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Abstract
Standardized morphological evaluation in pathology is usually qualitative. Classifying and qualitatively analyzing the nucle-
ated cells in the bone marrow aspirate images based on morphology is crucial for the diagnosis of acute myoid leukemia 
(AML), acute lymphoblastic leukemia (ALL), and Myelodysplastic syndrome (MDS), etc. However, it is time-consuming 
and difficult to accurately identify nucleated cells and calculate the percentage of the cells because of the complexity of bone 
marrow aspirate images. This paper proposed a deep learning analysis model of bone marrow aspirate images, termed Cell 
Detection and Confirmation Network (CDC-NET), for the aided diagnosis of AML by improving the accuracy of cell detec-
tion and recognition. Specifically, we take the nucleated cells in the bone marrow aspirate images as the detection objects to 
establish the model. Since some cells from different categories have similar morphology, classification error is inevitable. 
We design a confirmation network in which multiple trained classifiers work as pathologists to confirm the cell category by a 
voting method. To demonstrate the effectiveness of the proposed approach, experiments on clinical microscopic datasets are 
conducted. The Recall and Precision of CDC-NET are 78.54% and 91.74% respectively, and the missed rate of our method 
is lower than those of the other popular methods. The experimental results demonstrated that the proposed model has the 
potential for the pathological analysis of aspirate smears and the aided diagnosis of AML.

Keywords Digital diagnosis · Convolutional neural network (CNN) · Ensemble learning · AML · Bone marrow aspirate 
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1 Introduction

The diagnosis of hematologic disorders, such as AML and 
MDS, is based on bone marrow biopsies to obtain aspirate 
smears and core biopsies for manual evaluation by experi-
enced hematopathologists to identify increases in abnormal 
cells, such as blasts, dysplastic cells, or plasma cells [1]. 
Acute myeloid leukemia is a kind of hematologic malig-
nancy caused by the neoplastic proliferation of immature 
myeloid hematopoietic stem cells or myeloblasts [2]. Early 
diagnosis of AML is crucial for the treatment and the life 
of the patients. Classifying, counting, and qualitatively ana-
lyzing the nucleated cells in the bone marrow aspirates by 
professional hematopathologists according to the World 
Health Organization (WHO) classification is the key step 
for the diagnosis of acute myeloid leukemia. The blasts in 
the peripheral blood can also be regarded as the biomarker 
to diagnose AML. However, the percentage of blasts in 
bone marrow is usually more reliable or important for the 
diagnosis of AML. According to the criteria of the World 
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Health Organization (WHO) classification, the blast count 
of less than 3% in the bone marrow is normal, more than 
5% suggests high-grade myelodysplastic syndrome, and 20% 
or more is diagnostic of AML [1]. Some examples of bone 
marrow aspirate images are shown in Fig. 1. Images (a – c) 
are from non-AML patients with no increase in blasts, while 
images (d – f) are from AML patients with increased blasts.

Manual quantification of blasts by experienced hemato-
pathologists is time-consuming and prone to human errors. 
Different hematopathologists could render very different 
blast counts, depending on their personal criteria and per-
sonal experience. It is therefore better to come up with a 
more effective and less subjective way to quantify blasts 
and to improve the diagnostic efficiency. There have been 
systems, such as CellaVison (https:// www. cella vision. com), 
to automatically quantify the blasts in the peripheral blood. 
However, they cannot be adapted to aspirate smears because 
they are much more complex than peripheral blood smears. 
We compare the peripheral blood smear images with the 
bone marrow aspirate images, which are shown in Fig. 2. 
Compared with the peripheral blood smear images, bone 
marrow aspirate images are denser and have more cell types. 
There are more overlapping cells in bone marrow aspirate 
images, which could result in missed cells in detection. 
Moreover, some cells in the bone marrow look very similar 
in morphology and could cause cell type ambiguity.

The complexity of bone marrow aspirate images makes 
it difficult to accurately identify cells and calculate the blast 

percentage. To achieve an effective diagnosis of acute leu-
kemia, many researchers began to focus on the automatic 
classification and counting of nucleated cells on the bone 
marrow aspirate images [3–12]. Traditional methods usually 
segment the bone marrow aspirate images to obtain individ-
ual cells at first, and then extract morphologic features of the 
individual cells for cell recognition and counting. Therefore, 
the performance of the traditional automatic classification 
and counting methods depends on the accuracy of image 
segmentation. To improve the accuracy of segmentation, 
Goutam and Sailaja [13] proposed a cell detection method 
by using k-means feature extraction, Local Directional path 
(LDP), and support vector machine (SVM). Li et al. [14] 
introduced a dual-threshold method based on a strategic 
combination of RGB and HSV color space for white blood 
cell (WBC) segmentation. Aris et al. [15] described an 
automated counting of WBCs with an analysis of watershed 
segmentation for the screening of chronic leukemia images. 
However, it is difficult to accurately segment individual cells 
from bone marrow aspirate images, and even more difficult 
for those adherent cells.

The analysis methods using deep learning look more 
promising for the diagnosis based on bone marrow aspi-
rate images, especially when all types of cells in the bone 
marrow aspirate images need to be quantified. Song et al. 
[16] proposed a synchronized deep autoencoder network 
for simultaneous detection and classification of the cells in 
bone marrow aspirate images. Yang et al. [17] reported a 

Fig. 1  Examples of bone marrow aspirate smear images. a – c Bone marrow aspirate images from non-AML patients with no increase in blasts. 
d – f Bone marrow aspirate images from AML patients with increased blasts

https://www.cellavision.com
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new deep neural network employing both complementary 
and correlated relationships between medical images and 
clinical information to improve the accuracy of computer-
aided diagnosis. Haoyi et al. [18] suggested an end-to-end 
leukocyte localization and segmentation method, in which 
a deep convolutional neural network trained on pixel-level 
prior information was used to locate the region of interest 
(ROI) of white blood cells and to obtain white blood cell 
segmentation.

Although great progress has been made in this research 
field, the classification accuracy needs to be further 
improved. Therefore, this paper provides a model, i.e., Cell 
Detection and Confirmation Network (CDC-NET). Specifi-
cally, we take the nucleated cells in bone marrow aspirate 
images as the detecting objects to design and train a detec-
tion model. Besides, we designed a Cell Confirmation Net-
work (CC-NET) to improve the classification accuracy by 
further confirming the types of the detected cells, especially 
of the cells with ambiguous types. It simulates the diag-
nosis workflow of hematopathologists and continuously 
improves the skills of the pathologists and the technicians, 
i.e., improves the performance of CC-NET. Moreover, we 
increase the difficulty of the dataset and design a practical 
evaluation method, to improve the robustness of the pro-
posed model. The major contributions of this paper are listed 
below:

• For the application of AML diagnosis, we simulate the 
classification and counting process of the nucleated cells 
in bone marrow aspirate images under a microscope by 
pathologists, and design a deep learning model to achieve 
automatic analysis of the bone marrow aspirate images to 

assist AML diagnosis. Different from the existing meth-
ods, this model simulates pathologists by introducing a 
voting mechanism to balance their perspectives and fur-
ther achieve consistent results.

• Since classification error is inevitable even for patholo-
gists, we propose a more practical voting mechanism, 
i.e., CC-NET, to improve the classification accuracy by 
further confirming the types of the detected cells. It treats 
multiple trained classifiers as pathologists or technicians 
to analyze and judge the cells with ambiguous types. 
Moreover, pathologists or technicians can intervene in 
decision-making by interacting with the machine.

• Comprehensive experiments on clinical datasets with 
more complex images demonstrated the effectiveness of 
the proposed approach. We also introduce a comprehen-
sive experimental setting to evaluate the performance. 
The experimental results demonstrated that our approach 
outperforms the existing methods. Importantly, from the 
perspective of the pathologist, the missed rate and clas-
sification accuracy are more acceptable.

2  Related work

2.1  Classifier

The CNN-based classification network has become one 
of the most common models in the classification system. 
AlexNet proposed by Krizhevsky et al. [19] successfully 
applied some methods such as ReLU, Dropout, and LRN in 
CNN for the first time and proved the strong feature extrac-
tion capability of CNN. Kaiming et al. [20] presented a 

1 2

(a) Peripheral blood smears image    (b) Bone marrow aspirate image

Fig. 2  Comparison of peripheral blood smears images and bone mar-
row aspirate images. Compared with the peripheral blood images, 
there are more cell types in the bone marrow aspirate images, and the 
cell morphology is more complex. Cell adhesion, cell overlap, and 
ambiguous morphology make it difficult to classify the cells in the 
bone marrow aspirate images. For example, cells in region 1 in the 

image (b) are morphologically intermediate between erythroid and 
blast cells, which makes definitive classification difficult. Cell adhe-
sion (see the cells in region 2 in the image (b)) makes it difficult to 
isolate the cells accurately. a Peripheral blood smears image, b Bone 
marrow aspirate image
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residual learning framework to train networks that are 
substantially deeper than the previously reported, and the 
effectiveness of this network was demonstrated at the 2015 
ImageNet competition. Szegedy et al. [21] proposed Incep-
tion V1, which used dense components to approximate the 
optimal local sparse junction and was demonstrated to be 
an efficient method to increase network size. However, the 
training of Deep Neural Networks is complicated by the 
fact that the distribution of the inputs in each layer changes 
during training [22]. To solve this problem, Szegedy et al. 
[23] used standardization as part of the model and used 
the method for batch normalization (BN) to implement 
standardization for each small batch of training. Then, they 
improved Inception V2 and Inception V3 models on the 
basis of Inception V1. In the task of cell classification 
using AlexNet, ResNet-50, and Inception V3, the paper 
[24] focused on the automatic classification of leuko-
cytes. The experimental results revealed that ResNet-50 
exhibits the highest classification accuracy, particularly 
in handling noisy and blurry cell images. Another paper 
[25] investigated the automatic classification of malaria-
infected images, showing excellent performance from all 
three models in the classification task of malaria-infected 
images, with Inception V3 demonstrating the best perfor-
mance. Moreover, the paper [26] conducted cell classifi-
cation of breast fine needle aspiration cytology images, 
and comparative experiments indicated that ResNet-50 
and Inception V3 models outperformed others in terms of 
classification accuracy, especially for complex cell mor-
phology and structure. Additionally, the AlexNet model 
continues to exhibit good performance in specific tasks.

2.2  Detection methods

The CNN-based detection method of nucleated cells in bone 
marrow aspirate images usually consists of two tasks, i.e., 
localization and classification. Traditional detection meth-
ods usually take part of the image as a candidate region by 
using different sizes of sliding windows, and then extract 
the visual features related to the candidate region and 
identify the objects by classifiers. Ren et al. [27] proposed 
Faster R-CNN and introduced a Region Proposal Network 
(RPN) that shared full-image convolutional features with 
the detection network, thus enabling nearly cost-free region 
proposals. Liu et al. [28] introduced a method named SSD to 
detect objects in images using a single deep neural network. 
Redmon et al. [29] described a new approach that detected 
objects extremely fast, in which object detection was treated 
as a regression problem to spatially separate bounding boxes 
and associated class probabilities. However, this method has 
weak generalization capability and large positioning errors 
on small groups that are close to each other. Upon this, a 
series of improved models have been proposed [30, 31]. 
Bochkovskiy et al. [32] reported a model that combines 
many cell features, shortened the information path between 
the bottom and top features, and made full use of feature 
fusion to obtain more semantic information.

3  Methods

An overview of CDC-NET is illustrated in Fig.  3. To 
improve the interpretability, CDC-Net is designed as a cas-
cade model, which consists of the cell detection network 

Fig. 3  An overview of the 
CDC-NET. The CD-NET aims 
to locate and recognize the 
nucleated cells in bone marrow 
aspirate images, while the CC-
NET is designed to confirm the 
types of the detected ambiguous 
cells. ⊕ denotes the combina-
tion of the evaluated units

•Statistics(type and quantity)

•Diagnosis

CD-NET

CC-NET
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(CD-NET) and the cell confirmation network (CC-NET). 
The cell detection network is realized by a pre-trained detec-
tion model. The cell confirmation network is designed to 
realize an assessment and voting mechanism, in which mul-
tiple trained classifiers serve as the pathologists to score the 
cells and to vote for the cell types. Reference information for 
pathological analysis and diagnosis is generated in the form 
of text and images.

3.1  Cell detection network

The common detection model consists of three parts, i.e., 
the backbone pre-trained on the ImageNet, the head used 
to predict classes bounding boxes of objects, and the neck 
lying between the backbone and the head. The CD-NET is 
designed on the base of YOlO and there are some improve-
ments. First, we analyzed the distribution of the size of boxes 
containing various intact cells, and designed anchors accord-
ing to it. The nine anchor box sizes generated by clustering 
are (47, 36), (54, 49), (56, 62), (64, 56), (71, 64), (79, 79), 
(85, 60), (100, 87), (119, 100). Moreover, for the purpose of 
trying its best to detect all nucleated cells in the bone mar-
row aspirate images, the CD-NET pays more attention to 
the localization task rather than classification. Because the 
cytoplasmic boundary of the nucleated cells is often unclear, 
we incorporate the uIoU-based evaluation metrics [33] into 
the detection model. United Intersection over Union (uIoU) 
keeps the main properties of IoU [34], and it is defined to 
correct the ambiguous labels (caused by the unclear cyto-
plasmic boundary) by keeping the predicted bounding boxes 
containing relationships in the positive sample as much as 
possible.

3.2  Cell confirmation network

The CC-NET is designed to confirm the types of nucleated 
cells, as all the pathologists will do. Since the pathologi-
cal data with high-quality manual annotation is expensive 

and limited, it is difficult to train an accurate classification 
model. The ensemble learning method is employed to design 
the CC-NET, which dynamically fuses multiple classifiers, 
to reduce the variance and the bias to improve the accu-
racy of prediction. The architecture of CC-NET is shown 
in Fig. 4.

Multiple evaluation units are treated as pathologists or 
technicians to simulate the clinical diagnosis process. More 
specifically, the original training set is divided for cross-val-
idation, and each classifier is trained and assessed on differ-
ent training schemes. After the trained evaluation units pass 
the examination (human examination and metric assessing), 
the weight of each evaluation unit is measured according 
to the examination results to form a complete assessment 
network. The design principles are as follows:

• Each classifier has independent decision-making ability. 
The training set is selected from the original dataset but 
with replacement, and there are differences among the 
training sets.

• Each evaluation unit approximates the optimal global 
solution. Different classifiers are obtained by using dif-
ferent objective functions and different optimization 
methods.

• The weights of the evaluation units are calculated dynam-
ically. The weight of each evaluation unit is adjusted 
automatically during the training process until the opti-
mal weight is achieved.

3.2.1  Assessing mechanism

In the CC-NET, we design an assessment mechanism for 
individual classifiers to assess the weakly supervised clas-
sifiers to obtain a more comprehensive model by integrating 
the mature classifiers. In order to facilitate the downstream 
tasks, the classifier is trained on the dataset with 8 types of 
cells. When training each classifier, the training sets are ran-
domly sampled to reduce the relationship among the training 

Fig. 4  The architecture of CC-
Net. Multiple trained classifiers 
are employed to confirm the 
types of the detected cells. ⊕ 
denotes the combination of the 
evaluated units score
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Box with cell
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sets as much as possible. Two crucial aspects of CC-NET 
are shown as follows.

Training the classifier For the training data set 
Dtrain = {(x1, y1), (x2, y2),⋯ , (xm, ym)},xi is an image with 
a single cell, and yi is the corresponding category of the 
cell image xi . For each classifier, we randomly selected 
90% samples from Dtrain as the training set and the 
remaining 10% samples as the validation set. The trained 
classifier is put into the classifier set DC = {c1, c2,⋯ , ck}.
Reliability calculation RL is the reliability, which is used 
to evaluate the dynamic performance of the trained clas-
sifier. The test set is Dtest = {(x1, y1), (x2, y2),⋯ , (xn, yn)} 
and it does not overlap with the Dtrain . For the trained 
classifier cj ∈ Dc , the Precision and Recall are calculated 
and the Precision-Recall curve [35] is plotted. The reli-
ability of the predicted sample RLj is calculated according 
to the Precision Recall Curve. The classifier that fails to 
pass the assessment is deleted from the classifier set DC . 
The specific calculation formula is as

where ri  is  the Recall  value of point i  and 
i ∈ {0, 0.1, 0.2,⋯ , 0.9, 1} , j ∈ {0, 1, 2,⋯ , k} , Psmooth is the 
lower area of the Precision-Recall curve between 0 and 1.

3.2.2  Voting mechanism

A weighted voting mechanism based on a deep neural net-
work is employed to improve the accuracy and diversity of 
the model, which takes advantage of multiple evaluation 
units. Different from the previous multi-classifier methods, 
the weight of each classifier in CC-NET is computed dynam-
ically. The initial weights of the classifiers are obtained by 
the experience values. The calculation formula of voting 
prediction is defined as

where H(x) is the final score of the single cell image x , hi(x) 
is the predicted score of the i-th evaluation unit for the single 
cell image x , �i is the weight of the evaluation unit hi and 
each weight satisfies the relation

We keep updating the model parameters along the opposite 
direction of the first derivative of the loss function Loss(�) 
until Loss(�) reaches the minimum point, where parameter 

(1)RLj =
1

11
×

11
∑

i
∫

1

0

psmooth(ri)dri,

(2)H(x) =

N
∑

i=1

�ihi(x),

(3)
∑N

i=1
�i=1.

� ∈ R . By this method, the model converges quickly. The loss 
function is defined as

where m is the number of samples. When we set the updat-
ing step size to � , the weight updating function formula is 
defined as

The pseudo-code of weight calculation in the voting mecha-
nism is shown in Algorithm 1.

3.3  Evaluation metrics

In clinical application, the task of the proposed aided analy-
sis and diagnostic model is to identify and count all types of 
nucleated cells in the bone marrow aspirate images and cal-
culate the percentage of blasts quantitatively. To better evalu-
ate the model from the perspective of clinical application, we 
introduce several more realistic evaluation indexes.

3.3.1  Evaluation metrics of CD‑NET

Missed Rate (MR) is used to measure the performance of CD-
NET. The MR is defined as:

where TPB is the True Positive and is defined as the number 
of the detected cells among the labeled cells. FNB is the 
False Negative and is defined as the number of cells not 
detected by the cell detector among the labeled cells.

3.3.2  Evaluation metrics of CC‑NET

Since there are cells with ambiguous types, pathologists will 
need to achieve consensus on the type of cell by voting. We 
simulate this process by the CC-NET to confirm the type of the 
detected cells. Precision and Recall are used as the measure-
ments of the performance of the CC-NET, which are defined 
respectively by

and

(4)Loss(�) =
1

2m

m
∑

i=1

(

H
�
(xi) − yi

)2
,

(5)�j = �j − � ×
1

m

m
∑

i=1

(

H
�
(xi) − yi

)

× xij,

(6)MR=1 −
TPB

TPB + FNB

,

(7)Recall=
TPC

TPC + FNC

,

(8)Precision=
TPC

TPC + FPC

,
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where TPC is the True Positive and is defined as the num-
ber of blast cells being correctly classified. FPC is the False 
Positive and is defined as the number of cells that are mis-
classified as blast cells. FNC is the False Negative and is 
defined as the number of blasts that are misclassified.

F1-Measure ( F1 ) is introduced to comprehensively repre-
sent Precision and Recall, which is defined as

(9)F1=
2 × precision × Recall

precision+Recall
.

4  Experiment

4.1  The experimental dataset

Some image examples from the dataset are shown in Fig. 5.
In order to facilitate the research of automated diag-

nosis of hematological disorders, we have constructed a 
high-quality Bone Marrow Aspirate Smear Image Data-
set (BMASID), which contains 230 bone marrow aspirate 
images, all with corresponding images manually labeled by 

Algorithm 1  Multi-classifier 
voting mechanism

)c()b()a(

Blast               Erythriod Monocytes      Plasma         Myelocyte      Neutrophils       Bands      Lymphocytes

Fig. 5  Examples from the clinical micro-image dataset. The nucle-
ated cells in the bone marrow aspirate images are classified to 8 types 
according to the aided analysis and diagnosis tasks. a, b and c show 

the samples of images full of the dense cells and adherent cells, along 
with garbage and necrotic cells. b shows a sample of poorly stained 
image
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hematopathologists [33]. All images were microscopically 
imaged using Olympus-DP21, UPLanFLN-40X/0.75∞/0.17/
FN26.5 equipment. The exposure time is 0.05 ms, the object 
distance is 17 mm, the focal length is 35 mm, and the resolu-
tion is 1200*1600 pixels. There are unavoidable problems 
in the bone marrow aspirate images, i.e., cell damage and 
uneven staining. Therefore, it is very difficult to accurately 
identify all kinds of bone marrow nucleated cells. In each 
bone marrow smear image, we labeled as many as possible 
of the eight types of nucleated cells (Fig. 5) that are used for 
the diagnosis of hematological malignancies (blasts, eryth-
roid cells, monocytes, plasma cells, myelocytes, neutrophils, 
lymphocytes, and bands) according to the standard and expe-
riences of pathologists.

• We increased the difficulty of the training dataset in 
terms of staining differences and image complexity. The 
number of images in the training set also increased from 
230 to 270.

• We increased the difficulty of the test set. Images in the 
test set have different staining qualities and are taken with 
different equipment. There are also a variety of noise, 
overlapping cells, adherent cells, cells with blurred bor-
ders, garbage cells, and cells with ambiguous types in 
the images. The garbage cells, such as damaged cells, red 
blood cells, dead cells, etc., were not evaluated or labeled 
(see Fig. 5).

4.2  Experimental results

4.2.1  Experiments and performance of CD‑NET

We conducted experiments on the extended BMASID to 
demonstrate the effectiveness of the proposed approach. To 
train the CD-NET, the batch size was set to 8 and the initial 
learning rate was 1e-4. The weight obtained on the training 
set by 1000 iterations was used as the pre-training model 
to initiate the model, and the model was fine-tuned by set-
ting the maximum number of iterations to 800. We used the 
validation set to evaluate the performance of each network. 
Since the Missed Rate is essential for the effectiveness of 
the statistical results, we compared the CD-NET with three 
previously reported popular detection methods (i.e., Faster 
RCNN, SSD, YOLOV4). They are trained on the same data-
set. The Missed Rate is shown in Fig. 6.

In particular, we employed uIoU and IoU as the meas-
urement index in the methods respectively. The results in 
Fig. 6 show that our approach (CDN + uIoU) achieves more 
satisfactory results in Missed Rate when compared with the 
previously reported detection methods. The methods with 
uIoU are more stable than those with IoU. With the increase 
of the threshold value, the advantage of uIoU became more 

obvious. As can be seen, it keeps the ideal results when the 
threshold value of uIoU is less than 0.6.

4.2.2  Experiments and performance of CC‑NET

We designed the CC-NET with better scalability and 
update capability. Evaluation units of the CC-NET can be 
dynamically improved and adjusted with the requirements. 
This paper trained and evaluated the classic classifiers, i.e. 
AlexNet [19], ResNet-50 [20], and Inception V3 [23], to 
find suitable components for bone marrow cell type evalua-
tion networks. In the experiments, AlexNet, ResNet-50, and 
Inception V3 were used as the baseline of each evaluation 
unit of the CC-NET, respectively. The batch size was set to 
16 and the initial learning rate was 1e-3 for each evaluation 
unit. The evaluation unit was fine-tuned by setting the maxi-
mum number of iterations to 800. The weight of the voting 
mechanism was the best weight selected from 10 K training 
with a step size of 5e-5. We conducted ten times of tests and 
used average precision, recall, and F1 to report the perfor-
mance of the evaluation units. Notably, the main purpose of 
this experiment is to compare the performances of different 
combinations of evaluation units, instead of improving the 
classification performance by specifying feature selection. 
Because this paper takes the assisted diagnosis of AML as 
a case, the eported metrics are only related to blast cells. 
The performance of the cell evaluation network is shown 
in Table 1.

As shown in Table 1, the classifier with the Inception V3 
as the baseline achieves the best Recall and F1, i.e., Recall 
is 87.734% and the F1 is 86.935%, when compared with the 
other two classifiers. The Recall is the essential measure-
ment index in this experiment because we focus more on 
the maximal number of correctly recognized cells, which is 

Fig. 6  The comparison of the Missed Rates of the cell detection 
methods. The threshold of the IoU and uIoU is set to 0.4 to 0.7
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proven to minimize the possibility of AML misdiagnosis. 
When fusing two classifiers (i.e., ResNet-50 + Inception V3), 
the Recall and F1 are 91.162% and 90.137%, respectively. 
The Recall and F1 are improved obviously.

4.2.3  Experiments and performance of CDC‑NET

To further verify the effectiveness of each evaluation unit, 
we fused the ResNet-50 and Inception V3 to form CC-NET-
I, and fused Inception V3, AlexNet, and ResNet-50 to form 
CC-NET-II. CC-NET-I and CC-NET-II were cascaded with 
Faster RCNN, YOLOV4, and CD-NET respectively. The 
results of ten times tests are shown in Table 2.

From Table  2, we can see that the precision value 
obtained by YOLOV4 with CC-NET-I is 93.515% and the 
Recall value is 69.192%. YOLOV4 has demonstrated notice-
able improvements in the accuracy of object localization 
and classification compared to its previous versions. How-
ever, YOLOV4 has limitations when it comes to detecting 
densely packed small objects. This is due to the utilization 
of low-resolution feature maps in the object detection pro-
cess of YOLOV4, which may result in missed detections or 
false positives for particularly small and densely populated 

targets. The Recall and F1 are improved when we employ 
CD-NET. When we cascade CD-NET and CC-NET-II, the 
comprehensive performance is further improved, i.e., Recall 
is 78.535%, Precision is 91.74% and the F1 is 84.625%. It 
indicates that the model performs well while considering 
both recall and precision, which is of great significance 
for imbalanced datasets or tasks that require attention to 
both precision and recall. When cascading with CD-NET, 
the recall of the CC-NET-I (i.e., the recall of the fusion of 
ResNet-50 and Inception V3) is reduced by 0.252%, which 
is caused by the cell detecting error (i.e., the detecting error 
caused by some missed cells). According to the requirements 
of nucleated cell detection in bone marrow aspirate images, 
CC-NET needs to improve the Precision with a high Recall. 
Therefore, CC-NET is the result of the fusion of three evalu-
ation units, i.e., AlexNet, ResNet-50, and Inception V3.

Due to the fact that the Precision-Recall curve focuses 
more on TP and can effectively evaluate the classifiers 
trained on imbalanced data, we plotted the Precision-
Recall curves to compare the models in Table 2 with better 
performance, as shown in Fig. 7. The AUC of the model 
(YOLOV4 with CC-NET-II) is about 0.9084, while the AUC 
of the model (CD-NET with CC-NET-II) is about 0.9281.

Table 1  The performance 
comparison of different fusions 
of evaluation units

Different fusions of evaluation units Recall (%) Precision (%) F1(%)

AlexNet [19] Inception 
V3 [23]

ResNet-50 [20]

√ 74.747 ± 0.28 88.889 ± 0.21 81.207 ± 0.25
√ 87.374 ± 0.44 86.500 ± 0.32 86.935 ± 0.38

√ 83.333 ± 0.39 89.918 ± 0.28 86.500 ± 0.34
√ √ 87.626 ± 0.37 87.406 ± 0.31 87.516 ± 0.34
√ √ 83.838 ± 0.41 91.209 ± 0.42 87.368 ± 0.42

√ √ 91.162 ± 0.50 89.136 ± 0.53 90.137 ± 0.52
√ √ √ 88.889 ± 0.48 90.488 ± 0.51 89.681 ± 0.49

Table 2  The performance 
comparison of different 
fusions of evaluation units 
when cascading with different 
detection methods

CC-NET-I is the fusion of ResNet-50 and Inception V3. CC-NET- II is the fusion of AlexNet, Inception 
V3 and ResNet-50. No-CC-NET means there is no evaluation network

Method Different combinations of evaluation 
units

Recall (%) Precision (%) F1 (%)

NO-CC-NET CC-NET-I CC-NET-II

Faster RCNN √ 51.768 ± 0.28 81.673 ± 0.31 63.370 ± 0.30
√ 53.283 ± 0.36 87.190 ± 0.34 66.144 ± 0.38

√ 52.020 ± 0.32 89.177 ± 0.31 65.709 ± 0.34
YOLOv4 √ 70.960 ± 0.43 89.206 ± 0.42 79.044 ± 0.43

√ 69.192 ± 0.38 93.515 ± 0.36 79.535 ± 0.38
√ 69.949 ± 0.40 92.333 ± 0.39 79.597 ± 0.40

CD-NET √ 77.020 ± 0.31 87.896 ± 0.26 82.099 ± 0.29
√ 76.768 ± 0.39 91.291 ± 0.29 83.402 ± 0.35

√ 78.535 ± 0.42 91.740 ± 0.31 84.625 ± 0.38
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4.2.4  Experimental results in the aided diagnosis of AML

To demonstrate the effectiveness of CC-NET in clinical 
applications, we extracted clinical data during different 
periods. Clinical-I is the bone marrow aspirate image data 
from 100 patients during the first period and clinical-II is the 
bone marrow aspirate image data from 50 patients during 
the second period. We verified the CDC-NET on Clinical-I 
and clinical-II, by comparing the diagnostic results of dif-
ferent methods. Confirmed by the pathologist on bone mar-
row aspirate images, Clinical-I consists of 26 patients with 
AML and Clinical-II consists of 13 patients with AML. The 
experimental results are shown in Table 3.

From Table 3, we can see that when employing CC-NET, 
Faster-RCNN, YOLOV4, and CD-NET correctly identified 
all AML patients on the base of the bone marrow aspirate 
images. However, there is an identification error if we just 
use the Faster RCNN or YOLOV4 as the diagnosis model 
because some misclassified nucleated cells result in the error 
of differential counting.

4.2.5  Visualizing the detection results

In order to display and compare the experimental results 
of different models for the same group of bone marrow 
aspirate images, boxes in different colors were used to label 

the correctly detected nucleated cells, the missed nucleated 
cells, the misclassified nucleated cells, and the additionally 
detected nucleated cells. The experimental results are shown 
in Fig. 8.

Incorrectly located or missed cells are boxed in orange 
and the correctly located but misclassified cells are boxed 
in red. As can be seen, CD-NET achieves more than 90% 
locating effectiveness. The missed rate is lower than that of 
YOLOV4, as can be easily seen in the areas with dense cells. 
When employing CC-NET, some misclassified nucleated 
cells have been corrected, and the accuracy of cell identifi-
cation is improved. In addition, it is interesting to notice that 
CDC-NET can identify the nucleated cells that the patholo-
gists overlooked but are meaningful for the diagnosis (see 
the cells boxed in blue in Fig. 8).

5  Discussion

To promote the development of deep learning-based aux-
iliary diagnosis methods for AML, we proposed a model 
named CDC-NET. Since an effective deep learning model 
significantly depends on large and high-quality annotated 
datasets and constructing a high-quality standard dataset 
of medical images is not easy, it is difficult to improve the 
performance of the auxiliary diagnosis model on a limited 
dataset. The proposed CD-NET aims to train a cell detection 
model with a low missed rate. As seen from Fig. 6, CD-NET 
achieves more satisfactory performance than previously 
reported detection methods in terms of missed rate. Com-
pared with the IoU measure index, uIoU seems to be more 
effective in our task in areas full of cells with ambiguous 
boundaries in bone marrow aspirate images. We proposed 
CC-NET to produce a strong supervision model. It fuses 
multiple evaluation units. Table 1 shows the effectiveness 
of CC-NET. When cascading with CD-NET, the Recall of 
CDC-NET is higher than that of CD-NET (see Table 3.). 
The experiments on 50 clinical data (bone marrow aspirate 
images from 50 patients) demonstrate that our approach 
achieves better performance.

Our previous research introduced a Cell Recognition Net-
work (CRNet) utilizing YOLOV3 and uIoU for cell recogni-
tion. However, when confronted with more complex data, 
specifically with the addition of 40 complex bone marrow 
images to the dataset, the recognition error increased (as 
depicted in CASEII-C in Fig. 8). To address this challenge, 
we propose a voting strategy-based method to mitigate rec-
ognition errors, building upon the CRNet research (as illus-
trated in CASEII-D in Fig. 8). This approach aligns with the 
pathologists' methodology in the pathological diagnosis of 
Acute Myeloid Leukemia (AML), as it assists in identifying 
problematic types of nucleated cells.

Fig. 7  The Precision-Recall curves of the models in Table 2 with bet-
ter performance

Table 3  Comparison of the diagnostic results. IoU threshold is 0.4

Method Clinical-I(100) / Clinical-II(50)

Faster-RCNN YOLOV4 CD-NET Manual film-
reading

Non-CC-NET 25/13 25/12 26/13 26/13
CC-NET 26/13 26/13 26/13
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Correctly detected                      Missed                          Misclassified                       Addi�onal detected nucleated cells

(b)

(c)

(d)

Case I

Fig. 8  Comparison of the methods. (a) the detection results by YOLOV4, (b) the detection results by YOLOV4 + CC-NET. (c) the detection 
results by CD-NET. (d) the detection results by CDC-NET
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    Case II

Fig. 8  (continued)
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In bone marrow aspirate images, there are inherent chal-
lenges such as uneven staining, cell damage, overlapping 
or adherent cells, cells with unclear borders, and cells with 
ambiguous types. These factors contribute to the difficulty in 
accurately identifying various types of bone marrow nucle-
ated cells. To facilitate the expandability of the model, this 
approach incorporates an average voting mechanism and 
focuses on experiments using widely used classifiers like 
AlexNet, ResNet-50, and Inception V3. However, it is 
crucial to conduct additional experiments in the future to 
explore further possibilities. Furthermore, to enhance the 
accuracy of digital auxiliary diagnosis, it is necessary to 
improve the quality of staining. This improvement in stain-
ing quality would contribute to more precise results in the 
digital diagnostic process.

In the future, our research will extend to studying the 
auxiliary diagnosis of other types of blood diseases, such 
as myelodysplastic syndromes (MDS) and acute lympho-
blastic leukemia (ALL). This expansion will enable us to 
explore the potential application of our method in diagnos-
ing a wider range of blood disorders.

6  Conclusion

This paper provides an analytical model based on the deep 
learning method for the auxiliary diagnosis of AML. We 
focus on crucial technology i.e., nucleated cell detection and 
cell differential counting. Different from the existing meth-
ods, we design a cell detection network (CD-NET) and an 
ensemble learning-based confirmation network (CC-NET) 
to improve the accuracy of the detection and classification 
of nucleated cells in the bone marrow aspirate images. In 
particular, CC-NET fuses multiple classifiers with independ-
ent decision-making capability and is trained dynamically, 
which aims to improve robustness and scalability. Experi-
ments were conducted on a clinic dataset, which consists of 
230 bone marrow aspirate images. When we took uIoU as 
the metrics, the cell detection network (CD-Net) reduced 
the missing rate of cells significantly. When we cascaded 
the CC-NET with CD-Net, the diagnosis accuracy on the 
bone marrow aspirate images was notably improved. Experi-
mental results demonstrated that our approach outperforms 
other deep learning methods and achieved 91.74% precision, 
which demonstrates that our approach has the potential to be 
an important component of the auxiliary diagnosis system 
for AML.
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