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Abstract
Deep convolutional neural network (DCNN) models have been widely used to diagnose skin lesions, and some of them have 
achieved diagnostic results comparable to or even better than dermatologists. Most publicly available skin lesion datasets 
used to train DCNN were dermoscopic images. Expensive dermoscopic equipment is rarely available in rural clinics or 
small hospitals in remote areas. Therefore, it is of great significance to rely on clinical images for computer-aided diagnosis 
of skin lesions. This paper proposes an improved dual-branch fusion network called CR-Conformer. It integrates a DCNN 
branch that can effectively extract local features and a Transformer branch that can extract global features to capture more 
valuable features in clinical skin lesion images. In addition, we improved the DCNN branch to extract enhanced features in 
four directions through the convolutional rotation operation, further improving the classification performance of clinical skin 
lesion images. To verify the effectiveness of our proposed method, we conducted comprehensive tests on a private dataset 
named XJUSL, which contains ten types of clinical skin lesions. The test results indicate that our proposed method reduced 
the number of parameters by 11.17 M and improved the accuracy of clinical skin lesion image classification by 1.08%. It 
has the potential to realize automatic diagnosis of skin lesions in mobile devices.
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1  Introduction

Skin cancer is one of the most common cancers in the world, 
among which melanoma has a very high fatality rate and 
poses a massive threat to people’s life. Its incidence has 
been increasing in recent years [1]. Typically, dermatologists 
rely on their own vision of a patient’s dermoscopic image 
or clinical skin biopsy to diagnose skin cancer. Dermoscopy 
imaging requires related equipment, and clinical skin biopsy 

requires patients to visit the corresponding dermatologist [2]. 
However, in some rural clinics or small hospitals in remote 
areas, due to a lack of expensive dermoscopic equipment and 
enough dermatologists, patients in the area cannot diagnose 
skin cancer in time, resulting in increased morbidity and mor-
tality from melanoma [3]. Computer-aided diagnosis (CAD) 
technology based on machine learning and deep learning is 
a breakthrough in cancer detection [4]. Despite the lack of 
dermoscopic equipment and dermatologists in rural commu-
nities, the application of CAD to clinical skin lesion image 
classification enables local patients to self-detect the category 
of skin lesions and reduce the increased risk of death due to 
early undetected melanoma [5].

Early CAD techniques for dermoscopic image classifi-
cation often relied on extracting hand-crafted features fed 
into traditional classifiers [6, 7]. In recent years, automatic 
skin cancer classification performance has been significantly 
improved using end-to-end training of deep convolutional 
neural networks (DCNN) [8–12]. Most of the existing 
DCNN-based methods use transfer learning methods [13]. 
For example, Kawahara et al. proposed a DCNN architec-
ture using a pre-training model for skin lesion classification 
[14]. Esteva A et al. adopted the transfer learning method to 
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fine-tune the network model based on Inception V3 and then 
trained the network model end-to-end to classify three skin 
lesions [11]. They only simply transfer DCNN models such 
as Deep Convolutional Network (VGGNet) [15] and Resid-
ual Network (ResNet) [16] to the task of skin lesion classifi-
cation and has plenty of room for performance improvement.

In the ISIC skin lesions analysis challenge, the self-
attention mechanism has been widely used in DCNN. Hu 
et al. [17] focused on channel relationships and proposed a 
new channel attention unit, called the squeeze and excita-
tion module, which can accurately calibrate feature channels. 
Following this idea, Gessert et al. [8] exploited patch-based 
attention to aggregate contextual information. In contrast 
to most studies using channel attention, some studies use 
spatial attention to explore stochastic spatial dependencies. 
Zhang et al. proposed a spatial attention-based network, 
called Attention Residual Learning Convolutional Neural 
Network, for skin lesion classification [18]. Zenghui et al. 
proposed a dual-attention-based network for skin lesion clas-
sification with auxiliary learning [19], which utilized chan-
nel and spatial attention to improving network performance, 
combined with an auxiliary learning module to further focus 
on local features in skin lesions.

However, previous studies only used dermoscopic images 
to classify skin lesions. In rural clinics or small hospitals 
located in remote areas, dermoscopy equipment is often 
not available, making it important to consider computer-
aided diagnosis of skin diseases using clinical images of 
lesions. To leverage the information contained in clinical 
images, most research has focused on the multi-modal 
domain. Yap et al. [20] utilized the ResNet-50 architecture to 
extract representations from both clinical and dermoscopic 
images, combining them with metadata representations for 
final classification. Kawahara et al. [21] attempted differ-
ent combinations of clinical, dermoscopic, and metadata 
modalities using the Inception-V3 to find optimal perfor-
mance. Bi et al. [22] proposed a hyper-connected convolu-
tional neural network that connected representations from 
clinical and dermoscopic modalities for classification. Ge 
et al. [23] proposed a three-branch CNN architecture that 
extracted representations from clinical images, dermoscopic 
images, and their combination. Wang et al. [24] introduced 
an adversarial multi-modal fusion approach with attention 
mechanism (AMFAM), considering both the relevant and 
complementary information between clinical and dermo-
scopic modalities. Such multi-modal research requires the 
collection of more patient information, while clinical images 
of lesions can be easily obtained using digital cameras or 
smartphones.

In addition, Transformer was used early to solve prob-
lems in the natural language processing field. Recently, 
ViT was proposed to handle Transformer-based image 
recognition tasks [25]. It splits the image into several 

non-overlapping patches, then utilizes Transformer to cal-
culate the global information between each token and adds 
an additional token for image recognition tasks. In addi-
tion, there are some variants of Transformer. For example, 
Swin Transformer uses shifted windows to compute local 
self-attention [26]. PVT combines a feature pyramid net-
work with Transformer to capture features from multiple 
stages [27]. It has great potential as an alternative to the 
DCNN and has been validated by pre-training with a larger 
dataset with more than 12 million images [25, 26]. How-
ever, even without human annotation, the number of avail-
able skin lesion images is very limited in the skin lesion 
classification tasks. So sufficient skin lesion images can-
not be collected to pre-train a robust initial model for skin 
lesion classification. Therefore, despite the great success of 
Transformer in general image classification, applying them 
to skin lesion classification still faces enormous difficulties.

In summary, both CNN and Transformer have certain 
limitations in terms of their global and local feature extrac-
tion capabilities. As a result, researchers have attempted to 
overcome these limitations in medical image analysis tasks. 
For instance, Yue et al. [28] improved segmentation per-
formance in polyp segmentation tasks by integrating cross-
level contextual information and utilizing edge information. 
To enable CNN to capture more comprehensive contextual 
features, they further proposed the Context Extraction Mod-
ule (CEM) to retain local information and compress global 
information [29]. In the optic disc and optic cup segmenta-
tion task for glaucoma detection, Lei et al. [30] combined 
low-level and high-level features from edge prediction maps 
to capture similar morphological boundary information 
between the optic disc and optic cup. In skin lesion clas-
sification tasks, Wang et al. [31] introduced a global lesion 
localization module based on Class Activation Mapping 
(CAM) to guide CNN in learning consistent intra-class fea-
tures and distinguishing inter-class features. Nakai et al. [32] 
proposed an enhanced deep bottleneck transformer model 
that can integrate any CNN model to enhance local interac-
tions, achieving superior performance on two skin lesion 
datasets. Inspired by the aforementioned works, we aim to 
combine CNN and Transformer and improve the network 
specifically for clinical skin lesion classification tasks.

In this study, we propose a dual-branch network struc-
ture called CR-Conformer as a new method for clinical skin 
lesion image classification, which can combine the advan-
tages of Transformer and DCNN to improve the classifica-
tion accuracy of clinical skin lesion images. In CR-Con-
former, the DCNN branch follows the design of ResNet [16]. 
It introduces convolutional rotation to extract diverse clinical 
skin lesion image features, and the Transformer branch fol-
lows the design of ViT [25]. These two branches can extract 
multi-scale local features in different directions and global 
representations and then fuse the extracted information with 
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each other, further increasing the semantic information of 
skin lesion features obtained by each branch. Extensive 
experiments on two benchmark skin lesion datasets dem-
onstrate that our proposed model can perform better than 
the baseline and advanced models in clinical skin lesion 
classification.

Overall, our main contributions are threefold:

1. Combining the advantages of DCNN and Transformer, 
a CR-Conformer dual-branch network model is proposed 
for clinical skin lesion image classification, which can 
capture local features and global representations of dif-
ferent scale features, respectively.
2. To improve the quality of the DCNN branch extracting 
clinical skin lesion image features, the convolutional rota-
tion strategy is used to improve the branch to mine more 
semantic information.
3. Compared with the ISIC2018, a dermoscopic skin 
lesion image dataset, our proposed CR-Conformer model 
achieves better classification results on the XJUSL, a clin-
ical skin lesion image dataset.

2 � Materials and methods

We propose CR-Conformer, a network model for clinical 
skin lesion classification. In the skin lesion classification 
task, CR-Conformer has a parallel dual-branch network 
structure similar to Conformer. Therefore, CR-Conformer 
shown in Fig. 1 includes (1) a DCNN branch that introduces 
convolutional rotation to extract finer local features, (2) a 
Transformer branch that leverages the fused local features 
to extract global features, and (3) a CR-FCU fusion mod-
ule. These components are described in the various sections 
below. Notably, in the final stage, all features in the DCNN 

branch are pooled and fed into a classifier. The class token in 
the Transformer branch is extracted and provided to another 
classifier. In the training process, we use two cross-entropy 
losses with the same importance to supervise the two clas-
sifiers, respectively, and the calculation process of the loss 
function for predicting N samples containing K categories 
is shown in Eq. (1) and Eq. (2).

Where y(i, k) is the true label and p(i, k) is the probability 
that the i-th sample is predicted to be the k-th label. During 
inference, the prediction result is the sum of the outputs of 
the two classifiers.

2.1 � DCNN branch

As shown in Fig. 1, the DCNN branch adopts a feature pyra-
mid structure, similar to the Conformer, which contains 12 
convolution blocks, and each convolution block contains 
several bottlenecks. Following the definition in ResNet, 
bottlenecks consist of 1 × 1 convolution (reduce the number 
of channels), 3 × 3 spatial convolution, 1 × 1 convolution 
(restore the number of channels), and a residual connec-
tion between the input and output. As shown in Fig. 2, we 
perform a convolutional rotation operation on the 1 × 1 con-
volution. The input feature map is divided into four parts 
on average according to the number of channels, which are 
rotated at 0°, 90°, 180°and 270°, respectively, and then fused 
as the input of the next convolution through a concatenation 

(1)LossDCNN = −
1

N

N
∑

i=1

K
∑

k=1

y(i, k)log pDCNN(i, k)

(2)LossTransformer = −
1

N

N
∑

i=1

K
∑

k=1

y(i, k)log pTransformer(i, k)

Fig. 1   CR-Conformer network structure. The upper part is the Transformer branch, and the lower part is the DCNN branch
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operation. The enhanced features of clinical skin lesion 
images extracted by the convolutional rotation are more 
diverse. The calculation process of the feature map Fi of the 
i-th layer is shown in Eq. (3).

Where Conv1 represents the convolution operation with the 
convolution kernel size of 1×1, and F90◦

i−1
 represents the rota-

tion angle of the feature map of the i-1th layer is 90°. In 
this way, we utilize the DCNN branch for retaining the finer 
local features in the skin lesion images and continuously 
feed them to the Transformer branch.

2.2 � Transformer branch

Similar to ViT, this branch contains 12 repeated Trans-
former blocks. As shown in Fig. 1, each Transformer block 
consists of a multi-head self-attention module and an MLP 
block. LayerNorm is applied before each layer, and resid-
ual connections exist in both the self-attention layer and 
the MLP block. First, the input image is converted to the 
image block sequence Z0. The calculation process is shown 
in Eq. (4).

Where � ∈ R(P
2
⋅C)×D,�pos ∈ R(M+1)×D , xp is the image block 

sequence after the image x is expanded. There are M image 

(3)

Fi = BN

(

Conv1
F0◦

i−1

4
+ Conv1

F90◦

i−1

4
+ Conv1

F180◦

i−1

4
+ Conv1

F270◦

i−1

4

)

(4)�0 =

[

�class;�
1
p
�;�2

p
�;⋯ ;�M

p
�

]

+ �pos

blocks in the sequence, P is the size of the image block, and 
C is the number of channels. Then it is embedded into the 
matrix E, performs a linear transformation on the flattened 
image block, and converts it into a D-dimension vector. The 
encoder uses the learnable vector xclass to explicitly predict 
the class, and the position encoding vector Epos is used to 
specify the spatial position information of the image block 
sequence. The total image block sequence Z0 is input into 
the encoder, and the forward calculation process is defined 
as Eq. (5) and Eq. (6).

Multi-head self-attention and LayerNorm iterate L times 
to get Z'l, MLP and LayerNorm iterate L times to get Zl. 
The fine local features provided by the DCNN branch are 
fused before the first LayerNorm, and the global features 
extracted after passing through the MLP block are provided 
to the DCNN branch.

2.3 � CR‑FCU fusion module

Since feature maps are used in the DCNN branch, and patch 
embeddings are used in the Transformer branch, eliminating 
the misalignment between them is an important issue. To 
address this issue, we propose CR-FCU that continuously 
integrates local features and global representations in an 
interactive manner.

(5)�
�
l
= MSA

(

LN
(

�
l−1

))

+ �
l−1(l = 1…L)

(6)�
l
= MLP

(

LN
(

�
�
l

))

+ �
�
l(l = 1…L)

Fig. 2   The convolutional rota-
tion operation. C is the number 
of channels in the feature map, 
H is the height of the feature 
map, and W is the width of the 
feature map
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As shown in Fig. 1, when a 64-channel feature map is fed 
to the Transformer branch, it first needs to align the patch 
embedding channel 384 through a 1 × 1 convolution. Then, a 
down-sampling module (as shown in Fig. 3) is used to com-
plete the spatial dimension alignment. The down-sampling 
module uses the Average Pool method with a convolution 
kernel size of 4 and a stride of 4 to down-sample the feature 
map and then uses a reshaping operation to align spatial 
scale. Finally, the feature map is regularized by LayerNorm 
and is added to the patch embedding, as shown in Fig. 1. It 
is worth noting that the convolutional rotation operation has 
enhanced the feature map. When the patch embedding is 
fed back to the DCNN branch from the Transformer branch, 
it needs to be up-sampled (as shown in Fig. 3), which is 
similar to the down-sampling module, except that the up-
sampling uses a linear interpolation method to align the 
spatial dimensions. Then, the channel dimension is aligned 
with the feature map enhanced by the convolutional rotation 
operation in the DCNN branch through 1 × 1 convolution. 
The BatchNorm method is used to regularize the features 
before fusion.

3 � Results

3.1 � Experimental setup

3.1.1 � Datasets

To verify the classification performance of our method on 
dermoscopic and clinical skin lesion images, we use the 
public dermoscopic skin lesions dataset provided by ISIC 
2018 challenge and the private clinical skin lesions dataset 
XJUSL provided by Xinjiang Urumqi People’s Hospital. 
The dataset details are as follows: (1) ISIC2018 contains 
seven types of skin lesions: melanocytic nevus, dermatofi-
broma, melanoma, actinic keratosis, benign keratosis, basal 
cell carcinoma, and vascular lesion. There are a total of 
10,015 dermoscopic skin lesion images and labels, which we 
randomly divided into the training set (8019), validation set 
(497) and test set (1499) according to the ratio of 8:0.5:1.5. 
(2) XJUSL contains ten types of skin lesions: leucoderma 
(LEU), lichen planus (LIC), basal cell carcinoma (BAS), 

melanoma (MEL), solar keratosis (SOL), psoriasis (PSO), 
seborrheic keratosis (SEB), compound nevus (COM), junc-
tional nevus (JUN), and intradermal nevus (INT). In order 
to remove the background noise in the clinical images, we 
crop them and keep only the skin area as the experimental 
dataset, and finally get 3131 clinical skin lesion images and 
their labels. Similarly, we randomly divide it into the train-
ing set (2511), validation set (156) and test set (464) in the 
ratio of 8:0.5:1.5. In all experiments, we resize and crop 
images from all datasets to 224 × 224 as the input to the 
model, and all pixel values in the images are normalized to 
0–1. Since this work focuses on model innovation, to remove 
the confounding effects of data augmentation, we only use a 
simple geometric data augmentation strategy, namely ran-
dom horizontal flipping, with random variables taken from 
uniform distributions.

3.1.2 � Experimental configuration

All experiments are implemented on the mmcvContributors 
[33] framework, and we run all training and testing proce-
dures on an NVIDIA RTX 3090 GPU with 24 GB of video 
memory. In order to make a fair comparison, we unified the 
parameter configuration of each comparison model as follows: 
(1) The AdamW optimizer is used uniformly, the learning rate 
is 0.0001, the weight decay is 0.01, the hyperparameter β1 is 
0.9, and β2 is 0.999. The cosine annealing learning rate strat-
egy is adopted to optimize the neural network. The learning 
rate curve is shown in Fig. 4. (2) Uniformly use the softmax 
function as the output layer and the cross entropy as the loss 
function to calculate the loss value. (3) Set the batch size to 
32, train 100 epochs uniformly, and take the model with the 
highest validation accuracy as the test.

3.1.3 � Evaluation metrics

We choose accuracy, precision, recall, and F1-score, which are 
widely used in image classification, as classification evalua-
tion metrics of the skin lesion images. The definitions of these 
metrics are as follows:

(7)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 3   CR-FCU fusion module. 
Continuously couple local 
features with global representa-
tions in an interactive manner
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where TP, TN, FP and FN are calculated based on the confu-
sion matrix. They are the number of the True Positive (TP), 
True Negative (TN), False Positive (FP) and False Nega-
tive (FN) samples. Therefore, Accuracy is calculated to get 
the percentage of skin lesion samples correctly identified. 
Precision is used to calculate the precision rate, that is, how 
many skin lesion samples predicted to be True are actually 
True, to reflect the precision of the model prediction. Using 
Recall to calculate the recall rate, that is, how many skin 
lesion samples are found that are actually True, to reflect 
the comprehensiveness of the model prediction. F1-score 
takes into account both Precision and Recall to achieve the 
reconciliation of the two. For all these metrics, the larger 
values indicate better performance.

3.2 � Experimental results and analysis

3.2.1 � Ablation experiment

To evaluate the effectiveness of CR-Conformer for clinical 
skin lesion classification, we compare four different settings 
on two skin lesion datasets: (1) Only using ResNet of the 
DCNN branch to classify. (2) Only using ViT of the Trans-
former branch to classify. (3) Conformer that combines two 
branches. (4) CR-Conformer that uses convolutional rotation 
to enhance local features.

The results of the ablation experiments are shown in 
Table 1. It can be seen that the classification performance of 

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)F1 − score =
2TP

2TP + FP + FN

our proposed CR-Conformer in clinical skin lesion images is 
better than that of Conformer, while the classification perfor-
mance of dermoscopic skin lesion images is lower than that of 
Conformer, which shows the importance of using convolutional 
rotation for feature enhancement in the DCNN branch of the 
dual-branch network for clinical skin lesion images. Secondly, 
we can see that in the single-branch network, the classification 
accuracy of DCNN for clinical skin lesion images is 3.45% 
higher than that of Transformer, while the classification accu-
racy of dermoscopic skin lesion images is only 2.33% higher 
than that of Transformer, which indicates that the dermoscopic 
skin lesion images with higher image quality need to pay more 
attention to global features. However, the local features of clini-
cal skin lesion images need more attention because they contain 
multiple lesions and more image noise. It also proves that we 
add convolutional rotation to the DCNN branch to extract finer 
local features, which can achieve better classification results on 
clinical skin lesion images.

To further analyze the effect of CR-Conformer on the 
classification of different types of clinical skin lesion images, 
we plotted the confusion matrix of our method and the base-
line method using the prediction results of the test set, as 
shown in Fig. 5, where the numbers on the diagonal repre-
sent the number of correct predictions. It can be seen that 
compared with the baseline method, our proposed method 
has better predictive performance in the five skin lesion cat-
egories of LIC, MEL, BAS, SOL and PSO, especially the 

Fig. 4   Learning rate curve. 
The cosine annealing strategy 
reduces the learning rate with 
the number of epochs

Table 1   Comparison of different ablation models on two datasets in 
terms of accuracy (%)

Model/dataset ISIC2018 XJUSL

ResNet 80.65 69.18
ViT 78.32 65.73
Conformer 84.99 78.88
CR-Conformer 83.59 79.96
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classification accuracy of melanoma with the least number 
of test cases increased from 16.7% to 50%, which reflects 
that our method is more meaningful for the auxiliary diag-
nosis of melanoma with greater harm. In other categories 
with slightly poorer classification performance, most lesions 
are very similar in appearance to black circles, such as vari-
ous types of nevus, and lesions covering large areas of skin, 
such as leucoderma. It indicates that our convolutional rota-
tion strategy has a poor feature enhancement effect for skin 
lesions with similar shapes and single colors. In contrast, 
it has a more obvious feature enhancement effect for skin 
lesions with more diverse appearance details.

3.2.2 � Visualization

We further use gradient-weighted class activation maps 
(Grad-CAM) [34] to visually demonstrate the feature infor-
mation capture of each clinical skin lesion image by the 
DCNN branch of Conformer and CR-Conformer. The Grad-
CAM, in the form of a thermal map, highlights the impor-
tant regions in an image when used to predict a given class, 
which we designate as the class predicted by the model.

To analyze which clinical skin lesion image classification 
our CR-Conformer method is more suitable for, we visualize 
one sample in each category, as shown in Fig. 6. The first 
row represents the original image of the selected sample, 
the second row represents the visualization of the DCNN 
branch in the baseline model Conformer, the third row rep-
resents the visualization of the DCNN branch in our model 
CR-Conformer, each column represents a different category. 
Figure 6(a) shows the categories whose classification accu-
racy of our model is higher than that of the baseline model. 
It can be seen that for some multiple lesions (LIC, SOL and 
PSO) or lesions with more obvious local features (MEL and 
BAS), the model can pay more attention to the lesion area 
after applying the convolution rotation strategy. Figure 6(b) 
shows the categories whose classification accuracy of our 
model is higher than that of the baseline model. It can be 
seen that for lesions covering a large area of skin (LEU and 

COM) or lesions with insignificant local features (INT, SEB 
and MAR), other features outside the lesion area will be paid 
attention to after the application of the convolution rotation 
strategy, such as folds in the normal skin area and the low-
brightness part of the image.

3.2.3 � Comparative experiment

Table 2 shows the test results of different classification models 
trained with the same parameter configuration to predict clini-
cal skin lesion images. They include the classic DCNN-based 
model VGG and ResNet, the lightweight model MobileNet, 
and the advanced model ConvNeXt. Transformer-based classic 
model ViT, advanced model Swin Transformer, and the base-
line model Conformer, which also uses a dual-branch network 
structure. It can be seen that CR-Conformer has better results 
than other models in the classification of clinical skin lesion 
images, and the three indicators have reached the optimum. 
CR-Conformer also achieves better classification results with 
fewer parameters than the baseline model Conformer. Com-
pared with the two DCNN models with fewer parameters, the 
classification accuracy of our method is also higher by more 
than 10%, indicating that our network structure and the strat-
egy of enhancing local features through convolution rotation 
are more suitable for clinical skin lesion images.

4 � Discussion and conclusion

In this study, in order to achieve better classification results 
on clinical skin lesion images, we propose a dual-branch net-
work structure CR-Conformer. Specifically, we use the DCNN 
branch to extract local features of clinical skin lesion images 
and the Transformer branch to extract global features. In order 
to obtain richer local features of clinical skin lesion images, 
we improve the DCNN branch of the Conformer, adopt the 
convolutional rotation strategy, and use the CR-FCU fusion 
module to interactively fuse it with the global features extracted 
by the Transformer branch. Comprehensive experiments are 

Fig. 5   Comparison of confusion 
matrix of classification results 
in clinical skin lesion images 
with baseline models
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conducted on a public dermoscopic skin lesion image data-
set ISIC2018 and a private clinical skin lesion image dataset 
XJUSL provided by the Dermatology Department of Xinji-
ang Urumqi People’s Hospital. The test results show that our 
method is more suitable for classifying clinical skin lesion 
images. In addition, by analyzing the classification of different 
types of clinical skin lesions by the model, we conclude that the 
convolutional rotation strategy is more suitable for skin lesions 
with multiple lesions or more obvious local features. Using only 

fewer parameters, CR-Conformer demonstrates its potential to 
automatically diagnose skin lesions in mobile devices.

In future work, we will explore the effect of different seg-
mentation models applied to clinical skin lesion image seg-
mentation and improve the network structure according to the 
features of clinical skin lesion images. In addition, we will 
cooperate with public hospitals to produce more standardized 
clinical skin lesion segmentation datasets to contribute to the 
auxiliary diagnosis of clinical skin lesions. 

Fig. 6   The DCNN branch in the model uses Grad-CAM visualization results. (a) Are categories with higher classification accuracy than the 
baseline model. (b) Are categories with lower classification accuracy than the baseline model

Table 2   Comparison 
experiments of different models 
on test set in the XJUSL dataset

Boldface represents the best performing model on the correspondingevaluation metric

Model Parameter(M) Precision% Recall% F1% Accuracy%

VGG 139.61 59.67 58.05 58.49 69.61
ResNet 23.53 57.56 57.86 56.46 69.18
MobileNet 2.24 52.48 51.23 51.20 60.78
ConvNeXt 87.58 56.57 56.00 55.88 64.87
ViT 88.19 57.69 48.52 50.89 65.73
Swin Transformer 86.75 58.71 57.65 57.64 72.41
Conformer 81.2 77.62 71.29 71.32 78.88
CR-Conformer 70.03 80.06 70.44 74.02 79.96
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