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Abstract
Chronic obstructive pulmonary disease (COPD) is a common lung disease that can lead to restricted airflow and respiratory
problems, causing a significant health, economic, and social burden. Detecting the COPD stage can provide a timely warning
for prompt intervention in COPD patients. However, existing methods based on inspiratory (IN) and expiratory (EX) chest
CT images are not sufficiently accurate and efficient in COPD stage detection. The lung region images are autonomously
segmented from IN and EX chest CT images to extract the 1, 781 × 2 lung radiomics and 13, 824 × 2 3D CNN features.
Furthermore, a strategy for concatenating and selecting featureswas employed inCOPDstage detection basedon radiomics and
3DCNN features. Finally, we combine all the radiomics, 3DCNN features, and factor risks (age, gender, and smoking history)
to detect the COPD stage based on the Auto-Metric Graph Neural Network (AMGNN). The AMGNNwith radiomics and 3D
CNN features achieves the best performance at 89.7% of accuracy, 90.9% of precision, 89.5% of F1-score, and 95.8% of AUC
compared to six classic machine learning (ML) classifiers. Our proposed approach demonstrates high accuracy in detecting
the stage of COPD using both IN and EX chest CT images. This method can potentially establish an efficient diagnostic
tool for patients with COPD. Additionally, we have identified radiomics and 3D CNN as more appropriate biomarkers than
Parametric Response Mapping (PRM). Moreover, our findings indicate that expiration yields better results than inspiration
in detecting the stage of COPD.

Keywords Biphasic CT Images · COPD stage detection · Auto-metric graph neural network · Machine learning ·
Lasso algorithm · Radiomics

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a pro-
gressive lung disease characterized by long-term respiratory
symptoms and airflow limitation [1]. In 2030, it will become
the third largest death factor worldwide, resulting in a heavy
social and economic burden globally [2]. Therefore, improv-
ing the precision of COPD stage detection is imperative and
pivotal for COPD management.

The classification of COPD stages utilizes the Global
Initiative for Chronic Obstructive Lung Disease (GOLD)

B Rongchang Chen
chenrc@vip.163.com

B Yan Kang
kangyan@bmie.neu.edu.cn

Extended author information available on the last page of the article

criteria, which range from stages 0 to IV [1]. For many
years, the forced expiratory volume in 1 s/forced vital capac-
ity (FEV1/FVC) and FEV1%predicted have been the
primary criterion for categorizing COPD in pulmonary
function tests (PFTs) [3, 4]. Individuals with FEV1/FVC
ratios greater than 0.7 are classified as normal, whereas
those with FEV1/FVC ratios less than 0.7 are catego-
rized as COPD patients. GOLD classification is based on
FEV1%predicted values, withGOLD1 representing≥ 80%,
GOLD 2 for 50% ≤ FEV1%predicted < 80%, GOLD 3
for 30% ≤ FEV1%predicted < 50%, and GOLD 4 for
FEV1%predicted < 30%. However, the accuracy of PFTs
is constrained by the level of patient cooperation. Specifi-
cally, the measurement process of PFTs is complex, and it
may be difficult for some patients to understand and comply
with the requirements set by doctors [5]. In addition, PFTs
cannot intuitively provide detailed anatomical information
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and morphological changes, such as subtypes of emphysema
and bronchial wall thickening [6, 7].

Computed tomography (CT) has been deemed the most
effective modality for characterizing and quantifying COPD
[8]. The CT measurements of low-intensity areas exhibit
a robust correlation with spirometry results [9, 10]. Com-
pared to PFTs, the CT measurements of emphysema and
small airway disease offer additional clinical insights [7, 11,
12]. In addition, the examination of COPD phenotypes that
have been classified through the utilization of high-resolution
computed tomography (HRCT) in a clinical context [13].
However, whether CT or HRCT is used, observing the patho-
logical structures of small airways (<2mm in diameter)
remains challenging. In contrast to CT or HRCT images
that only capture the IN phase, using both IN and EX
CT images provides a comprehensive representation of pul-
monary morphological changes across various respiratory
phases. Validation studies have confirmed that both IN and
EX chest CT images are reliable for identifying airway dis-
ease [14] and establishing their correlation with pulmonary
ventilatory function [15], which is closely associated with
the risk of COPD.

Despite the limitations of IN and EX chest CT images
in visualizing the pathological structures of small airways,
alternative methodologies have been developed that lever-
age these images as a foundation. In 2012, Galbán et al.
proposed the PRM [16], a biomarker based on IN and EX
chest CT images, demonstrating its potential to discrim-
inate different COPD phenotypes. Specifically, the PRM
can effectively distinguish functional small airways dis-
ease (PRM f SAD), emphysema (PRMEmph), and normal
(PRMNormal ) regions. In 2020, Philip et al. confirmed that
the PRM could detect the short-term progression of emphy-
sema in severe cases of COPD [17]. In 2021, Ho et al.
demonstrated that the PRM features might be utilized for
COPD identification [18]. However, implementing the PRM
approach is a challenging task that necessitates lung bronchus
segmentation and registration of IN and EX chest CT images,
as this significantly impacts the accuracy of COPD classifi-
cation.

Using IN and EX chest CT images, Ho et al. have imple-
mented ML classifiers to classify COPD and non-COPD
cases. Based on this foundation, we have classified COPD
from stages 0 to IV, utilizing radiomics and 3D CNN fea-
tures, which are more suitable biomarkers than PRM in
COPD stage detection. In 2012, radiomics emerged as an
innovative approach for extracting more information from
medical images by employing advanced feature analysis
[19]. Radiomics features have also been employed in COPD
for survival prediction [20, 21], COPD exacerbations [22],
COPD early decision[23], and COPD stage detection [24,
25]. Moreover, 3D CNN features extracted byMed3Dmodel

[26] have been used in our previous study, which proved
effective for COPD stage detection [24].

In the last decade, convolutional neural networks (CNNs)
have played a significant role in the medical images field
[27]. However, medical images are often of poor quality, dif-
ficult to acquire, and computationally expensive [28]. With
the interpretability of CNNs being questioned, graph neu-
ral networks (GNNs) may provide a feasible direction for
developing artificial intelligence with causal reasoning abil-
ity in the future [29, 30]. GNNs have evolved into the Graph
ConvolutionalNetwork (GCN), inspired byCNNs.However,
the fixed-graph structure of GCN, which utilizes the entire
dataset, limits on its applicability and further development.
To address these limitations while retaining the advantages
of GNNs, in 2021, Song et al. proposed the Auto-Metric
Graph Neural Network (AMGNN) based on a meta-learning
strategy [31]. AMGNN has been successfully applied to
Alzheimer’s disease classification, demonstrating strong per-
formance. This further illustrates the superiority of AMGNN
over GCN [31, 32]. Our experiments showed significant
improvements in the AMGNN incorporating clinical data as
risk factors (age, gender, and smoking history) compared to
traditional ML classifiers. In summary, this study’s primary
contributions are as follows:

• We propose an effective CT imaging biomarkers selec-
tion method of AMGNN for COPD stage detection,
achieving better performance at 89.7% accuracy, 90.9%
precision, 89.5%F1-score, and 95.8%AUC.Thismethod
fully considers the imaging features of inspiratory and
expiratory chestCT images. It uses theLasso algorithm (a
classic kind of feature selection technology) to determine
the final node features of AMGNN for COPD detection.

• The effectiveness of our proposed AMGNN model for
COPD stage detection based on multidimensional imag-
ing biomarkers has been verified, which is superior to
single-dimensional radiomics andCNN features of inspi-
ratory/expiratory chest CT images and even better than
PRM imaging biomarkers. Based on chest CT images,
this may provide a new view for COPD stage detection.

• Compared with previous work on COPD identification
(COPD and without COPD) based on chest CT images,
our work (COPD stage detection) may become a more
effective tool for COPD management of this fragile pop-
ulation.

2 Materials andmethods

The materials used in the study are described in detail in
Section 2.1, while the methods employed are explained thor-
oughly in Section 2.2.
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Table 1 Abbreviation substitution

Features Details

IN Inspiratory

EX Expiratory

IN+EX Concatenation of inspiratory and expi-
ratory

IN_selected Inspiration selected by the Lasso

EX_selected Expiration selected by the Lasso

IN_selected+EX_selected Concatenation of inspiration selected
by the Lasso and expiration selected by
the Lasso

(IN+EX)_selected Concatenation of inspiration and expi-
ration, then selected by the Lasso

(IN+EX)_selected
(radiomics+3D
CNN)

Concatenation of (IN+EX)_selected
radiomics and (IN+EX)_selected 3D
CNN

PRM_selected PRM selected by the Lasso

2.1 Materials

This study has received approval from the Ethics Commit-
tee of the First Affiliated Hospital of Guangzhou Medical
University (grant number: 201722). It has been registered on
the website,1 with the NCT number: NCT03240315. Before
their participation, all subjects in the study provided written
informed consent, which was signed and dated. The study
involved the collection of IN and EX chest CT images and
corresponding labels for 116 (29×4) patients from the First
Affiliated Hospital of Guangzhou Medical University from
August 7, 2017, to February 15, 2022. Each four COPD
stages comprised 29 patients, thus generating a balanced
dataset. The abbreviation substitution of features is shown
in Table 1.

2.2 Methods

The flowchart of the proposed method in this study is illus-
trated in Fig. 1. First, the IN and EX chest CT images were
preprocessed to acquire lung region images by employing
the U-Net (R231) [33]. Second, the IN and EX radiomics
features are extracted using the PyRadiomics tool [34]. In
addition, the IN and EX 3D CNN features are extracted from
the lung region images employing the pre-trained Med3D
model [26]. Third, the (IN+EX)_selected radiomics and
(IN+EX)_selected 3DCNN features are concatenated. These
processed features, along with the risk factors (age, gender,
and smoking history), serve as input to the AMGNN for
COPD stage detection.

1 https://www.clinicaltrials.gov

2.2.1 Lung region segmentation

The primary step involves segmenting the lung region, as
Fig. 1a illustrates. This IN andEX, lung region segmentation,
is conducted via the employment of the U-Net (R231) [33],
which was trained on a large and diverse dataset that covers
a wide range of visual variability. The model can precisely
extract the IN and EX lung regions through this process.

2.2.2 Feature extraction

Radiomics features were extracted from lung region images
with the Hounsfield unit (HU) by PyRadiomics tool [34], as
illustrated in Fig. 1b. Specifically, two steps are involved in
extracting lung radiomics features from lung region images.
To begin, the initial lung region images undergo a filtering
process using wavelet and Laplacian of Gaussian (LoG) fil-
ters. This filtering generates derived lung region images. In
the subsequent step, the original and derived lung region
images are employed to compute the lung radiomics features
according to predefined classes. These steps are automated
using the PyRadiomics tool, an open-source Python package.
For more comprehensive information regarding the process
of the PyRadiomics tool, please refer to our previous studies
[24, 35].

In addition, 3D CNN features were extracted using the
pre-trained Med3D model [26], a 3D network designed to
extract general medical 3D features. It accomplishes this
task by constructing a comprehensive dataset called 3DSeg-
8, which encompasses diverse modalities, target organs, and
pathologies. The approach involves utilizing truncated trans-
fer learning with the encoder backbone (ResNet-10) of the
pre-trained Med3D model. The extraction of 3D CNN fea-
tures is thoroughly elucidated in our prior publication [36].

2.2.3 Feature processing

In Fig. 1c, the feature processing involves concatenation
and selection. Specifically, the Lasso method is employed
to select IN and EX radiomics features from a matrix size of
1781×2, and IN and EX 3DCNN features from amatrix size
of 13824×2. Our previous research [24] has demonstrated
that applying Lasso improves the accuracy of COPD classi-
fication. To achieve COPD stage detection, the risk factors
(k=3) and node features (d=44) are concatenated, resulting
in the proposed lung combination vector of size (3+44). The
mathematical form of the Lasso is given by Eq. 1.

β̂lasso= argmin
β
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AMGNN

(d) COPD stage detection
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Lung rigion images (512×512×N' )
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Fig. 1 The workflow of this study. a The IN and EX lung region is seg-
mented using a well-trained U-Net (R231) [33]. b Radiomics features
are obtained through the PyRadiomics tool [34], and 3D CNN features
are extracted using the frozen encoder in the pre-trained Med3D model

[26]. c The IN+EX radiomics and IN+EX 3D CNN features are con-
catenated, and the Lasso algorithm is subsequently applied to screen
for useful data. d The selected features and risk factors are sent to the
AMGNN, resulting in COPD multi-classification outcomes

where matrix β̂lasso denotes the (IN+EX)_selected radiomi-
cs/3D CNN feature. xi j (the independent variable) denotes
the (IN+EX) radiomics/3D CNN features. yi (the dependent
variable) denotes 116 patients with COPD stage: GOLD
0, I, II, III-IV. λ denotes the penalty parameter (λ≥0). β j

denotes the regression coefficient. n denotes the number of
subjects (116). p denotes the size of the (IN+EX) radiomics
(1781 × 2)/3D CNN features (13824 × 2), i ∈ [1, n], and j
∈ [0, p]. We employ LassoCV with 10-fold cross-validation
(CV) iterations 100,000 times, employing coordinate descent
to fit the model and select the optimal penalty coefficient λ.
Initially, we split the dataset into training and testing sets.
Then, we applied the feature selection function LassoCV
exclusively to the training set, selecting the related features.
Subsequently, we extracted corresponding features from the
testing set. Consequently, the specific count of selected fea-
tures is detailed in Fig. 3.

2.2.4 COPD stage detection

In Fig. 1d,we utilize theAMGNNbased onmeta-learning for
COPD stage detection. The AMGNN layer and the pipeline
of meta-learning are illustrated in Fig. 2.

As shown in Fig. 2a, the AMGNN mainly consists of
two steps: calculating the auto-metric adjacency matrix
with probability constraint and updating the node. (i) The
AMGNN inputs a matrix V, comprising risk factors (age,
gender, and smoking history) and (IN+EX)_selected
(radiomics+3D CNN) features. Initially, the absolute differ-
ence between each patient at the same risk factor position is
computed to connect distinct nodes, forming three adjacency
matrices. These matrices are then weighted and summed to

yield the edge constraint matrix E. The computation method
for matrix E is given by Eq. 2.

ei, j = 1/

(

K + 1 −
K∑

k=1

eki, j

)

(2)

where ei, j ∈ (0, 1) represents the edgeweight between nodes
vi and v j . ei, j is the element of the i-th row and j-th column
of the edge constraint matrix E ∈ RN×N . eki, j equals ηki −ηkj .
K denotes the total number of risk factors, and k signifies the
k-th risk factor feature.

Next, the N × 44 matrix is replicated N times to create
an N × N × 44 matrix, and the absolute difference is com-
puted between this matrix and its transpose. Subsequently,
this matrix is sent to the CNNs to learn the similarity metric
between different nodes. This process results in deriving the
edge weight matrix W. Finally, the final auto-metric adja-
cency matrix A with probability constraint is computed by
multiplying the matrices E and W. (ii) After obtaining the
adjacency operator family, the model uses each operator in
the family to update the nodes. The updated results are then
accumulated.MatrixA ismultipliedwith V (l), and the result-
ing product is passed through a fully connected layer to obtain
W. The formula for updating nodes is given by Eq. 3.

Gn(V
(l)) = Leaky − ReLU

⎛

⎝
∑

BεA(l)

BV (l)θ
(l)
B

⎞

⎠ (3)

where V (l) represents the nodes in the layer l. The trainable
parameters θ

(l)
B εR f × f ′

are represented as a fully connected
layer. Leaky−ReLU is a nonlinear activation function.
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(a)

(b)

Fig. 2 Specific details of the AMGNN based on meta-learning. a The AMGNN layer is comprised of two processes: the calculation of the auto-
metric adjacency matrix with probability constraints and the update of individual nodes. b The pipeline of meta-learning for classifying unknown
nodes in a small graph

This layer is repeated twice in the network. The output
of the second fully connected layer is then input into the
softmax function to get the final result of the AMGNN. The
number of AMGNN layers is 2. In the first layer, the input
channels are 2×(numbers of features + numbers of risk fac-
tors + numbers of classification), and the output channels are
48. In the second layer, the input channels are 2×(numbers
of features + numbers of risk factors + numbers of classifi-
cation + 48), and the output channels are 4. We optimized
the network parameters using the Adam optimizer, and the
learning rate was set to 0.001.

Figure 2b shows the training strategy based on meta-
learning, which outlines the model training process. Samples
are randomly extracted from the training dataset, and various
small graphs are formed using these samples. In the training
dataset, each graph consists of 20 nodes, with 5 nodes rep-
resenting each COPD stage and one node being unknown.
These smaller graphs are fed into the model for analysis.
Using the probability-constrained AMGNN layer, informa-
tion is effectively exchanged and updated among the nodes.
As a result, the class of the unknown node is determined with

impressive accuracy. For a more comprehensive understand-
ing of theAMGNNlayer based onmeta-learning, please refer
to the detailed description provided in the referenced study
[31].

3 Experiments and results

Figure 3 presents the experimental design adopted in our
study, which involved conducting four experiments to assess
the effectiveness of different input features for COPD stage
detection. These features include radiomics features, 3D
CNN features, radiomics+3D CNN features, and PRM fea-
tures. Each experiment evaluated two types of models: the
AMGNN and several ML classifiers, namely Random Forest
(RF) [37], Support VectorMachine (SVM) [38],Multi-Layer
Perceptron (MLP) [39], Logistic Regression (LR) [40], Gra-
dient Boosting (GB) [41], and Linear Discriminant Analysis
(LDA) [42]. The performance of the models was assessed
using various metrics, including accuracy, precision, F1-
score, and Area Under the Curve (AUC).
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radiomics features (27)IN 

radiomics features (1781)

EX 
radiomics features (1781)
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radiomics features (3562)

EX_selected 
radiomics features (26)
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3D CNN features (21)

IN_selected + EX_selected 
3D CNN features (61)

(IN+EX)_selected 
3D CNN features (42)

Experiment 4: Radiomics + 3D CNN features

IN_selected (Radiomics + 3D CNN)  
features (47)IN Radiomics + IN 3D CNN 

features (15605)

EX Radiomics + EX 3D CNN 
features (15605)

(IN+EX Radiomics) + 
(IN+EX 3D CNN) features (31210)

EX_selected (Radiomics + 3D CNN) 
features (26)

(IN_selected+EX_selected) 
(Radiomics+3D CNN) features (73)

(IN+EX)_selected 
(Radiomics+3D CNN) features (44)

LassoCVLassoCV

LassoCVLassoCV

LassoCVLassoCV

LassoCVLassoCV

Fig. 3 The experimental design in our study. Our experiments compared four different feature types: PRM, radiomics, 3D CNN, and radiomics+3D
CNN features

3.1 Detection based on PRM features

In Experiment 1, the input consists of PRM features, which
are essential biomarkers extracted from IN and EX chest CT
images. The PRM features were automatically derived using
Imbio’s Lung Density Analysis software.2 These features

2 https://www.imbio.com/products/lung-density-analysis-functional/

reflect changes in lung function and involve segmenting
the lung region into functional units. PRM features have
proven utility in characterizing COPD pulmonary function
and its severity. Therefore, we included PRM features in the
analysis to investigate their potential contribution to COPD
stage detection. The results of PRM_original features and
PRM_selected features obtained throughLasso are presented
in Fig. 8a. The findings indicate the following:
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Table 2 Comparison of PRM features and (radiomics+3D CNN) fea-
tures using the AMGNN

PRM1 Radiomics Selected Seletced
+3D CNN2 PRM3 Radiomics

+3D CNN 4

Accuracy(%) 69.8 72.4 71.6 75.9

Precision(%) 70.2 76.8 71.9 83.0

F1-score(%) 68.4 71.9 70.1 75.6

AUC(%) 84.6 84.3 85.9 88.6

1 original PRM features (54)
2 top 54 (IN+EX)_selected radiomics +3D CNN features
3 selected PRM features (9)
4 top 9 (IN+EX)_selected radiomics +3D CNN features

Firstly, the AMGNN outperformed other ML classi-
fiers, demonstrating improvements of 6.9%, 13.0%, 13.0%,
16.4%, 15.6%, and 12.1% in accuracy when using
PRM_selected features. Similarly, there were enhancements
of 3.2%, 11.3%, 11.3%, 19.4%, 13.1%, and 11.7% in pre-
cision and 5.3%, 12.7%, 13.5%, 18.5%, 14.5%, and 11.9%
in F1-score. Additionally, AUC showed 2.1%, 1.9%, 8.4%,
4.0%, 5.8%, and 2.2% improvements.

Secondly, the PRM_selected features exhibited better per-
formance compared to the PRM_original features when
applied with the AMGNN, showcasing improvements of
1.8% in accuracy, 1.7% in precision, 1.9% in F1-score, and
1.3% in AUC.

InTable 2,wehave carried out supplementary experiments
for fairness. The number of original PRM features is 54. To
maintain parity, we have extracted the top 54 features based
on Lasso regression coefficients from the (IN+EX) selected
(Radiomics+3D CNN) features. And, the number of selected
PRM features is 9. We have extracted the top 9 features
based on Lasso regression coefficients from the (IN+EX)
selected (Radiomics+3D CNN) features. The results show
that when the number of PRM features and (radiomics+3D
CNN) features is the same, the accuracy of (radiomics+3D
CNN) features is higher. When the number of selected PRM
features and selected (radiomics+3D CNN) features is the
same, the accuracy of radiomics+3D CNN is higher. The
results indicate that the effectiveness of PRM is relatively
poor because PRM relies on specific threshold values for
defining regions within the lung images. These thresholds
may need to be carefully selected, and variations in thresh-
olding can impact the results.

3.2 Detection based on radiomics features

In Experiment 2, as depicted in Fig. 8b, the input for the
model consisted of radiomics features extracted from the
IN and EX chest CT images. The evaluation metrics for
COPD stage detection based on radiomics features using the

AMGNN and ML classifiers are presented in Fig. 8b. The
results indicate the following:

Firstly, the AMGNN demonstrated superior performance
compared to other ML classifiers, exhibiting improvements
of 10.3%, 17.2%, 20.7%, 17.2%, 24.1%, and 17.2% in
accuracy when using (IN+EX)_selected radiomics features.
Similarly, there were improvements of 8.7%, 10.2%, 15.9%,
8.5%, 21.2%, and 7.2% in precision and 10.2%, 13.7%,
19.9%, 22.5%, 24.2%, and 21.5% in F1-score. Additionally,
AUC showed improvements of 3.7%, 7.2%, 12.3%, 7.6%,
9.5%, and 8.4%.

Secondly, the (IN+EX)_selected radiomics features out-
performed the other six types of features when applied with
the AMGNN, showcasing improvements of 20.7%, 17.2%,
13.8%, 10.3%, 6.9%, and 3.4% in accuracy. Moreover, there
were enhancements of 35.4%, 12.9%, 11.4%, 6.3%, 3.5%,
and3.9% inprecision and29.1%, 17.6%, 14.9%, 9.7%, 8.5%,
and 3.8% in F1-score. Finally, the AUC displayed improve-
ments of 13.0%, 9.9%, 10.7%, 5.3%, 2.4%, and 3.5%.

3.3 Detection based on 3D CNN features

In Experiment 3, depicted in Fig. 8c, we assessed the effec-
tiveness of using 3D CNN features as input. We used the
ResNet-10 as the encoder backbone to generate 512 3DCNN
feature maps with a size of 3×3×3. Therefore, each partic-
ipant has 13,824 (512×3×3×3=13,824) 3D CNN features
obtained by flattening the 512 3D CNN feature maps. The
evaluation metrics for COPD stage detection based on 3D
CNN features using the AMGNN andML classifiers are pre-
sented in Fig. 8c. The results indicate the following:

Firstly, the AMGNN outperformed the other ML clas-
sifiers when using (IN+EX)_selected 3D CNN features,
showcasing improvements of 3.5%, 6.9%, 10.4%, 13.8%,
27.6%, and20.7% in accuracy. Similarly, enhancementswere
7.2%, 9.5%, 12.8%, 18.0%, 27.8%, and 23.1% in precision
and 2.3%, 5.6%, 9.8%, 14.0%, 25.1%, and 18.8% in F1-
score.Additionally,AUCdisplayed 0.5%, 1.6%, 5.2%, 4.2%,
11.7%, and 5.6% improvements.

Secondly, the (IN+EX)_selected 3D CNN features per-
formed better than the other six types of features when
applied with the AMGNN, demonstrating improvements of
24.2%, 17.3%, 17.3%, 13.8%, 6.9%, and 3.5% in accu-
racy. Furthermore, improvements of 37.0%, 22.1%, 12.5%,
14.9%, 8.5%, and 6.4% in precision, and 28.7%, 17.8%,
18.7% 12.8%, 4.9%, and 1.7% in F1-score were noted.
Finally, the AUC showed improvements of 12.7%, 12.1%,
12.5%, 9.6%, 2.9%, and 4.9%.

In Table 3, We conducted experiments to explore the
impact of using a larger model, specifically Resnet-18,
Resnet-34, and Resnet-50, on our classification perfor-
mance. Despite the larger model’s increased complexity, we
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Table 3 Comparison of different Resnet layers based on
(IN+EX)_selected (Radiomics+3D CNN) features using the AMGNN

Resnet-10 Resnet-18 Resnet-34 Resnet-50

Accuracy(%) 82.8 72.4 74.1 72.4

Precision(%) 85.7 73.2 76.8 76.8

F1-score(%) 81.0 71.7 74.4 72.4

AUC(%) 93.8 86.7 85.4 87.0

Entries in bold indicate superior performance compared to others

observed that the best results were achieved using Resnet-10
in our specific context.

3.4 Detection based on radiomics and 3D CNN
features

In Experiment 4, depicted in Fig. 8d, we aimed to verify
whether the concatenation of radiomics and 3DCNNfeatures
could further improve the model’s performance.

During Lasso feature selection, we conducted 100,000
iterations of 10-fold cross-validation to calculate the regres-
sion coefficients for each feature. We retained features with
non-zero regression coefficients and removed thosewith zero
regression coefficients. Figure 4 presents the regression coef-
ficients based on the Radiomics + 3DCNN features. Figure 5
presents the Box-Plot of p-value as derived from the Pearson

(b) IN_selected (Radiomics + 3D CNN) features

(c) (IN + EX)_selected (Radiomics + 3D CNN) features

(a) EX_selected (Radiomics + 3D CNN) features

Fig. 4 In Lasso calculations, the retained features include the regression coefficients for the following categories: a EX_selected (Radiomics + 3D
CNN) features, b IN_selected (Radiomics + 3D CNN) features, and c (IN + EX)_selected (Radiomics + 3D CNN) features
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Fig. 5 The Box-Plot of p-value as derived from the Pearson correlation
coefficient based on the Radiomics + 3D CNN features. a EX_selected
(Radiomics + 3DCNN) features, b IN_selected (Radiomics + 3DCNN)
features, c (IN_selected + EX_selected) (Radiomics + 3D CNN) fea-
tures, and d (IN + EX)_selected (Radiomics + 3D CNN) features

correlation coefficient based on the Radiomics + 3D CNN
features.

The findings of the COPD stage detection, utilizing IN
and EX radiomics+3D CNN features with the AMGNN and
ML classifiers, are depicted in Fig. 8d for Experiment 4. The
results indicate the following:

Firstly, theAMGNNshowcased superior performance com-
pared to other ML classifiers when using (IN+EX)_selected
(Radiomics+3D CNN) features, demonstrating improve-
ments of 6.9%, 17.3%, 17.3%, 24.2%, 13.8%, and 24.2%
in accuracy. Similarly, there were enhancements of 7.0%,
14.7%, 14.0%, 14.7%, 14.1%, and 19.7% in precision and

6.7%, 16.7%, 17.5%, 25.0%, 13.9%, and 23.4% in F1-score.
Additionally, AUC displayed improvements of 5.1%, 2.9%,
9.3%, 9.9%, 6.7%, and 10.2%.

Secondly, the (IN+EX)_selected (radiomics+3D CNN)
features outperformed the other six types of features when
applied with the AMGNN, demonstrating improvements of
24.2%, 17.3%, 17.3%, 13.8%, 10.4%, and 4.0% in accuracy.
Furthermore, there were enhancements of 25.1%, 35.6%,
18.5%, 15.3%, 8.9%, and 4.4% in precision and 27.2%,
26.8%, 18.9%, 14.8%, 10.6%, and 3.9% in F1-score. Addi-
tionally, AUC showed improvements of 14.1%, 8.9%, 9.0%,
6.6%, 5.4%, and 2.5%.

The results indicate that combining radiomics and 3D
CNN features has significantly improved the performance.
Figure 6 depicts the ROC of different classifiers based on
the (IN+EX)_selected (radiomics+3D CNN) features are
depicted. The final result is shown in Fig. 7, depicting the
confusion matrix for the AMGNN and ML classifiers based
on the (IN+EX)_selected (radiomics+3D CNN) features.

According to the findings presented in Table 4, it was dis-
covered that the performance of the fusion of radiomics and
3D CNN was superior. The four feature types’ comparative
analysis is conducted using the AMGNN. Additionally, in
Fig. 8,wedelve into a comparative analysis of the four feature
types.

4 Discussion

According to the findings of this study, the AMGNN
based on meta-learning has exhibited remarkable perfor-
mance in COPD stage detection based on (IN+EX)_selected
(radiomics+3DCNN) features, compared to RF, SVM,MLP,
LR, GB, and LDA.

(g) AMGNN(f) LDA(e) GB(d) LR

(a) RF (b) SVM (c) MLP

Fig. 6 ROC of the AMGNN and ML classifiers based on the (IN+EX)_selected (radiomics+3D CNN) features
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(g) AMGNN(f) LDA(e) GB(d) LR

(a) RF (b) SVM (c) MLP

Fig. 7 Confusion matrix of the AMGNN and ML classifiers based on the (IN+EX)_selected (radiomics+3D CNN) features

4.1 Merits of the AMGNN based onmeta-learning

The AMGNN based on meta-learning exhibits a remark-
able capacity for overcoming three significant challenges in
COPD stage detection: (i) identifying the connections among
different patients; (ii) minimizing the time-consume for diag-
nosis; (iii) possessing sustainable learning capabilities from
newly acquired patient data.

The AMGNN possesses an auto-metric capability that
exceeds that of GNNs. It enables the model to automati-
cally calculate the edge constraint matrix based on the risk
factors. This leads to a superior understanding of complex
relationships between patients with diverse COPD stages.
Additionally, the AMGNNdemonstrates higher training effi-
ciency compared to CNNs, as it can accomplish 500 epochs

Table 4 Comparison of different types of features using the AMGNN

PRM1 Radiomics2 3D CNN3 Radiomics
+3D CNN4

Accuracy(%) 71.6 86.2 82.8 89.7

Precision(%) 71.9 86.5 85.7 90.9

F1-score(%) 70.1 86.2 81.0 89.5

AUC(%) 85.9 94.5 93.8 95.8

1 PRM_selected features
2 (IN+EX)_selected radiomics features
3 (IN+EX)_selected 3D CNN features
4 (IN+EX)_selected (Radiomics+3D CNN) features
Entries in bold indicate superior performance compared to others

of training within approximately 10min when running on a
single core of the Intel (R) Xeon (R) Gold 5218 2.30GHz
CPU and a GPU of the NVIDIA A100. This remarkable
performance significantly enhances the efficiency of COPD
diagnosis.

Furthermore, we employed a training strategy based on
meta-learning in our model. This strategy ensures that the
model can effectively learn from the small graph and transfer
the learned knowledge to the following graph. Meta-learning
has the ability to learn how to learn, as it utilizes past knowl-
edge and experience to guide the learning of new tasks,which
is in contrast to most current deep learning (DL), which typi-
cally requires training from scratch. In addition, based on its
ability to learn how to learn, the meta-learning to our model
can adapt to novel COPD datasets. Therefore, the AMGNN
may surpass other models when trained on other additional
central datasets.

4.2 Strategies of data concatenation and selection

A series of experiments were conducted to evaluate the
efficacy of radiomics, 3DCNN, and radiomics+3DCNN fea-
tures. Regardless of the feature types, the same conclusion is
manifested.

Initially, when utilizing IN and EX features separately for
the AMGNN and ML classifiers, the accuracy was observed
to be below 70%. Afterward, we individually attempted fea-
ture selection by the Lasso for IN and EX, resulting in
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(d) Radiomics + 3D CNN
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Fig. 8 The visual evaluation metrics of the AMGNN and ML classifiers with different feature types in Experiments 1,2,3, and 4. The input features
of the model are respectively denoted as a radiomics, b 3D CNN, c radiomics+3D CNN, and d PRM features

improved accuracy, as shown inFig. 9a, b.However, the accu-
racy still did not exceed 80%. Subsequently, both IN+EX and
IN_selected + EX_selected features were attempted sepa-
rately. The IN+EX features (high dimension) results revealed
that the accuracy did not improve compared to utilizing either
IN or EX features. Despite containing more elements, the
IN+EX features are highly sparse, and helpful information is
limited, making it challenging for learning models to extract
relevant information compared to IN/EX features.

In contrast, the IN_selected + EX_selected features (low
dimension) showed improved accuracy compared to using
IN_selected/EX_selected features. Hence, we must extract
useful information from the IN+EX features. The final results
showed that (IN+EX)_selected achieved the best perfor-
mance using the AMGNN, surpassing the IN features in
accuracy, precision, F1-score, and AUC metrics, respec-
tively. Therefore, data concatenation and selection strategies
as valuable tools based on IN and EX chest CT images can
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(a) Comparison of IN and IN_selected features
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(b) Comparison of EX and EX_selected features

Fig. 9 Comparison of the accuracy in COPD stage detection utilizing the AMGNN andML classifiers. a IN and EX features. b IN and IN_selected
features. c EX and EX_selected features

enhance the efficacy of the AMGNN and ML classifiers in
COPD stage detection.

4.3 Expiration surpasses inspiration in COPD stage
detection

Our findings indicate that the utilization of EX chest CT
images, as opposed to IN chest CT images, results in the
superior performance of the AMGNN and ML classifiers,
as depicted in Fig. 9c. These observations carry signifi-
cant implications for enhancing the clinical management
of COPD patients. Healthcare professionals may prioritize
using EX chest CT images for diagnosing and monitoring
COPD patients, potentially leading to more effective treat-
ment strategies and improved patient outcomes. Based on
our analysis of the model results, we can conclusively state

that EX demonstrates greater effectiveness than IN in detect-
ing COPD stages. Nevertheless, from a clinical standpoint,
it is evident that further research in this field is imperative to
clarify these findings.

4.4 More suitable biomarker in COPD stage
detection compared to PRM

To predict the COPD stage, this study evaluated four differ-
ent types of features: radiomics, 3D CNN, radiomics+3D
CNN, and PRM. According to the findings presented in
Table 4, it is evident that the performance of PRM fea-
tures did not achieve the highest level of optimization.
The widespread use and applicability of PRM in diagnos-
ing and staging lung diseases are well-established. This
method offers the distinct advantage of providing local infor-
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mation about lung diseases and correlations with clinical
and biological markers. Our study found that the PRM
features did not exceed the expected benefits. In contrast,
our research demonstrated that radiomics+3D CNN features
proved more effective for COPD stage detection, improving
18.1% accuracy, 13.8% precision, 19.2%F1-score, and 9.9%
AUC compared to PRM_selected features. Moreover, PRM
requires lung bronchus segmentation and registration of IN
andEXchest CT images,which are challenging tasks and can
directly impact the precisionof the PRMNormal , PRM f SAD

and PRMEmph regions. However, our proposed approach
requires only the segmentation of the lung region, which is
a straightforward task. Therefore, all four types of features
used in our study surpass PRM features, with radiomics+3D
CNN features exhibiting the most impressive performance.
These findings suggest that radiomics+3D CNN features
possess the potential to serve as a novel biomarker for the
diagnosis of COPD stage.

4.5 Limitations and future direction

It is essential to acknowledge three limitations of this study.
Firstly, the datasets used were limited in scale and obtained
from a single center. However, the meta-learning strategy
allows continuous learning with new datasets, minimizing
the need to train from scratch. Secondly, the utilization of the
AMGNN requires diligent attention to the joint input of both
training and testing data. Lastly, our study primarily focused
on the engineering and algorithm aspects. Future research
should delve into the clinical significance of our approach
within these domains.

5 Conclusion

In this research paper, we introduced a novel approach
for detecting COPD stages utilizing (IN+EX)_selected
(radiomics+3D CNN) features with the auto-metric graph
neural network (AMGNN). When compared to machine
learning (ML) classifiers, the AMGNN integrated with risk
factors (age, gender, and smoking history) achieved the high-
est performance, with an accuracy of 89.7%, precision of
90.9%, F1-score of 89.5%, and an AUC of 95.8%. Addi-
tionally, the three types of biomarkers-radiomics, 3D CNN,
and radiomics+3D CNN-outperformed the predictive capa-
bility of PRM features in detecting COPD stages. Moreover,
we discovered that the expiratory phase outperforms the
inspiratory phase in COPD stage detection. Consequently,
our proposed method overcame the limitations of traditional
pulmonary function tests (PFTs) and held the potential to
become an effective tool for managing COPD.
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