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Abstract

In recent years, the growing awareness of public health has brought attention to low-dose computed tomography (LDCT)
scans. However, the CT image generated in this way contains a lot of noise or artifacts, which make increasing researchers
to investigate methods to enhance image quality. The advancement of deep learning technology has provided researchers
with novel approaches to enhance the quality of LDCT images. In the past, numerous studies based on convolutional neural
networks (CNN) have yielded remarkable results in LDCT image reconstruction. Nonetheless, they all tend to continue to
design new networks based on the fixed network architecture of UNet shape, which also leads to more and more complex
networks. In this paper, we proposed a novel network model with a reverse U-shape architecture for the noise reduction
in the LDCT image reconstruction task. In the model, we further designed a novel multi-scale feature extractor and edge
enhancement module that yields a positive impact on CT images to exhibit strong structural characteristics. Evaluated on a
public dataset, the experimental results demonstrate that the proposed model outperforms the compared algorithms based on
traditional U-shaped architecture in terms of preserving texture details and reducing noise, as demonstrated by achieving the
highest PSNR, SSIM and RMSE value. This study may shed light on the reverse U-shaped network architecture for CT image

reconstruction, and could investigate the potential on other medical image processing.

Keywords Low-dose CT - UNet - Deep learning - Image reconstruction

1 Introduction

Computed tomography (CT) system plays an important role
in the field of radiology diagnosis. Due to noninvasive and
convenience of CT, doctors can easily see the specific lesions
in the patient’s body through CT images, such as the size and
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shape of lesions [1]. The X-ray radiation employed in CT
scans poses a potential threat to human health, as it can induce
irreversible cellular and DNA damage during the scanning
process [2]. Prolonged exposure to radiation increases the
probability of cancer, particularly among children, who are
more susceptible to radiation-induced damage [3]. The radi-
ation dose received by conventional CT scanning is about
1.5-20 mSv (millisieverts), and the radiation dose received
by low-dose CT (LDCT) scanning is about one quarter of that
of conventional CT scanning [4]. Since the direct factor of
radiation dose is X-rays [5], dose reduction can be achieved
by two ways. The first one is to decrease the tube current
or reduce the tube voltage. However, reducing the tube cur-
rent results in lower signal-to-noise ratios of the projection
data, which can make it difficult to identify areas with sim-
ilar densities [6]. The second way for dose reduction is to
shorten the scanning time by sparse sampling. However, CT
images reconstructed from such projection data often contain
streak artifacts [7]. These streak artifacts will greatly affect
the subjective judgement of radiologists, and may even lead
to misdiagnosis. Therefore, improving the quality of the final
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LDCT image is a very promising and meaningful research
topic, and many studies have achieved very good perfor-
mance. We classify previous algorithms for LDCT image
reconstruction into three categories, i.e., sinogram filtration,
iterative reconstruction, and post-processing [8].

Sinogram filtration is a processing method based on raw
data, also known as analytical reconstruction algorithm. This
algorithm is designed to suppress noise in projection data by
employing the filtering algorithm that reduces the signal-to-
noise ratio of low-dose projection data. Over the past decade,
numerous effective projection domain preprocessing meth-
ods have been proposed. Sahiner et al. proposed a method to
effectively suppress the high-frequency noise in the recon-
structed CT image by constructing a filter in the wavelet
space [9]. Zhang et al. employed a methodology to segment
projection data based on variations in noise intensity, which
enabled the use of distinct filtering techniques for different
noise intensities [10]. Compared with iterative reconstruc-
tion algorithms, these algorithms can significantly shorten the
reconstruction time and have greater advantages in comput-
ing speed. However, the original projection data is sensitive
to the processing method, which often leads to data overcor-
rection, resulting in the distortion of the reconstructed image
and new artifacts.

Iterative reconstruction algorithms are among the most
used methods for reducing noise in LDCT images. Compared
to analytical reconstruction algorithms, they offer superior
performance in terms of noise suppression and artifact elim-
ination. By incorporating prior information in the image
space, these algorithms can also enhance edge sharpness [11].
With the introduction of the compressed sensing techonol-
ogy, Sidky and Pan used total variation (TV) minimization
constraint reconstruction to effectively suppress and reduce
the noise and artifacts of the LDCT images [12]. Browne et
al. proposed the method of row update to realize projection
reconstruction, which greatly improved the reconstruction
speed [13]. Fessler et al. proposed that by constructing pro-
jection, the image alternate subspace accelerates the iterative
convergence [14], but this makes each iterative calculation
more complex, and the overall reconstruction time of the
algorithm has not been significantly reduced. Although these
reconstruction algorithms have effectively improved the final
imaging quality, they all have a common disadvantage that
they are computationally expensive. Even though there are
some algorithms to speed up reconstruction, there is still a
certain distance between iterative reconstruction algorithms
and the need for rapid imaging in clinical needs.

In recent years, deep learning technology has made
great achievements in many fields such as image seg-
mentation, classification, detection, noise reduction, etc.
Some researchers have also introduced this technology into
LDCT image reconstruction, and achieved superior perfor-
mance. For example, Chen et al. verified its effectiveness
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in LDCT image reconstruction by building a simple neural
network [15]. In addition, there are numerous CNN-based
network structures have been proposed, which has signif-
icantly contributed to the amelioration of LDCT image
fidelity [16-20]. Yang et al. proposed the WGAN-VGG net-
work [21], which uses the generative adversarial network
(GAN) to achieve CT image reconstruction. The percep-
tion loss used in this network greatly improves the problem
of image over-smooth [22]. Zhang et al. achieved good
noise reduction effect by using CLEAR designed based on
GAN [23]. They used multi-level consistency loss and made
great progress in Peak signal-to-noise ratio (PSNR) and
Structural Similarity (SSIM). Due to large amount of super-
parameters, it is difficult to train the model, which hinders the
application. Wang et al. utilized the multi-head self-attention
mechanism instead of the CNN and proposed a CTformer
model, which played a significant role in suppressing noise
and artifacts in LDCT images [24]. Liu et al. believed that
noise has a strong correlation with deviant features, and con-
struct the deviant feature sensitive noise estimate network,
which also achieved very good noise reduction effects [25].
Bera et al. reduced the dependence on pairwise training of
LDCT and NDCT by using self supervised methods, and also
achieved good mapping from LDCT to NDCT [26]. Lu et al.
introduced neural structure search for the first time to con-
duct LDCT image reconstruction, and achieved better noise
reduction effect by searching for a better architecture [27].
While previous deep learning models have demonstrated
significant progress in LDCT image reconstruction research,
their model architectures are mainly based on the UNet net-
work structure as shown in Fig. 1(a). This type of approach

Downsample

Upsample

(a) U-shape Network

Downsample

(b) Reverse U-shape Network

Fig. 1 Comparison of architectures of image restoration models. (a)
U-shape architecture, (b) Reverse U-shape architecture. Some details
of the model have been omitted, e.g., residual connection, feature fusion
modules, the number of convolutional blocks, and etc
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first downsamples to reduce the image size, and then upsam-
ples to enlarge the image size. Reducing the image size will
inevitably cause a loss of texture details, which is unac-
ceptable for our medical images. As shown in Fig. 2, we
conducted a rough simulation experiment. First, we reduced
the image size of Fig. 2(a) to half of the original size through
the Bilinear interpolation algorithm, and then restored the
size through the Bilinear interpolation algorithm to get the
result of Fig. 2(b). Compared with the original image, the
image has become smoother. After calculating the absolute
difference between the two images, as shown in Fig. 2(c),
there has been a significant difference between the two
images. In addition, we also use the Bilinear interpolation
algorithm to enlarge Fig. 2(a) to twice the original size and
then restore it to get the result of Fig. 2(d), which is almost
the same as the original image. Figure 2(e) also shows that
their absolute difference is relatively small. Inspired by this
inspiration, in order to achieve the reconstruction of the
CT image and preserve a greater amount of image infor-
mation, we employ an upsampling-downsampling approach
using a novel reverse U-shape network architecture as shown
Fig. 1(b). The effectiveness of the proposed model is veri-
fied by extensive experiments on the public and widely used
dataset.

The overall contributions of this paper can be summarized
as follows:

1. To best of our knowledge, the reverse U-shape network
architecture was introduced for the domain of LDCT

Fig.2 The impact of employing
the bilinear interpolation
algorithm to initially magnify
and subsequently restoration the
image, as well as initially reduce
and subsequently restoration it.
(a) Origin image, (b) image
magnification followed by
restoration, (c) absolute
difference between (a) and (b),
(d) image reduction followed by
restoration, (e) absolute
difference between (a) and (d).
In order to better see the
difference, we enhanced the two
images (c) and (e), adding 28 to
their red channel value, 74 to
their green channel value, and
152 to their blue channel value

(a) Origin Image

image reconstruction for the first time. The enlargement
of image feature map size should be taken as the first
phase of the reconstruction process.

2. The proposed multi-scale feature extraction module facil-
itates the reconstruction of LDCT images.

2 Materials and methods

For the LDCT image reconstruction operation, it can be mod-
eled with the following formula:

Y=X+n, (D

where n is the noise to be removed, X € RY*Y denotes
a LDCT image, ¥ € RV*V represents the corresponding
NDCT image. The complete reconstruction process can be
interpreted as the requirement to derive a model to realize
the mapping from LDCT image X to NDCT image Y.

2.1 The proposed model

In this study, our goal is to design a network architecture
as simple as possible to realize LDCT image reconstruc-
tion. Inspired by the structural design of U-Net [28] and
RED-CNN [18], we developed a reverse U-shape network
architecture, termed as Re-UNet. The model framework is
illustrated in Fig. 3.
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Fig. 3 Architecture of Re-UNet for LDCT images reconstruction. The proposed model features a reversed U-shape architecture, in which image
processing is conducted through sequential upsampling and downsampling operations

In the initial stage of the network, two branches were
used, one of which performed a 3 x3 convolution for feature
extraction, and another branch leveraged an edge extraction
module to achieve image edge enhancement. Subsequently,
the output features of the two branches are integrated via
the concatenated operation. To diminish the computational
complexity of subsequent convolutions, a 1 x 1 convolution
was introduced, with the purpose of reducing the number
of channels, and then integrated with the initial input to
form the residual connection. After these preliminary oper-
ations, the feature information will be incorporated into the
upsampling stage, which was the first key stage of the net-
work. But before each upsampling step, we implemented a
multi-scale feature extraction module aimed at refining the
extracted features. The transposed convolution was used to
achieve the steps of upsampling. Throughout the process
of upsampling, we employed six multi-scale feature extrac-
tion modules and six transposed convolutions. After passing
through the upsampling stage, the feature information will
change from 512x512 to 536x536. In the downsampling
stage, we used the convolution to achieve the purpose of grad-
ually reducing the feature size. To reduce the risk of vanishing
gradients, we used residual connections after each layer of
downsampling. When performing feature fusion of residual
connections, the lower-level features were multiplied by a
learnable parameter « and added to the output of the down-
sampling process. Similar to the initial phase of the network,
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we again extracted the feature edge before applyinga 1 x 1
kernel convolution to reduce the number of channels to 1,
and then obtained the final reconstructed NDCT image.

2.1.1 Edge extraction module

Considering the complexity and structure of CT images, clear
edges of various organs or lesion areas in CT images are
importance for doctors to make accurate diagnoses. There-
fore, the edge enhancement operation on the LDCT image is
benifitial for the subsequent reconstruction, and the follow-
ing experimental results verify the feasibility of this idea. In
the design of edge extraction module, we used the traditional
sobel filter which is widely used in natural images. As shown
in Fig. 4 (b), the two sobel convolution kernels represent
the horizontal and vertical convolution kernels, respectively.
To extract the edge features, the feature maps of the odd-
valued channels were convolved a horizontal convolution
kernel, and the feature maps of the even-valued channels were
convolved with a vertical convolution kernel. Owing to the
particularity of CT images, an additional learnable parameter
B was introduced on the basis of the original convolution ker-
nel, whose function was to enable the convolution kernel to
better learn the edge extraction of CT images. Figure4(c)
shows the output results of CT images after vertical and
horizontal edge extraction respectively. The extracted edges
enable a clear visualization of the organ outlines.



Medical & Biological Engineering & Computing (2024) 62:701-712

705

Fig.4 The sobel operator of the
edge convolution module and
the result of edge extraction. (a)
A randomly selected LDCT
image; (b) Sobel convolution
kernel operator. (c) Result of the
LDCT image edge extraction

-2

-2B

(b) Sobel Edge Convolution

2.1.2 Multi-scale feature extraction modules

Considering the notable disparities in body tissue and organ
sizes depicted in CT images, it could be suboptimal to exclu-
sively employ a single kernel size throughout the entire neural
network architecture. In view of this, we developed a multi-
scale convolution module to enhance the network’s ability
to effectively address the challenge in the reconstruction
of different tissues and organs. Figure5 shows the specific
design of our multi-scale feature extraction module, which
contains five different convolution kernels of different sizes,
ie., 1x1,3x3,5x5,7x7 and 9x9, respectively. In order to
reduce the parameter amount of the model, we used depth-
wise convolution for the kernels of sizes 5x5, 7x7 and 9x9,
respectively. After each convolution operation, a LeakyRelu
activation function was used to realize the nonlinear charac-
teristics of the model. Finally, the features after multi-scale
convolutions were concatenated together, and then further

Fig.5 The structure of the
multi-scale feature extraction
module

(a) Origin Image

(c) Edge Convolution Image

fused through a convolution with a kernel size of 3x3. In
addition, the number of channels can be kept consistent with
that of the input.

2.1.3 Loss function

During model training, we use a hybrid loss function to mea-
sure the difference between the output of the model and
NDCT images, which consists of two parts. In the first part,
we used the mean absolute error (MAE). This loss function
can well reflect the pixel-wise differences between the NDCT
image and the reconstructed image by the model. By utilizing
MAE, the network’s reconstruction outcome has the poten-
tial to yield a superior PSNR value. The MAE loss (LyAE)
can be expressed by the following formula:

N
1
Luar =~ Y 1xi = il )

i=1

1x1 Conv
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In addition, we also used structural similarity (SSIM) [29]
to measure the structural differences between model output
and NDCT images, and incorporated it into our mixture loss.
The loss based on the SSIM (L ss7as) is calculated as follows:

(zl/«xﬂy + Cl) (2,U«x,uy + Cl)
/L§+/L§+C1) <0X2+U§+C2>

Lssiy =1— ( 3)

where u, and uy are the average values, o, and oy are the
variances, of all the pixels in the NDCT image and the recon-
structed image, respectively. The final loss function consists
of the above two parts and is expressed by the following
formula:

Lioss = Lyag +aLssiy @

where « is the weight of L gg;. We empirically set the value
of & to be 0.5 in all the following experiments.

2.1.4 Baseline methods

We adopted four deep learning models as the baseline meth-
ods to compare with our method. They are RED-CNN [18],
WGAN-VGG [21], EDCNN [19], and CTformer [24] respec-
tively. Among them, RED-CNN is an outstanding represen-
tative of using CNN to achieve LDCT image reconstruction.
The EDCNN network has achieved a good combination
of edge enhancement and CNN, and achieved good recon-
struction results. The WGAN-VGG network effectively
introduces the GAN network into the LDCT image recon-
struction task and greatly improves the clarity of LDCT
images. CTformer is a network structure based on Trans-
former, which also performs well in denoising LDCT images.
Except for our model structure, all other models are similar to
the UNet structure, where downsampling is performed first
and then upsampling is performed to reconstruct the final CT
images.

2.1.5 Datasets

In this study, we used the dataset from 2016 NIH-AAPM-
Mayo LDCT Grand Challenge [30]. We selected a total of
10 CT scan sequences of anonymous patients, each contain-
ing normal-dose CT images and corresponding simulated
quarter-dose CT images. The scan thickness of these CT
datasets is 3mm, and finally there are 2378 CT images for
our experiments. We used 9 sequences of CT images as our
training set and the remaining one (named L506) to verify
the performance of the proposed model. During the training
stage, we randomly cropped 8 patches of size 64 x64 from
CT images of size 512x512.
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2.1.6 Implementation details

For the model training, we adopted the Adam [31] algorithm
to optimize our proposed network. We set the hyperparame-
ters 81 and B2 to 0.9 and 0.999, respectively. For the learning
rates, it was set to le-4. And the total number of epochs was
set to 100. In the multi-scale network module, we used a
large number of LeakyReLU, the slope value of it was set
to 0.01. Our algorithms was built using the PyTorch 1.11.0
platform. The model was trained and tested on an NVIDIA
RTX 3090Ti GPU. Different from dividing patches in train-
ing stage, we used LDCT images with a size of 512x512 as
input in the testing stage.

2.1.7 Evaluation metrics

We considered the subjectivity of evaluating the reconstruc-
tion quality by naked eyes. To evaluate the performance of the
model, five objective and widely used metrics, i.e., PSNR,
SSIM, root mean square error (RMSE), Contrast-to-Noise
Ratio (CNR) and recontruction time were used in this study.
These metrics can serve as effective measures of image qual-
ity and assess the model’s performance. Specifically, PSNR
is an indicator used to evaluate image quality. The higher
the PSNR value, the higher the reconstruction quality of
the image. SSIM is used to measure the structural similarity
between two images, the larger the value, the more similar the
two images, and the upper limit of this value is 1. In addition,
RMSE is also an important indicator to measure the similar-
ity of two images. It reflects the error of the two images by
calculating the pixel-wise differences of the reconstructed
CT image and the NDCT image. Obviously, the smaller the
value, the smaller the differences between the two images,
reflecting the higher quality of the reconstructed CT image.
CNR is a frequently employed metric within the domain of
medical imaging for the purpose of image quality assess-
ment. It quantitatively characterizes the correlation between
the contrast exhibited by meaningful signals within an image
and the level of noise present therein. The utilization of CT
image reconstruction time serves as a means for assessing
both the model’s intricacy and the efficacy of its inference
processes.

3 Experimental results and discussion

3.1 Results

Table 1 shows the average values of various evaluation met-
rics for each model on the Mayo dataset. The proposed
Re-UNet outperforms the previous state-of-the-art CTformer
by 0.56dB in terms of PSNR. From the SSIM, the similar-
ity between the CT image generated by Re-UNet and the
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Table1 Performance comparison of different methods on L506 dataset.
The best results are highlighted in boldface

PSNRt+  SSIM{ RMSE| CNR% Time
LDCT 292489  0.8759 142416 —3.4204 —
RED-CNN  32.8209 09092 93144  —3.0951 0.35s
WGAN 31.1007 0.8996  11.3596 — -
EDCNN 323036 09034 99121  —3.0711 0.35s
CTformer  33.0793 09119  9.0726  —3.0960 0.43s
Re-UNet 337460 09185 84101  —3.0724  045s

NDCT image reaches 0.9185, which is also optimal when
compared with other models. In addition, the Re-UNet is
0.6625 lower than CTformer in terms of RMSE. In terms of
CNR, the Re-UNet only shows 0.001 worse than the EDCNN
model. For the computational complexity, although the pro-
posed Re-UNet needs slightly more time, all the models can
finish the reconstruction for single LDCT image with Is.
Therefore, the Re-UNet shows better performance in most of
cases under the four evaluation metrics. In order to conduct
a more intuitive comparison of the reconstruction effects, we
selected two relatively representative CT images from L5006,

(a) LDCT

(d) CTformer

(b) RED-CNN

(e) Re-UNet

as shown in Figs. 6 and 7. The two images clearly show
that our model achieves the best reconstruction effect. The
sense of boundaries of tissues and organs after reconstruction
has been significantly improved, and there is a lesion in the
blue rectangle box in Fig. 7, and it becomes more clearly in
the reconstructed CT image. We enlarged the area of the blue
rectangular box in Fig. 7(f) to separately present in Fig. 8. The
position pointed by the red arrow in the image is a lesion area,
which is affected by noise in the original LDCT image, and
the lesion becomes blurry, which brings some difficulty to the
doctor’s diagnosis. However, after reconstructing the LDCT
image through our model, the noise is significantly reduced,
and the size and shape of the lesion are clearly visible. The
CT image reconstructed by other models also achieves noise
reduction, but EDCNN and CTformer add additional noise
and artifacts to the images. Only RED-CNN achieves roughly
the same visual effect as our model. We further compared the
superiority of the proposed model with baseline models in
terms of quantitative metrics in the fixed regions. We selected
four regions of interest (ROI) from the NDCT image in Fig. 7,
and marked them with red rectangles. We performed PSNR,
SSIM and RMSE metric calculations on the four regions

(¢) EDCNN

(f) NDCT

Fig.6 Results from the different methods for comparison. The display window is [-160, 240] HU. (a) a LDCT image; (b) RED-CNN; (c) EDCNN;

(d) CTformer; (e) Re-UNet. (f) a NDCT image
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(d) CTformer

(e) Re-UNet

(f) NDCT

Fig.7 Results from the different methods for comparison. The display window is [-160, 240] HU. (a) a LDCT image; (b) RED-CNN; (c) EDCNN;
(d) CTformer; (e) Re-UNet. (f) a NDCT image. The red rectangle is the several defined ROIs

respectively, which are shown in Fig. 9. It can be found that
Re-UNet also achieves the optimal performance in these local
regions. Utilizing the delineated ROI, we computed the mean
CNR, as presented in Table 1. Notably, although not attaining
the optimum, this value differs by a mere 0.001 when com-
pared to the performance of the EDCNN model. We also
quantified the average temporal investment for each model
during the reconstruction of 211 CT images, revealing a dis-
crepancy of 0.1 s in relation to the optimal model.

3.2 Discussion

In this paper, we present an innovative network architecture
Re-UNet for LDCT image reconstruction. Previous network
architectures, such as RED-CNN and CTformer, exhibit a
U-shaped network structure. In the context of these archi-
tectural configurations, an inherent procedure involves an
initial employment of downsampling operations in the ear-
lier layers to compress the sizes of intermediate feature maps,
which will inevitably lead to the loss of feature information
at the higher levels of the neural network, making the recon-
struction task difficult. The U-D model upsampling stage
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inherently expands the image dimensions, thereby enabling
enhanced feature information retention, and the model will
also learn how to remove excess noise information during
the downsampling stage. Furthermore, Within the context of
D-U architectural models, it is evident that an increase in
the convolution kernel size can result in the deterioration in
model performance. For the proposed Re-UNet, the U-D con-
figuration has consistently exhibited a sustained and stable
performance in the domain of noise reduction. It shows that
U-D model is more robust to changes in convolution kernel
size. Therefore, we believe that the U-D model will be an
important structure in the field of LDCT image reconstruc-
tion.

Some limitations need to be addressed. Our experiment
lacks radiologists to evaluate the reconstruction quality of
LDCT images, which is important in actually diagnosing the
images. Besides, only the Mayo dataset was adopted to eval-
uate the performance. This dataset was publicly available,
to serve as the benchmark dataset to evaluate various recon-
struction methods. In future, extra cohort datasets should be
collected to further verify the efficiency and effectiveness in
future work. In current stage, the proposed Re-UNet was not
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(b) RED-CNN (¢) EDCNN

(d) CTformer (e) Re-UNet

Fig.8 The amplified ROI images of different methods outputs in the blue rectangle marked from Fig. 7

PSNR of ROIs SSIM of ROIs
=LDCT =RED-CNN =EDCNN =CTformer mRe-UNet =LDCT =REDCNN =EDCNN =CTformer mRe-Unet
31 r 085 -
08 +
0.75
07
g |
06 F
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ROI ROI
(@) (b)

RMSE of ROIs

=LDCT =RED-CNN =EDCNN »CTformer ®=ReUnet
41

3
E 26
16
1

ROI
©

Fig.9 The PSNR, SSIM and RMSE histogram of ROIs from Fig. 7 under different algorithms. (a) PSNR of ROIs; (b) SSIM of ROIs; (c) RMSE
of ROIs
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deployed within a practical CT scanning system to investi-
gate the performance; it needs more endeavors for further
optimizing the algorithm with CT equipment manufacturers
and clinical practitioners to achieve that goal.

3.3 Ablation study

We designed a series of ablation experiments based on the
Mayo dataset to verify the effectiveness of our network
structure. To investigate the influence of upsampling and
downsampling modules on the validation of LDCT image
reconstruction, extra experiments with two model architec-
tures were undertaken. Specifically, the first architecture
involves a sequential application of upsampling operations
followed by downsampling operations, denoted as the “U-D”
architecture, and the second employs downsampling oper-
ations followed by upsampling operations, referred to as
the “D-U” architecture. We want to investigate the effect of
changes in the number of network layers and convolution ker-
nel sizes on the reconstruction performance for the two model
architectures. These two parameters have been considered
due to their respective impacts on the feature map dimen-
sions within the network architecture. As the U-D network
structure increases in depth or when a larger convolution
kernel is employed, the feature map at the highest layer will
become larger. For the number of sampling layers of the net-
work, the results are shown in Table 2, the U-D architecture
consistently exhibits a superior performance over the corre-
sponding D-U architecture. For the convolution kernel size,
the results are shown in Table 3, the performance of the U-D
architecture is also consistently better than that of the D-U
architecture. Increasing the sizes of the convolution kernel
first improves, and then leads to rapid deterioration in the
performance of D-U architecture. For the U-D architecture,
it is more robust to the setting of the convolution kernel sizes.
These findings indicate the efficiency and robustness of the
proposed U-D architecture for LDCT image reconstruction,
which could be considered in future studies.

To substantiate the ameliorative impact of the addi-
tional modules we introduced for noise reduction, a series

Table 2 Experimental results of D-U model and U-D model with dif-
ferent sampling layers. The best results are highlighted in boldface

Kernel size layers model PSNR?T SSIM1 RMSE|
5%5 5 D-U 33.2882 09118 8.8359
U-D 33.3511 0.9137 8.7809
6 D-U 33.4509 0.9151 8.6860
U-D 33.6015 0.9165 8.5394

D and U denote the downsampling and upsampling operations, respec-
tively

@ Springer

Table3 Experimental results of D-U model and U-D model with differ-
ent convolution kernel sizes. The best results are highlighted in boldface

layers Kernel size model PSNR% SSIM 1t RMSE|
6 3x3 D-U 32.4054 0.9041 9.7576
U-D 33.5497 0.9165 8.5936
5%5 D-U 33.4509 0.9151 8.6860
U-D 33.6015 0.9165 8.5394
Tx7 D-U 33.4337 0.9152 8.7055
U-D 33.6599 0.9182 8.4862
9%9 D-U 32.8788 0.9100 9.2621
U-D 33.5641 0.9168 8.5795
11x11 D-U 26.4269 0.8267 19.1887
U-D 33.6095 0.9180 8.5370

D and U denote the downsampling and upsampling operations, respec-
tively

of ablation experiments were meticulously conducted. The
ensuing results of these investigations are meticulously docu-
mented in Table 4 for comprehensive analysis and reference.
First of all, we designed two basic models. The first model is
downsampling and then upsampling, as shown in Fig. 1(a),
termed as UNet. The second model is to exchange the order of
sampling operation in UNet model. We first upsample the CT
image and then downsample it, termed as R-UNet. In these
two basic models, we used convolution for downsampling,
and deconvolution for upsampling. In the UNet model, we
used a total of five convolutions for downsampling. The size
of the CT images was reduced from 512x512 to 488 x488.
Then, through five consecutive transposed convolutions to
restore the size of the image to 512x512. When the hyper-
parameters of the two models are the same, the basic R-UNet
model demonstrates superior performance on the testset in
comparison to the basic UNet model. From Table 4, we can
see that the test result of the R-UNet is 0.31 dB higher than
that of UNet on PSNR. However, there is not much differ-
ence between the two in the number of parameters, we only
keep two decimal places. It can be seen that the parameter
amount of the R-UNet model is 1.03M, but the performance

Table 4 The results of ablation experiments on L506 dataset. The best
results are highlighted in boldface

Reverse Multi Edge PSNR1 Params
UNet X 33.2882 1.03
R-UNet v X X 33.6015 1.03
MR-UNet v v X 33.6910 4.14
Re-UNet v v v 33.7460 4.15
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of the model has been greatly improved. Next, we tested the
effectiveness of our proposed multi-scale module through
experiments. Compared with R-UNet, we just replaced the
original convolution block with a multi-scale module, the
model we named MR-UNet. The PSNR value of the MR-
UNet model is 33.6910dB, which has some improvements
compared to R-UNet. Finally, after we added the edge convo-
lution, the test performance of the model on the L506 dataset
was further improved. The PSNR of the final model has been
improved to 33.7460dB.

4 Conclusion

In summary, we proposed a novel Re-UNet model architec-
ture for the LDCT images reconstruction. Different from the
well-known U-Net architecture, the upsampling operations
were first used, followed by the downsampling opera-
tions. Besides, the multi-scale feature extraction block was
designed to reconstruct the different organs. Extensive exper-
iments indicate that the Re-UNet outperforms the compared
methods. This study may provide a new avenue for CT
image reconstruction with Re-UNet, and demonstrates a
great potential for designing the DL models with reverse
U-shape architecture for image processing.
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