital converter
(ADC), and abandpass hardwarefilterwith a frequency range
of 0.5 to 12 Hz. The MSP430FG4618 microcontroller was
embedded on the probe tomanage the ADC, collect data, and
transmit it via Bluetooth to the app. Arterial blood pressure
measurements were obtained using the Omron HEM-7201
upper arm monitor. The left index finger was used to collect
fingertip PPG signal, and Omron HEM-720 was used for the

Table 2 Statistical patient details

Physical feature Numerical data

Age (years) 57 ± 15

Gender 115 female (52%)

Height (cm) 161 ± 8

Weight (kg) 60 ± 11

SBP (mmHg) 127 ± 20

DBP (mmHg) 71 ± 11

* Note: all the numerical values are explained in mean ± standard
deviation (range) and categorical values in frequency distribution (%)
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collection of reference BP. The assessment of BP was car-
ried out by a nurse within the hospital setting. Three PPG
segments were collected from each subject during the BP
recording. Therefore, the dataset consists of 657 recorded
PPG signals from 219 subjects. The sampling rate of PPG
signals was 1 kHz, and the duration of each signal was 2.1 s.
Table 2 demonstrates the description of the basic physiolog-
ical information and a concise statistical summary.

Several PPG signals in the dataset were noisy and unsuit-
able for feature extraction. The quality assurance processwas
applied to eliminate the unacceptable quality of the PPG sig-
nal by using the skewness quality index (SQI) [34]. The final
dataset consists of 218 recorded signals associated with 125
unique subjects. Each recorded signal has its own unique ID.
The unique ID is used in this study in order to prevent over-
lapping the subjects of the training set with the test set in

Fig. 3 Comparison of the PPGwaveforms that are appropriate (fit) and inappropriate (unfit) in this study. aAppropriate PPG signal. b Inappropriate
PPG signal
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Fig. 4 PPG signal a before and b after normalization

DNN-based model. To evaluate the skewness quality index,
the PPG signal was divided into two categories: appropriate
and inappropriate, shown in Fig. 3. The fit waveforms have
apparent systolic and diastolic features with dicrotic notches,
and the unfit waveforms do not have dicrotic notch and other
informative features.

3.3 Preprocessing signals

Toget qualitywaveforms, various pre-processing approaches
were used to eliminate the noise in the PPGsignals [33].After
preprocessing, approximately 125 subjects were included for
evaluation.

3.3.1 Normalization

Data normalization reduces data analysis complication.
Through PPG signal normalization, the information within
a database can be formatted in such a way that it can
be visualized and analyzed. In this study, the PPG signal
was normalized using the z-score method to get amplitude-
limited data.

PPGn = PPGO − μ(PPGO)

σ (PPGO)
(10)

where PPGO represents the original PPG signal and PPGn

indicates normalized version of PPGO . μ and σ denote
the mean and standard deviation of the original PPG signal,
respectively. Figure4 shows the sample PPG signal before
and after normalization.

3.3.2 Signal filtration

The raw PPG signal of the database [33] contains so many
noise components. The primary purpose of filtering a signal
is to smooth out and reduce high-frequency noise associated
with measurement, such as power line interference, motion
artifact, low amplitude of the PPG signal, etc. [35]. Firstly,
filtering techniques were tested, such as 7th order low pass
Butterworth filter [36], 9th order low pass cheby 1 filter,
removing coverage FIR filter, Discrete Wavelet Transform
(DWT) [37], and Fast Fourier Transform (FFT) [38].

Finally, low pass Butterworth filter is selected because,
compared to the other methods, it was analyzed that low pass
Butterworth filter provides several merits such as a better
phase response, better visualization of systolic and diastolic
peak, and more efficiency in terms of maximum noise reduc-
tion. Figure5 shows that the 7th order low pass Butterworth
filter with a cut-off frequency of 15 Hz produced the best
noiseless signal which was designed in MATLAB.

3.3.3 Baseline correction

BW is a low-frequency artifact that occurs when a subject’s
PPG signal is recorded [39]. BW reduction is a critical step in
the preprocessing of PPG signals because BW makes PPG
recordings challenging to interpret. The primary source of
BW in the PPG signal is the patient’s movement and respi-
ration [39]. Anything less than 0.5 Hz is a result of baseline
wandering. In this study, baseline correction was done by fit-
ting a 4th-degree polynomial to find the trend in the signal
and then subtracted the trend to get the baseline-corrected
signals, as shown in Fig. 6.
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Fig. 5 Illustration of PPG signal before and after preprocessing. Filtered signal superimposed on the raw signal

3.4 Feature extraction

3.4.1 PPG cycle detection and selection

PPG signal is a continuous waveform, and every individual
PPG cycle contains approximately the same information. In
this study, one single PPG cycle was used to extract features.
Therefore, PPG signals were segmented into a single cycle
from 2.1s t ime_ f rame PPG signals representing a single
heartbeat. Normally 2.1s 1s time_ f rame PPG signals con-
tain two or more cycles. A peak detection algorithm was

used to locate the signal peaks. Then each PPG cycle CPPG

was stored in SPPG . Then we extracted all valid PPG cycles.
A CPPG cycle is valid if it contained five important proper-
ties. Finally, the best one (BPPG) was detected automatically
by using the peak detection algorithm in Algorithm 1. The
detected PPG cycle BPPG in a SPPG is depicted in Fig. 7.

Finally, by enhancing the analytical technique of Elgendi
[35], 46 characteristic features are extracted from the BPPG ,
as well as its derivatives (1st, and 2nd order), and Fast Fourier
Transformed BPPG signal. Thedistributions of these features
are as follows: 21 (F1 to F21) from the BPPG signal, 19 (F22

(b)(a)
Fig. 6 Correction of the PPG signal’s baseline, a PPG signal with baseline wandering and polynomial trend of fourth degree and b PPG signal
after detrending
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Fig. 7 Detection and selection of one single PPG cycle from continuous waveform of PPG signal

to F40) from its derivatives (1st and 2nd order), and 6 (F41
to F46) from the Fast Fourier Transformed BPPG (Table 3).
Additionally, age (F47) and gender (F48) are provided for
each subject as features. Figure8 depicts the characteristic
features of the PPG signal.

3.5 Feature selection

Feature selection refers to selecting the most relevant and
non-redundant features to be used in model construction.
The fundamental objective of feature selection is to enhance
the performance of a predictive model and minimize the
computational cost of modeling by selecting the most effec-
tive features. Here, four feature selection methods are used:
correlation-based feature selection (CFS), ReliefF feature
selection (ReliefF), features for classification using mini-
mum redundancy maximum relevance (FSCMRMR), and
recursive feature elimination (RFE).

3.5.1 CFS

Correlation is a statistical approach thatmay be used to assess
the presence and strength of relationships between pairs of
features. An attribute is acceptable if relevant to the class
but not redundant to any of the other relevant attributes [40].
Here, this paper uses the correlation coefficient probability
(p−value) to make good feature subsets containing features
highly correlated with the classification but uncorrelated.

3.5.2 ReliefF

ReliefF is a feature selection algorithm that takes a filtering
approach for binary classification with discrete features [41].
This algorithm calculates a feature score for each feature
applied to rank and thus chooses the top-scoring features.
These scores can be considered as feature weights to han-
dle downstream modeling. The ReliefF algorithm and its
derivatives are the only individual evaluation filter algorithms

123



Medical & Biological Engineering & Computing

Table 3 Details of features extracted from each SPPG

Features Definition Features Definition

F1: x Systolic peak F2: y Diastolic peak

F3: z Dicrotic notch F4: tpi Pulse interval

F5: y/x Augmentation index F6: (x − y)/x Alternative augmentation index

F7: z/x Ratio of dicrotic notch and systolic
peak

F8: (y − x)/x Negative relative augmentation
index

F9: t1 Systolic peak time F10: t2 Dicrotic notch time

F11: t3 Diastolic peak time F12: �T = t3 - t1 Systolic and diastolic peaks time
difference

F13: w Full width at half systolic peak F14: A3/(A1 + A2) Inflection poin area ratio (I P A)

F15: (A2 + A3)/A1 Ratio of the area before and after
dicrotic notch (sV RI )

F16: t1/x Systolic peak rising slope

F17: y/(tpi − t3) Diastolic peak falling slope F18: t1/tpi t1 to tpi ratio

F19: t2/tpi t2 to tpi ratio F20: t3/tpi t3 to tpi ratio

F21: �T /tpi �T to tpi ratio F22: ta1 Interval time from point l1 to point
a1 for 1st derivative of PPG

F23: tb1 Time interval from point l1 to next
point b1

F24: te1 Interval time from point l1 to point
e1

F25: tl1 Time interval from point l1 to next
point l1

F26: ta1 /tpi a1 (ta1 ) to tpi ratio

F27: tb1 /tpi Ratio between time interval of b1
(tb1 ) and pulse interval (tpi )

F28: te1 /tpi Ratio between time interval of e1
(te1 ) and pulse interval (tpi )

F29: tl1 /tpi Ratio between time interval of l1
(tl1 ) and pulse interval (tpi )

F30: b2/a2 Ratio of b2 and a2

F31: e2/a2 Ratio of e2 and a2 F32: (b2 + e2)/a2 Ratio of (b2 + e2) and a2
F33: ta2 Time interval from point l2 to next

point a2 of 2nd derivative PPG
F34: tb2 Interval time from point l2 to next

point b2
F35: ta2 /tpi a2 (ta2 ) to tpi ratio F36: tb2 /tpi b2 (tb2 ) to tpi ratio

F37: (ta1 + ta2 )/tpi Ratio of (ta1+ta2 ) and pulse interval
(tpi )

F38: (tb1 + tb2 )/tpi Ratio of (tb1+tb2 ) and pulse interval
(tpi )

F39: (te1 + t2)/tpi Ratio of (te1 + t2) and pulse interval
(tpi )

F40: (tl1 + t3)/tpi Ratio of (tl1 + t3) and pulse interval
(tpi )

F41: fbase Primary component frequency F42: |sbase| Primary component magnitude

F43: f2nd 2nd component frequency F44: |s2nd | 2nd component magnitude

F45: f3rd 3nd component frequency F46: |s3rd | 2nd component magnitude

that detect feature dependencies using the concept of nearest
neighbours that indirectly capture feature interactions [42].

3.5.3 FSCMRMR

The FSCMRMR algorithm finds an optimal set of mutu-
ally and maximally dissimilar features and can show the
response variable effectively [15]. The method determines
the redundancy and importance of variables based on their
mutual information—pairwise mutual information of fea-
tures and mutual information between a feature and the
response. Instead of ranking single variables independently,
this algorithm checks a balance between relevance (depen-
dence between the features and the class) and redundancy
(dependence among features) [43].

3.5.4 RFE

RFE selects those features in a training datasets which are
most relevant in predicting the target by recursively eliminat-
ing a small number of features per loop. This in turn results
in the elimination of collinearity in the model.

3.5.5 Ensemble feature selection

An ensemble feature selectionmethod based onmajority vot-
ing is applied to overcome the limitations of conventional
feature selection methods [44]. In the beginning, a feature
set consisting of 48 features from 218 recorded PPG is fed
to an individual feature selection module (FSCMRMR, RLF,
CFS, and RFE). Each module results in a set or subset of fea-
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Fig. 8 Features extracted from
PPG signal and its derivatives
(VPPG and APPG) as well as
Fourier Transformed PPG signal

tures for both the SBP and DBP estimations. If any feature
selection module selected a feature, one vote was assigned to
that feature. Then a voting score was assigned based on how
many modules chose a feature. For example, if all modules
selected feature F1, its voting score will be four. The proce-
dure of the ensemble feature selection approach is described
in Algorithm 2.

3.6 Model construction

In this study, a feed-forward deep neural network is adopted
to develop the BP estimation model on the basis of extracted
features from PPG signals. It is equipped with weights,
biases, and activation functions such as a rectified linear unit
(ReLU) [45]. Figure9 illustrates the architecture and train-
ing procedure for DNN based models. As demonstrated in
Fig. 9, four hidden layers are used, where the first and third
hidden layers contain 50 and 150 neurons, respectively. The

second hidden layer consists of 100 neurons with a dropout
unit of 0.25, while the fourth hidden layer consists of 200
neurons with a dropout unit of 0.50. The dropout method is a
more efficient and alternative approach to dealing with DNN
overfitting [46]. The output of each hidden layer processing
unit can be represented as

BPi =
∑

i

ωi Fi + β (11)

where Fi , β, and ωi denote the input feature vectors, biases,
and weights to the neuron, respectively. The hidden layer
uses a nonlinear function to transform the input above as

ϕRe(BP) = max(0, BP) (12)

where ϕRe is the ReLU activation function. A linear activa-
tion function is applied to the output layer in the final state
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Fig. 9 The proposed
architecture of DNN-based
models for SBP and DBP
estimation

Algorithm 1 PPG cycle detection and selection algo-
rithm
Input: Series of continuous PPG signal SPPG
Output: Best single PPG cycle BPPG

1 ListC ← φ ;
/* ListC ← list of valid cycle */
/* Cycle Detection */

2 while time_ f rame ≥ 2.1 do
/* Duration of each PPG signal is 2.1s

*/
3 Detect each cycle CPPG in SPPG as follows: ;
4 Consider starting point (Sp), dicrotic notch (z), and ending

point (Ep) are consecutive minima (Ma);
5 Consider systolic peak (x) and diastolic peak (y) are

consecutive maxima (Mx );
6 Use f ind_peak from the NumPy module of python to

detect the peaks of PPG signal and reduce the search time;
/* Valid PPG cycle check (Fig. 7 (a))

*/
7 if CPPG contains (Ma, Mx) then

/* PPG cycle must have typical
critical features like systolic
peak, dicrotic notch, or
diastolic peak (Fig. 1). */

8 if x is greater than y, and z is greater than (Sp, Ep)
then

9 ListC ← ListC ∪ CPPG ;
10 else
11 Discard CPPG ;

12 else
13 Discard CPPG ;

/* Cycle Section */
14 BPPG ← maxx (ListC ) (Fig. 7 (b));

/* PPG cycle ListC with the maximum
systolic amplitude x */

15 return BPPG ;

as

ϕLi (BP) = BP ′ (13)

where BP ′ = (−∞,+∞).

Algorithm 2 Ensemble feature selection technique

Input: D = {Fi , oi }mi=1 (Fi ∈ F
T , oi ∈ BPa), BPa =

reference value, θ = threshold value for selecting the
features, T = no. of features, K = no. of feature
selection method

Output: Optimal feature set ListV

/* Initialization */
1 Set θ ← 2, ListV ← φ, List F ← φ ;

/* Calculate the optimal feature set using
each feature selection algorithm */

2 f sm ← {c f s, relie f f , f scmrmr , r f e};
3 Calculate the optimal feature set using f sm;
4 for t ← 1 to T do
5 for k ← 1 to K do
6 if Ft is selected by f smk then
7 List F f smk

t ← 1;
8 else
9 List F f smk

t ← 0;

/* Calculate voting score for each feature
*/

10 for t ← 1 to T do
11 Calculate VScoret ← argmax ft∈F

∑K
k=1 List F

f smk
t ;

12 if VScoret ≥ θ then
13 ListV ← ListV ∪ Ft ;

14 Sort the ListV according to VScore;
15 return ListV ;
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Table 4 Status of the hyperparameters used in our proposed DNN-
based models

Hyperparameters Status

Batch size 32

Learning rate α 0.01

Total hidden layers 4

Neurons count at 4 hidden layers (50, 100, 150, 200)

Dropout at 2nd and 4th hidden layer (0.25, 0.5)

Number of neurons at input layer 48 or selected features

Number of neurons at output layer 2

Activation function ReLU, Linear

Optimizer Adam

As a result, dense layer returns the sum of activation func-
tion. The proposed DNN models are trained on 100 epochs
with respective batch size and learning rate of 32 and 0.01,
respectively. Adam is utilized as the optimizer function to
facilitate training processing and update the DNN parame-
ters. Table 4 summarizes the hyperparameters employed in
the proposed DNN-based models. These proposed models
for BP estimation are trained and tested using all features
and selected features.

3.7 Performancemeasurement parameters

The overall performance of our proposed BP measuring
method is evaluated in accordance with the mean difference
(ME), standard deviation (STD), mean absolute percentage
error (MAPE), mean square error (MSE), root mean square
error (RMSE), and the coefficient of determination (R2). The
formulas are as follows:

ME = 1

n

∑

n

(BPe − BPa) (14)

ST D =
√∑

n(BPe − BPa − ME)2

n − 1
(15)

MAPE = 1

n

∑

n

∣∣∣∣
BPa − BPe

BPa

∣∣∣∣ ∗ 100 (16)

MSE = 1

n

∑

n

(BPa − BPe)
2 (17)

RMSE = √
MSE (18)

MAE = 1

n

∑

n

|BPa − BPe| (19)

R2 = 1 −
∑

n(BPa − BPe)
2

∑
n(BPa − BP)2

(20)

where BP = 1
n

∑
n BPa , and BPa is the reference value

while BPe is the estimated value.

4 Result and discussion

4.1 Feature selection

Table 5 demonstrates the outcomes of several features selec-
tion techniques. Using feature selection algorithms, features
are ranked according to their significance. Both CFS and
ReliefF reduced the features from 48 to 16 for SBP, respec-
tively. Similarly, CFS and ReliefF selected only 16 and 17
features, respectively, for DBP. Then, the remaining two FS
methods (FSCMRMR and RFE) selected only 5 and 6 fea-
tures for SBP, whereas 6 and 9 features for DBP, respectively.

Table 6 portraits the voting score of individual features
using the ensemble approach (Algorithm 2). In this study, as
four different FSmethods are applied to the extracted feature
set, selecting a feature at least has to have a voting score of
two. For both SBP and DBP estimations, it is evident from

Table 5 The selected features from different feature selection algorithms

Dataset Feature selection technique Selected features Count

SBP CFS F47, F14, F12, F28, F25, F29, F26, F2, F4, F6,F3, F45, F40, F48, F41, F43 16

ReliefF F47, F16, F14, F27, F28, F2, F1, F25, F44, F8, F3, F5, F6, F7, F42, F48 16

FSCMRMR F47, F19, F23, F45, F41 5

RFE F47, F45, F25, F26, F4, F28 6

DBP CFS F47, F14, F12, F26, F25, F29, F28, F2, F4, F1, F3, F6, F40, F41, F48, F43, F45 17

ReliefF F47, F16, F14, F27, F26, F2, F1, F25, F44, F8, F3, F5, F6, F7, F42, F48 16

FSCMRMR F47, F27, F22, F3, F45, F41 6

RFE F45, F12, F14, F4, F47, F41, F40, F25, F28 9

* Note: Features are sorted according to their importance with corresponding feature selection algorithm
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Table 6 Voting scores of the corresponding features in the proposed
ensemble feature selection approach

Feature SBP Feature DBP
Voting score Voting score

F47 4 F47 4

F28 3 F45 3

F25 3 F25 3

F45 3 F14 3

F14 2 F3 3

F26 2 F41 3

F2 2 F6 2

F4 2 F12 2

F6 2 F26 2

F3 2 F40 2

F41 2 F27 2

F48 2 F28 2

− − F4 2

− − F1 2

− − F2 2

− − F48 2

Table 6 that all the four FS methods voted for features F47.
Similarly, features F28, F25, and F45 have a voting score of
three for SBP and features F45, F25, F14, F3, and F41 forDBP,
respectively. The rest of the features in Table 6 are voted by
the two FS methods for both SBP and DBP.

4.2 Robustness performance of models

We used DNN-based models to estimate the SBP and DBP
using all features and selected features. A 10-fold cross-
validation method was used to divide the data into training
and testing sets. It is also noted that each recorded signal of
the PPG-BP database has its unique ID. Our study used it to
prevent overlapping the subjects of the training set and the
testing set.

In the beginning, the proposed DNN-based models are
trained and validated using all features for BP value esti-
mation. The DNN models are validated using a 10-fold
cross-validation approach, where each fold contains ref-
erence and estimated BP values. The mean performances
of the models are then calculated following that. Table 7
summarizes the overall performance of the proposed ensem-
ble feature selection method and existing feature selection
methods along with our proposed DNN-based models. The
estimated accuracies of DNN models using all features are
R2 = 0.867 and MAE = 3.631 mmHg for SBP, 0.805 and
2.387 mmHg for DBP, respectively.

Features selection is crucial to minimize the probability
of models getting overfit. Due to this, four feature selection
algorithms existing in the literature (CFS, ReleifF, FSCM-
RMR, and RFE) are used individually for selecting relevant
feature subsets. Finally, the selected features from the indi-
vidual FS method are fed to the DNN models. Among these
four FS algorithms, CFS along with the DNN model pro-
vided better results of R2 = 0.952 and MAE = 2.804 mmHg
for SBP and ReliefF with R2 = 0.936 and MAE = 1.796
mmHg for DBP, respectively.

Furthermore, the proposed ensemble feature selection
technique is applied to select the best optimal feature set
that provided best results when combining with DNN mod-
els for the estimation of BP values. According to obtained
result in Table 7, this approach provides the highest estimated
accuracy of R2 = 0.962 and MAE = 2.480 mmHg for SBP
and 0.955 and 1.499 mmHg for DBP, respectively. Figure10
shows the accuracy (R2−score) respective to various feature
selection techniques along with the number of selected fea-
tures for SBP andDBP,where our proposed ensemble feature
selection technique performs better than others.

Figure11 demonstrates a histogram of estimated errors
for BP values. It is evident from both the histograms that
the error values for BP estimation are distributed normally
around zero. The elemental cause beneath the greater appear-
ance of the estimated error of SBP compared to those of the

Table 7 Performance comparison using various existing feature selection methods and our proposed ensemble feature selection method along with
the DNN models

Selection criteria SBP DBP
R2 MAE MSE RMSE MAPE R2 MAE MSE RMSE MAPE

All features 0.867 3.631 47.925 6.923 3.057 0.805 2.387 24.572 4.957 3.786

CFS 0.952 2.804 18.652 4.318 3.224 0.933 1.773 7.381 2.716 3.042

ReliefF 0.941 3.191 20.704 4.550 3.137 0.936 1.796 7.817 2.795 3.029

FSCMRMR 0.913 3.149 27.966 5.288 3.187 0.908 1.923 10.471 3.235 2.955

RFE 0.946 3.020 19.300 4.393 3.120 0.907 2.233 12.217 3.495 2.986

Proposed method 0.962 2.480 13.760 3.709 3.187 0.955 1.499 4.869 2.206 2.721

Bold indicates the best performing model
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(a)

(b)

Fig. 10 Accuracy (R2−score) Vs feature selectionmethods: a SBP and
b DBP

DBP ones is the dispersion of SBP target values being nearly
twice as large as the dispersion of DBP target values.

Figure12a and c presents a correlation-based comparison
of the estimated values with the reference BP values. Fur-
thermore, the Bland–Altman plot is depicted in Fig. 12b and
d for evaluating the distance of the estimated value from the

(a)

(b)

Fig. 11 Histograms of estimated errors in DNN-based models: a SBP
and b DBP

reference one. Bland-Altman defines the agreement between
the reference value and the estimated value by establishing
limits of agreement. It can be concluded from the plots that
a higher percentage of estimated values are within the limits
of agreement (md ± 1.96 ∗ sd). The limits of agreement for
SBP with hybrid selected features at a 95% confidence inter-
val were {−7.87 mmHg and 6.98 mmHg} and for DBP were
{−4.88 mmHg and 4.68 mmHg}. However, samples having
extremely high or low BP values are not approximated as
accurate as other samples. The main reason of this issue is
the presence of fewer subjects with extremely high or lowBP
within the training set, which restricts themodel performance
in anticipating continuous BP values.
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Fig. 12 Correlation and agreement (Bland-Altman) plots of SBP and DBP with reference values at testing stage for DNN model based on hybrid
feature selection: a relationship (SBP), b agreement (SBP), c relationship (DBP), and d agreement (DBP)

4.3 Evaluation using the AAMI standard

A comparison between the results of BP estimation using our
proposed method and the Advancement of Medical Instru-
mentation (AAMI) criterion is depicted inTable 8.According
to the specification of the AAMI, the mean and standard
deviation must not be greater than 5 mmHg and 8 mmHg,
respectively, for BP measuring devices. In addition to this

Table 8 Comparison of this paper results with AAMI

ME (mmHg) STD (mmHg) Subjects

AAMI [47] BP ≤ 5 ≤ 8 ≥ 85

Our results SBP −0.471 4.105 125

DBP −0.049 2.194 125

criteria, this protocol directs that the number of participants
should be at least 85 to ensure the equipment or method’s
accuracy. Table 8 shows that our proposed method has mean
values that are significantly less than themaximum allowable
mean value. In terms of the STDcriterion, both SBP andDBP
have STD values within the 8 mmHg standard margin.

Table 9 Comparison of this paper results with BHS

Cumulative error percentage
≤ 5mmHg ≤ 10mmHg ≤ 15mmHg

Our results SBP 91% 95% 99%

DBP 96% 99% 100%

BHS [48] Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade A 40% 65% 85%
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Table 10 Comparison of our
proposed method with several
existing methods that only used
PPG signal

Work Dataset Method Performance
(MAE ± ST D) mmHg
SBP DBP

Kachuee et al. [8] MIMIC II AdaBoost 11.2 ± 10.1 5.35 ± 6.14

Gaurav et al. [24] MIMIC II ANN 4.47 ± 6.85 3.21 ± 4.72

Zhang and Feng [16] Univ. of Queensland SVM 11.64 ± 8.22 7.61 ± 6.78

Mousavi et al. [25] MIMIC II AdaBoost 3.97 ± 7.99 2.43 ± 3.37

Hasanzadeh et al. [14] MIMIC II AdaBoost 8.22 ± 1.38 4.17 ± 4.22

Panwar et al. [17] MIMIC II LRCN 3.97 ± 0.06 2.30 ± 0.19

Chowdhury [15] PPG-BP GPR 3.02 ± 9.29 1.74 ± 5.54

Li and Laleg-Kirati [21] MIMIC II FFNN 7.44 ± 7.37 5.09 ± 5.66

Maqsood et al. [22] PPG-BP GRU 3.68 ± 4.28 5.34 ± 5.24

Proposed PPG-BP DNN 2.48 ± 4.10 1.49 ± 2.19

Bold indicates the best performing model

4.4 Evaluation using the BHS standard

An illustration for the evaluation of our proposed method
according to the BritishHypertension Society (BHS) grading
criteria is shown in Table 9. BHS grades the BP monitoring
devices according to their percentage of cumulative errors
underneath three different threshold values, i.e., 5, 10, and
15 mmHg [48]. In accordance with the BHS standard, the
performance of our method is persistent, with grade A for
both SBP and DBP estimations.

4.5 Comparison with other works

Table 10 presents the comparative analysis of the proposed
methodology with the contemporary works to validate the
effectiveness of our proposed methodology. From the com-
parison, it can be seen that our proposed method achieved
an average MAE ± ST D of 2.48 ± 4.105 mmHg for SBP
and 1.49± 2.194 mmHg for DBP estimation which are bet-
ter compared to the existing methods. It is clear from these
results that our proposed methodology can be used in real-
time healthcare applications.

Table 10 summarizes previous studies that have esti-
mated the BP using only the PPG signal but have assessed
their methodologies using a variety of datasets. Since these
research works used different datasets and/or a small num-
ber of patients than the proposed approach, it is difficult to
make a precise comparison for BP estimation. Furthermore,
PPG-BP is a new dataset, and only a few studies have been
conducted utilizing this dataset so far. The studies by [15, 22]
used the PPG-BG dataset, whereas our proposed technique
performed better than these studies.

5 Conclusion

In this paper,we proposed aBPmonitoring approach by com-
bining ensemble feature selection techniquewith deep neural
network. Primarily, the proposed methodology consists of
signal acquisition, signal filtration, baseline correction, and
feature extraction. An ensemble feature selection technique
is applied to obtain the most promising feature set based
on major voting by four feature selection algorithms. Then,
DNN based models are developed, and a 10-fold cross-
validation method is applied to validate the models. The
combination of the ensemble feature selection method and
DNN models provides the best accuracy for estimating con-
tinuous blood pressure. The accuracy of our proposed BP
estimation method is validated using the AAMI and BHS
standards. According to the BHS, our proposed method has
grade A for both SBP and DBP estimations. The findings
reveal that this approach toBP estimation could be applicable
for clinical applications. In the future, we plan to extend our
work by including the other physiological parameters such
as blood component levels and oxygen saturation (SpO2) as
well as computing the whole process automatically in cloud
server and sending the result to the smartphone user.
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