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Abstract
The fully automatic chromosome analysis system plays an important role in the detection of genetic diseases, which in 
turn can reduce the diagnosis burden for cytogenetic experts. Chromosome segmentation is a critical step for such a sys-
tem. However, due to the non-rigid structure of chromosomes, chromosomes may curve in any direction, and two or more 
chromosomes may touch or overlap to form unpredictable chromosome clusters in metaphase chromosome images, leading 
to automatic chromosome segmentation as a challenge. In this paper, we propose an automatic progressive segmentation 
approach to perform the entire metaphase chromosome image segmentation using deep learning with traditional image pro-
cessing. It follows three stages. In the first stage, thresholding-based and geometric-based methods are employed to divide all 
chromosomes as single ones and chromosome clusters. To tackle the segmentation for unpredictable chromosome clusters, 
we first present a new chromosome cluster identification network named CCI-Net to classify all chromosome clusters into 
different types in the second stage, and then in the third stage, we combine traditional image processing with deep CNNs to 
accomplish chromosome instance segmentation from different types of clusters. Evaluation results on a clinical dataset of 
1148 metaphase chromosome images show that the proposed automatic progressive segmentation method achieves 94.60% 
chromosome cluster identification accuracy and 99.15% instance segmentation accuracy. The experimental results exhibit 
that our proposed approach can effectively identify chromosome clusters and successfully perform fully automatic chromo-
some segmentation.

Keywords  Fully automatic chromosome analysis · Automatic progressive segmentation · Chromosome cluster 
identification · Chromosome instance segmentation · Deep learning

1  Introduction

Since Tjio and Levan discovered the number of human chro-
mosomes in 1956 [1] and the Denver system of human chro-
mosome classification was established in 1960 [2], human 
chromosome karyotyping analysis [3, 4] has become an 
essential procedure for cytogeneticists to diagnose human 
genetic disorders or cancers in genetic laboratories [5, 6]. 
In general, a healthy human has 23 pairs of chromosomes, 
including 22 pairs of autosomes and one pair of sex chro-
mosomes (XX for female and XY for male). Chromosome 
karyotyping analysis is the process of separating all individ-
ual chromosomes from the metaphase chromosome image 

firstly, then classifying these chromosomes into 23 types, 
and finally arranging them in an order to form a karyogram 
[7], as shown in Fig. 1.

Traditional chromosome karyotyping analysis needs well-
trained operators to pay considerable manual effort and time 
to produce karyotyping results, which are directly related to 
experts’ experience [8, 9]. For cytogeneticists, the analysis 
process is laborious and time-consuming, so many research-
ers have been working for years on automated karyotyping 
using computation techniques. Automatic karyotyping anal-
ysis commonly follows two stages: chromosome segmenta-
tion and chromosome classification.

Chromosome segmentation is the critical stage for karyo-
typing and its results can directly influence classification 
performance afterward; thus, this paper focused on the seg-
mentation problem.

Nowadays, many chromosome segmentation meth-
ods mainly used traditional image processing to extract 
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manually tagged features, such as contour, end points, 
and intersection points to perform automatic chromosome 
separation [10–12]. However, these features are sensitive 
to the shape of the chromosome and cannot handle some 
complicated chromosome clusters. With the prevalence 
of deep learning, some studies have proposed special-
ized neural networks to solve chromosome segmentation 
[13–17]. But these studies only address the separation 
for overlapped chromosomes. Investigating the above 
research, they reveal that the challenges of automatic 
chromosome segmentation mainly lie in the following 
reasons: (1) As shown in blue rectangles in Fig. 1(a), 
since chromosomes are non-rigid, they can curve in any 
direction, making it difficult to accurately extract effec-
tive features, such as contour and media axes, for success-
fully accomplishing the segmentation task. (2) Touching 
or overlapping chromosome clusters with unpredictable 
shapes always exist in the metaphase chromosome image, 
which become a non-ignorable phenomenon and seri-
ously reduce the segmentation accuracy. Red rectangles 
in Fig. 1(a) show several chromosome clusters.

To address the above challenges, we propose a progres-
sive segmentation approach to achieve the entire meta-
phase chromosome image separation automatically in this 
paper. This approach conducts the segmentation with a 
three-stage style. In the first stage, thresholding-based 
and geometric-based methods are utilized to divide all 
chromosome objects into individual ones and chromo-
some clusters. For chromosome cluster segmentation task, 
different from other methods like [13–17] which only 
focus on the segmentation for several shapes of clusters, 
we first identify all chromosome clusters as three types: 
touching ones, overlapping ones, and touching and over-
lapping ones in the second stage, and then we segment 
chromosome instances from different types of chromo-
some clusters in the final stage. To identify chromosome 
clusters, we propose a chromosome cluster identification 

network (CCI-Net) which integrates one backbone net-
work, one multi-scale feature fusion (MFF) module, 
and one identification head. Specifically, the backbone 
network combined residual network [18] with SE-block 
[19] extract discriminative multi-scale features, and MFF 
integrates semantics information from the high-level layer 
and rich detailed information from all low-level layers; 
thus, these two modules implement dual feature enhance-
ment. The identification head utilizes the final informa-
tive features to classify chromosome clusters. To solve the 
segmentation of each type of cluster, we introduce dif-
ferent chromosome instance segmentation methods. For 
touching clusters, we use the least square method to fit a 
reasonable separation path between a pair of cut-points. 
For overlapping clusters, we apply a simplified U-Net to 
extract overlapped regions followed by traditional image 
processing to stitch individual chromosomes. Combining 
these two segmentation methods, touching and overlap-
ping clusters can be separated gradually.

To evaluate the performance of our proposed method, we 
collected 1148 metaphase chromosome images and cropped 
6941 chromosome clusters from these images to generate 
a chromosome cluster dataset. Compared to other state-of-
the-art methods, CCI-Net achieves an accuracy of 94.60% 
for chromosome cluster type identification, and the pro-
gressive segmentation obtains an accuracy of 99.15%. The 
experimental results demonstrate that our proposed method 
effectively identifies chromosome clusters and successfully 
performs fully automatic chromosome segmentation.

The main contributions of this paper can be summarized 
as follows:

1.	 A new progressive segmentation approach is proposed 
by using the three-stage style combined traditional 
image processing with deep learning to achieve the 
entire metaphase chromosome image segmentation 
automatically.

Fig. 1   a A Giemsa-stained 
metaphase chromosome image, 
in which blue and red rectangles 
frame curved chromosomes and 
chromosome clusters, respec-
tively. b The corresponding 
standard karyotyping image 
of (a)
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2.	 A novel chromosome cluster identification network 
named CCI-Net is presented. It consists of one backbone 
network, one multi-scale feature fusion (MFF) module, 
and one identification head. With the help of dual feature 
enhancement implemented by the first two module, the 
identification head can generate the type of each cluster.

3.	 Three chromosome instance segmentation methods to sepa-
rate touching, overlapping, and touching and overlapping 
chromosome clusters are designed. To our best knowledge, 
these segmentation methods are the first attempts to solve 
separation problems for almost all chromosome clusters.

4.	 Compared to other state-of-the-art methods, experi-
mental results on our clinical dataset demonstrate that 
our progressive segmentation approach has a superior 
performance. Meanwhile, CCI-Net makes a high clas-
sification accuracy for chromosome cluster identifica-
tion, and better segmentation results are achieved for all 
chromosome clusters.

The rest of the paper is structured as follows: Section 2 
reviews the related works on chromosome segmentation. 
Section 3 gives us the details about our proposed approach. 
In Section 4, we provide experimental results and a discus-
sion. At last, we present the conclusion in Section 5.

2 � Related work

High-quality chromosome segmentation is necessary and 
primarily crucial for chromosome karyotyping analysis 
development, and the segmentation result directly affects 
the accuracy of the classification stage. Traditional meth-
ods for chromosome segmentation are generally performed 
manually, yet the segmentation accuracy highly depends 
on the experiences of the cytogenetics experts. Thus, auto-
matic chromosome segmentation is the tendency in the 
future. Scholars have dedicated to automatic chromosome 
segmentation in the metaphase images for many years.

Before the prevalence of deep learning, earlier segmentation 
approaches mainly employed thresholding-based or geometric-
based methods to perform automatic chromosome segmenta-
tion [10–12, 20–26]. Minaee et al. [11] proposed a geometric 
approach to segment chromosomes automatically. The author 
went through two phases to complete the segmentation. In 
the first phase, three geometric criteria—surrounding ellipse, 
convex hull, and skeleton and end points—were designed to 
detect chromosome clusters gradually. In the second phase, 
the cut-line method was employed to separate touching or par-
tially overlapped chromosomes. This method achieved 91.9% 
accuracy on 62 chromosome cluster images. However, its 
segmentation quality relied heavily on the manually extracted 

geometric features, and it cannot separate complicated chromo-
some clusters.

Altinsoy et al. [20] presented an automatic segmentation 
method for raw G-band chromosome images. They started 
from clearing background pixels by thresholding process-
ing. Then, some irrelevant objects, such as staining debris 
and nucleus, were eliminated using their geometric char-
acteristics. Next, binary watershed transform and several 
rules were applied to divide all objects into single and clus-
ter chromosomes. After that, they used geodesic distance 
transform on extracted cut-points to separate touching chro-
mosomes, and for overlapped chromosomes, they mainly 
considered “+” and “⊤” shaped overlapped chromosome 
clusters. Nevertheless, as uneven Giemsa staining chromo-
some metaphase image, the proposed method may obtain 
the failed segmentation results.

Nowadays, deep learning has demonstrated its state-of-
the-art power, and it brings new opportunities for object 
segmentation. Hu et al. [13] applied neural network–based 
segmentation to distinguish partially overlapped chromo-
somes. To resolve overlapping chromosome segmentation, 
the author built a dataset including 13,000 semi-syntheti-
cally generated overlapping chromosomes. Then, they input 
the dataset into a customized U-Net to perform separation 
for overlapped chromosomes and resulted in IOU scores of 
94.7%.

To improve the segmentation performance, Saleh et al. 
[15] combined a modified U-Net and test time augmentation 
(TTA) to construct an overlapped chromosome segmenta-
tion method. Hu et al. [13] and Saleh et al. [15] obtained an 
improved segmentation accuracy of 99.68%.

Song et al. [16] used the main characteristics of U-Net 
and SegNet to compose a convolutional neural network 
named Compact Seg-Uet for overlapping human chromo-
some segmentation. To address the problem of unrealistic 
images, they proposed a method to generate more realistic 
images with opaque overlapped regions, and they achieve an 
average IOU score of 93.44% ± 0.26.

Lin et al. [14] employed AS-PANet by improving the 
PANet instance segmentation model to perform the over-
lapped chromosome segmentation and yielded 85% instance 
segmentation accuracy.

These four segmentation methods utilized deep CNNs to 
disengage overlapped chromosomes. However, the first three 
methods only used for solving partially or simply overlapped 
chromosome segmentation, and AS-PANet did not reach a 
clinical segmentation accuracy.

Investigating the above segmentation methods, we can find 
that they explicitly or implicitly implement chromosome segmen-
tation from different types of chromosome clusters. It indicates 
that type identification of chromosome clusters is an important 
premise task for automatic chromosome segmentation.
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Recently, Lin et al. [27] proposed a chromosome cluster 
type identification method using the ResNeXt WSL model. 
They used ResNeXt weakly supervised learning to con-
struct a backbone network with 101 layers and designed 
a 9-layer deep neural network as the network header to 
categorize chromosome features extracted by the backbone 
network. Meanwhile, the authors presented a fast training 
methodology to tune the overall framework from coarse-
to-fine gradually. Experimental results showed this method 
achieved 94.09% accuracy. However, this method did not 
involve chromosome segmentation problem, and the cluster 
identification performance has room for improvement.

Motivated by the above studies, we propose a progressive 
automatic chromosome segmentation approach combining 
deep CNNs and traditional image processing. Especially, a 
chromosome cluster identification network (CCI-Net) is pre-
sented to classify clusters into touching, overlapping, and 
touching and overlapping chromosomes. Moreover, accord-
ing to different characteristics of three types of clusters, we 
design different chromosome instance segmentation methods.

3 � Proposed method

This section includes six parts, with the first one introducing 
a brief overview of our proposed method. The second to fifth 
parts give the details of each component of the progressive 
segmentation method sequentially. Then we explain the loss 
function and training strategy in the fifth part. Finally, evalu-
ation metrics used in experiments are presented.

3.1 � Approach view

As shown in Fig. 2, the proposed framework for automatic 
progressive chromosome segmentation can be described 
in a step-by-step style with three stages: (1) thresholding-
based and geometric-based methods are applied to perform 
the rough segmentation and divide the whole metaphase 

chromosome image into single ones and chromosome clusters; 
(2) CCI-Net is presented to identify chromosome clusters as 
three different types; (3) using different chromosome instance 
segmentation methods to separate individual chromosomes 
from different types of chromosome clusters. Details about the 
three stages are introduced in the following sections.

3.2 � Stage 1: rough segmentation using 
thresholding‑based and geometric‑based 
methods

The thresholding-based method is a popular traditional 
image segmentation method in practical applications, 
which can easily separate images into background and fore-
ground. In order to separate chromosome objects from the 
entire metaphase chromosome images simply, efficiently, 
and completely, the global thresholding method is utilized 
to classify the whole image as foreground and background 
by the following steps:

1.	 Given a metaphase chromosome image I ∈ Rh × w × c, we 
first calculate the global averaging pixel value by the 
following formula:

where h, w, and c represent the height, the width, and the 
depth of the metaphase image, respectively, and pixel(x, y) 
denotes each pixel value of the image I.

2.	 Due to the noise having been removed from our dataset, 
we can set λ ∙ Averagep as the threshold value. When 
the pixel value is less than the threshold, this pixel is 
considered the background pixel. Otherwise, we save 
the pixel belonging to foreground objects. For the best 
segmentation performance, λ is set to 0.9.

After that, a binary image is generated. Before entering 
the next stage, we compute some chromosome geometry 
features, such as the convex hull and the minimum bounding 
rectangle, of each separated objects to identify individual 
chromosomes and chromosome clusters.

3.3 � Stage 2: chromosome cluster identification 
network (CCI‑Net)

As mentioned in Section 2, to facilitate automatic chro-
mosome segmentation, most of studies are devoted 
to segmenting chromosomes from different types of 
chromosome clusters, so cluster type identification is 
a crucial anterior task for individual chromosome seg-
mentation. In this paper, we propose a chromosome 
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Fig. 2   The process of our automatic progressive segmentation method
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cluster identification network (CCI-Net) to classify all 
clusters into three types: touching chromosome clus-
ter, overlapping chromosome cluster, and touching and 
overlapping chromosome cluster. We define these three 
types of chromosome clusters as follows: if there are 
no intersection pixels between any two chromosomes, it 
is a touching cluster; if there are only intersecting pix-
els at the junction of two chromosomes, it is called the 
overlapping cluster; a chromosome cluster containing 
both touching and overlapping chromosomes is called a 
touching and overlapping cluster.

The structure of CCI-Net is shown in Fig. 3(a). It 
consists of three components: a backbone network, a 
multi-scale feature fusion (MFF) module, and an identi-
fication head. We combine deep learning network with 
SE-blocks to construct a CNN-based module to encode 
the chromosome cluster into corresponding multi-scale 
feature representations, and since SE-blocks can make 
these features focus on discriminative features, thus this 
module performs the first feature enhancement. MFF 

module is applied to further enhance multi-scale feature 
representations by integrating multi-scale features from 
adjacent high-level and all low-level layers, which makes 
fusion features aggregate fine-grained details and high-
level semantics. And last, the identification head is used 
to learn the mapping from the fused features to cluster 
classification probabilities.

3.3.1 � A backbone network

On the one hand, ResNet [18] is the most commonly used 
backbone network for segmentation or classification tasks. 
On the other hand, as mentioned in Hu et al. [19], SE-block 
can adaptively recalibrate channel-wise feature responses 
by explicitly modelling interdependencies between chan-
nels and it can be integrated into standard deep CNNs’ 
architectures such as VGG-Net and ResNet, to improve 
the features learning ability. Considering the above two 
aspects, we construct a SE-ResNet61 as the backbone net-
work by stacking SE-residual blocks. Each block has four 

Fig. 3   The architecture of the chromosome cluster identification net-
work (CCI-Net). a CCI-Net has three components: one backbone net-
work, one MFF module, and one segmentation head. b The detailed 

structure of the backbone network. c The description of multi-scale 
feature fusion module
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SE-residual units. As shown in Fig. 4, the residual unit 
is constructed by four convolutional layers with two 1×1 
kernel sizes and two 3×3 kernel sizes, respectively, and the 
SE-block consisting of one global pooling lay, two fully 
connected layers, one rectified linear unit (ReLU), and one 
Softmax layer is integrated into the residual unit to con-
struct a SE-residual unit. As illustrated in Fig. 3(b), the 
SE-ResNet61, with 61 layers, consists of four submodules. 
The first submodule conv1 has one convolution layer with 
7×7 kernel size and one maxpooling layer with 2×2 kernel 
size, and its output dimension is 64×64×64. The second to 
fourth submodules, termed by conv2 to conv4 sequentially, 
are all made up of four SE-residual units and one max-
pooling layer with 128, 256, and 512 output dimensions, 
respectively.

When we feed a chromosome cluster image into SE-
ResNet61, low-level and high-level features are extracted 
gradually. We denote these features as {F1, F2, F3, F4}, which 
forms multi-scale feature representations. Compared to the 
original ResNet, this network extracts more discriminative fea-
tures; thus, it is considered to perform the first feature enhance-
ment. For a more intuitive understanding of Fi (i = 1, 2, 3, 4), 
we use Grad-CAM to visualize each feature layer in Fi, and 
the visualization images of the four groups of features are 
given in Figure 5. From Figure 5, we can see that the shallow 
features of the network, such as F1 and F2, retain almost all 
the detailed information of the original image, whereas more 
semantic information can be concentrated on high-level layers 

like F3 and F4. As the number of network layers deepens, the 
output feature map becomes more and more abstract.

3.3.2 � Multi‑scale feature fusion module

As shown in Fig. 6, we can note that the gray intensity at the 
junction area of touching chromosomes is very close to the 
background, while it is much larger than the background for 
overlapping clusters.

Furthermore, since the small scale of these areas, pool-
ing layers in CCI-Net will make them be ignored in high-
level layers. Thus, to facilitate the performance of the 
chromosome cluster identification network, more discrimi-
native information of junction areas needs to be preserved 
to further enhance feature representations. He et al. [28] 
proposed the progressive feature fusion (PFF) module to 
solve the deviation of high-level features from low-level 
features. Inspired by this, multi-scale feature fusion (MFF) 
module is introduced here as shown in Fig. 3(c). Different 
from PFF module, MFF module enables features of each 
scale to integrate adjacent high-level and all low-level fea-
ture layers. By handling of the MFF module, each scale 
of the generated fusion feature contains both semantics 
information from the high-level layer and rich detailed 
information from all low-level layers.

As illustrated in Fig. 3(a), each scale of features will be 
handled by a MFF module. Figure 3(c) gives the detailed 

Fig. 4   a, b Schemas of the 
residual unit and the SE-resid-
ual unit, respectively
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handling process. For any scale of feature maps Fi, we first 
apply a Conv1 × 1 on its adjacent high-level feature Fi + 1 to 
alter the channel number to be

the same as Fi. Then we up-sample the feature maps to 
generate the transformed high-level feature F′

i
 which has 

the same size with Fi. It can be expressed by the following 
equation:

where F′
i
 denotes the transformed high-level feature, 

Conv1 × 1 represents a 1 × 1 convolutional layer, and Up( ) 
denotes 2× upsample layer. Note that F′

4
 equals to 0 because 

F5 is not exist. Due to high-level layers Fi + 1 having rich 
semantic information, the transformed feature F′

i
 saves the 

most information from it.
Then, for all low-level features Fi − 1, Fi − 2, Fi − 3(i = 2, 3, 4) 

input into MFFi, we employ a down-sample with different 
stride followed by a 1 × 1 convolutional layer to make all of 
them having the same resolution and channel number as Fi. 
The following formula represents the process:

(2)F�
i
= Up

(
Conv1×1

(
Fi+1

))
, (i = 1, 2, 3, 4)

Fig. 5   Visualization features 
extracted from SE-ResNet61. 
a–d Visualization images of F1, 
F2, F3, and F4

(a) (b)

(c) (d)

(a) (b) (c)

Fig. 6   Examples of different types of chromosome clusters. a–c 
Touching, overlapping, and touching and overlapping clusters, 
respectively. We use red and orange ellipses to circle touching junc-
tion areas and overlapped junction areas, respectively
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(3)F��
i
= Conv1×1

(
Down

(
Fi−1

))⨁
Conv1×1

(
Down

(
Fi−2

))⨁
Conv1×1

(
Down

(
Fi−3

))
, (i = 2, 3, 4)

final feature representations. The representations are mapped 
to identification probabilities of cluster types via such head.

3.4 � Stage 3: chromosome instance segmentation

The previous stage has divided chromosome cluster into 
touching, overlapping, and touching and overlapping 
chromosomes. Next, we will introduce three segmenta-
tion methods for three types of clusters according to their 
own characteristics.

3.4.1 � Touching cluster separation

As illustrated in Fig. 7(a), for a cluster image having two 
touching chromosomes as an example, due to the touching 
area between two chromosomes having low gray inten-
sity and no pixel intersection, we apply our previously 
proposed method in [29] to detect two cut-points (m and 
n) and then compute a separation path p between two cut-
points by the following steps:

(1)	 Firstly, we connect two cut-points as the guide line l 
containing a point set S = {m, a1, … ， az − 2, n}.

(2)	 Then, after setting the pixel on the guide line l to 1 and 
the rest of points to 0 in the cluster image, we obtain a 
binary cluster image, and further we use a 3 × 3 kernel 
to dilate the binary image to obtain a touching junc-
tion area A.

(3)	 After we bring the junction area A back to the original 
cluster image to compute the average value VA of A by 
formula (1), all points of A whose pixel value is less 
than VA will be remained. These remained points form 
candidate points shown in Fig. 7(a).

(4)	 Next, if several candidate points form a 4-connected 
area, we only remain one point with the minimum 
intensity, and these reserved points constitute the final 
decision points.

(5)	 Finally, we apply the least square method on these deci-
sion points to fit the separation path p.

For other touching cluster images having three or more 
chromosomes, according to each pair of cut-points, we can 
calculate all separation paths by using previous steps. We 
can notice that, comparing with connecting two cut-points 
directly to separate touching chromosomes, our separation 
approach is more in line with the segmentation style per-
formed manually by experts.

where F′′
i
 is the final transformed low-level features, ⨁ rep-

resents the element-wise addition, and Down( ) denotes a 
down-sample layer with 2×2, 4×4, and 8×8 kernels for Fi − 1, 
Fi − 2, and Fi − 3, respectively. F−2, F−1, and F0 do not exist 
and set to 0. F′′

i
 contains the detailed chromosome cluster 

information as much as possible by integrating all low-level 
features, which could be beneficial for handling small junc-
tion area between clusters.

After obtaining high-level and all low-level informa-
tion, we perform a parallel two-step element-wise multiply 
operation which makes F′

i
 multiply with Fi and F′′

i
 multiply 

with Fi simultaneously:

where FH
i

 and FL
i
 are the generated high-level and low-level 

enhancement representations, respectively, and ⨂ denotes the 
element-wise multiply operation. The multiplication operation 
makes Fi fuse with F′

i
 and F′′

i
 , respectively, which can save the 

global information of the F′
i
 and the detailed information of 

F′′
i
 as much as possible. Thus, small cluster details ignored by 

F′
i
 can be reactivated by multiplying with low-level features, 

and chromosome clusters with fewer semantic information in 
F′
i
 can be enhanced by multiplying with high-level features.
After enhancing high-level and low-level features with 

the previous handling, more powerful representations can 
be obtained by adding two enhanced features to the unpro-
cessed multi-scale features Fi by the following formula:

where FMFE
i

 is the output of the MFFi module.
Through the addition operation, compared with the 

original multi-scale features extracted from SE-ResNet61, 
the new generated multi-scale features contain rich 
detailed information and more contextual information. 
Thus, MFF modules implemented further enhance the 
feature representation for chromosome clusters.

3.3.3 � An identification head

We use two fully connected layers and one Softmax layer to 
construct an identification head. Before entering the head, 
average-pooling layers are applied to conduct features firstly, 
then we concatenate these processed features to obtain the 

(4)FH
i
= F�

i

⨂
Fi, i = 1, 2, 3, 4

(5)FL
i
= F��

i

⨂
Fi, i = 2, 3, 4

(6)FMFF
i

= Fi

⨁
FH
i

⨁
FL
i
, (i = 1, 2, 3, 4)
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3.4.2 � Overlapping cluster separation

As we all know, U-Net [30] has been widely used in medi-
cal image segmentation. Recently, some researchers have 
applied it for chromosome segmentation, but they just han-
dle simple partial overlapped chromosome using a semi-
synthetically generated overlapped chromosome dataset. 
Meanwhile, traditional methods often use cut-points to 
separate overlapping chromosomes, but it is highly sus-
ceptible to image quality and cannot handle complicated 
chromosome clusters. Therefore, we present a new segmen-
tation procedure for overlapping chromosomes by combin-
ing U-Net and traditional image processing. As shown in 
Fig. 7(b), the procedure has four steps:

(1)	 Firstly, we employ U-Net to detect the overlapped 
region Ro, and since the resolution of our overlapped 
chromosome dataset is 128×128, we simplify the 
standard U-Net structure, in which the first three down-
sampling and the corresponding up-sampling blocks 
remained.

(2)	 After defining the non-overlapping area as R1, R2, R3, 
and R4, we compute center points of these five areas 
using the following formulas:

where n is the pixel number of an area; xi and yi represent the 
abscissa and ordinate values of pixel i, respectively; xc and 
yc represent the abscissa and ordinate values of the center 
pixel, respectively; and these five center points are defined 
as C1, C2, C3, C4, and Co corresponding to R1, R2, R3, R4, and 
Ro as shown in Fig. 7(b).

	 (III)	 Thirdly, connecting C1, C2, C3, C4 to Co respectively 
to form vectors v1, v2, v3, and v4, and then we compute 
the angle θ between two vectors using the following 
formula:

where i, j = 1, 2, 3, 4 (i ≠ j);θij denotes the angle between vi 
and vj (θij = θji).

(7)xc =

∑n

i=1
xi

n

(8)yc =

∑n

i=1
yi

n

(9)𝜃ij =

�
arccos

vi⋅vj

‖vi‖⋅‖vj‖ , 0 ≤ 𝜃 ≤ 90
◦

180
◦ − arccos

v
i
⋅vj

‖vi‖⋅‖vj‖ , 90
◦

< 𝜃 < 180
◦

Fig. 7   The process of chromosome instance segmentation. a, b 
Touching clusters and overlapping clusters separation processes, 
respectively. In (a), we use red points m, n represents a pair of cut-
points, meanwhile the white area A and the red curve p as the junc-
tion area and separation path, respectively, and green points as the 

candidate points. In (b), we use the red area R0 to denote the detected 
overlapped region, and yellow points C0, C1, C2, C3, and C4 as center 
point representations, and blue arrows v1, v2, v3, and v4 to represent 
vectors connected C0 with C1, C2, C3, and C4, respectively
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(D)	 Finally, if θij less than a thresholding value λθ, we consider Ri, 
Rj belonging to a same chromosome, and the other non-over-
lapped area belonging to another individual chromosome.

For overlapping clusters with three or more chromo-
somes, U-Net is also applied to detect all overlapped areas, 
then we consider the overlapped area one-by-one to separate 
overlapping chromosomes gradually.

3.4.3 � Touching and overlapping clusters separation

Touching and overlapping clusters contain both overlap-
ping and touching chromosomes. Thus, we can first sepa-
rate overlapping chromosomes and then segment touching 
chromosomes using the segmentation methods in (1) and 
(2), respectively. Up to now, all chromosome clusters are 
separated as individual chromosomes.

3.5 � Loss function and training strategy

In order to make deep neural networks applicable to spe-
cific tasks, researchers apply loss functions to optimize 
network parameters. For our method, we just need to train 
CCI-Net in stage 2 and simplified U-Net in stage 3 to meet 
our segmentation purpose. Cross entropy loss is adopted as 
the loss function for these two networks and its expression 
is shown in Eq. (10). It is used to judge the gap between the 
actual output and desired output, and the net uses Softmax 
function to produce the actual output probability value.

Then, we train two networks using their own dataset. For 
CCI-Net, we initialize network parameters via He’s method 
[31], and then use Eq. (10) to train the net until convergence 
with all chromosome cluster datasets shown in Table 1. For 
simplified U-Net, we input overlapping cluster images from 
Table 1 and corresponding mask images to train it until the 
loss function reaches its minimum value.

(10)
CrossEntropyLoss = −

[
y ∗ log(q) + (1 − y) ∗ log(1 − q)

]

3.6 � Evaluation metrics

3.6.1 � Evaluation metrics for CCI‑Net

To evaluate the identification performance of CCI-Net, we 
adopt recall, precision, accuracy (ACC), and F1 as evalua-
tion metrics. For the computation of these metrics, we define 
the following four criteria to fit the context of multi-class 
classification as other researchers do:

•	 True positives (TPj): a single chromosome belonging to 
class j is identified as class j;

•	 False positives (FPj): a single chromosome not belonging 
to class j is identified as class j;

•	 False negatives (FNj): a single chromosome belonging to 
class j is identified as class k(∀k ≠ j);

•	 True negatives (TNj): a single chromosome not belonging 
to class j is identified as class k(∀k ≠ j).

Then, four metrics are calculated by the following formulas:

where Ncls equals to 24 which represents the total class num-
ber of chromosomes and M denotes the number of all tested 
single chromosomes.

Precision refers to the ratio of the number of correctly 
classified positive samples to the number of samples deter-
mined to be positive by the classifier. Recall is the ratio of 
the correctly classified positive samples, which focus on 
the true positive class of samples. Accuracy is the ratio of 
correctly predicted chromosome clusters. The F1 score of 
type identification for all clusters is calculated by averag-
ing the F1 score of each type cluster.

3.6.2 � Evaluation metrics for segmentation

We adopt three evaluation metrics to validate our proposed 
segmentation method, including intersection over union 
(IOU), dice, and accuracy (ACC). IOU is a common met-
ric for object segmentation, which measures the accuracy 

(11)recallj =
TPj

TPj + FNj

(12)precisionj =
TPj

TPj + FPj

(13)accuracy =

∑Ncls

j=1
TPj

M

(14)F1 =
1

Ncls

∑Ncls

j=1

precisionj ∙ recallj

precisionj + recallj

Table 1   The statistics of our chromosome datasets

No. Category Count

 1 The metaphase image 1148
2 Chromosome clusters 6590
 3 Touching clusters 4628
 4 Overlapping clusters 1387
 5 Touching and overlapping clusters 935
 6 Individual chromosomes 17,808
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of the detected area of corresponding objects in a specific 
dataset. Dice coefficient is a set similarity measurement 
function, which represents the similarity of the predicted 
object to the ground truth. ACC represents the proportion 
of correctly predicted pixels in the whole image, which 
concentrates on the accuracy of each pixel. The expres-
sions are as follows:

where A and B denote the predicted object and the ground 
truth, respectively, and Xpred and Xtrue represent the pixel 
number of predicted object and the ground truth area.

4 � Experimental results and discussion

In this section, we first introduce our datasets. Then some experi-
mental details are given. After that we report experimental results 
to validate the effectiveness of CCI-Net and the automatic pro-
gressive segmentation approach, respectively. Finally, we present 
the discussion at the end of this section.

4.1 � Material

To validate our proposed method in this section, the 
BEIONMED® company from Shanghai, China, provided 
us 1148 Giemsa-stained microscopic metaphase images 
with all privacy-removal from healthy people. All chro-
mosomes from the metaphase images were manually 
annotated by cytologists and provided approximately 300 
bands. The mask of each metaphase image was manually 
labeled by our lab researchers and then verified by cytolo-
gists. Meanwhile, we collected 17,808 single chromosomes 
and 6590 chromosome clusters including 4628 touching 
clusters, 1387 overlapping clusters, and 935 touching and 
overlapping clusters from 1148 metaphase chromosome 
images. Table 1 shows the details of the dataset. These 
images were randomly split into five subsets to conduct 
five-fold cross-validation.

4.2 � Implementation details

In the experiments, all input images of the CCI-Net or U-Net 
were resized to 128×128. These two networks were trained on 

(15)IOU =
∣ A ∩ B ∣

∣ A ∪ B ∣

(16)Dice =
2 ∣ A ∩ B ∣

|A|+ ∣ B ∣

(17)ACC =
Xpred

Xtrue

their own dataset for 50 epochs, and the initial learning rate 
(LR) was set to 0.001, and LR decayed by 0.5 when the epoch 
reached 5 or multiples of 5. The momentum is set to 0.9.

We implemented our approach in Python, with the 
Pytorch framework. All experiments were conducted under 
an Ubuntu 14.04 LTS workstation with Intel (R) Core (TM) 
i7-5820K CPU @ 3.30GHz, 15 GB of RAM, and 1 NVIDIA 
GTX Titan X GPUs.

4.3 � Results of CCI‑Net

CCI-Net is proposed to identify types of chromosome 
clusters. To fully illustrate the superiority of CCI-Net, 
five sets of comparison experiments are given in this sec-
tion. All methods were evaluated on the chromosome 
clusters dataset shown in Table 1. We first compare the 
CCI-Net with state-of-the-art methods (DenseNet121 [32], 
ResNet-50/101/152 [18], ResNeXt-101 [33], ResNeXt 
WSL [27]) as shown in Table 2. The first three meth-
ods were image classification baseline models, and the 
fourth method was proposed specifically for identifying 
chromosome clusters. Then, we add SE-block or MFF 
module respectively to the above network. In addition, 
to evaluate the efficiency of SE-blocks and MFF module 
from CCI-Net, we add these two modules to the above 
four methods to employ dual feature enhancement. In the 
first three groups of experiments, we used the classifica-
tion network that comes with their own network. In order 
to make a more consistent comparison with CCI-Net, all 
classification networks in the fifth group of experiments 
are replaced with the identification head in CCI-Net. We 
implemented these experiments and evaluated these meth-
ods using five-fold cross validation.

As we can see from experimental results of the first group 
in Table 2, apart from CCI-Net, ResNeXt WSL yielded 
higher accuracy of 94.09%, but the total time and the number 
of parameters were the highest. From the detailed descrip-
tion of stage 2 in Section 3, we know that SE-block and the 
MFF module were applied to enhance multi-scale features 
twice. We add SE-block or MFF module to networks of the 
above group, and the second and third groups give experi-
mental results which prove these two modules can improve 
the classification accuracy by about 0.03–0.1%. Furthermore, 
to verify the effectiveness of the combination of SE-block 
and the MFF module, we combined the combination mod-
ule with feature extraction networks in the above six CNNs-
based methods. The evaluation results are shown in the fourth 
group in Table 2. Obviously, it can be found that the accuracy 
and F1 scores are improved by about 0.2–0.5% after adding 
SE-block and MFF module. The results in the fifth group 
show that adding the identification head can little improve 
the classification accuracy compared with the fourth group. 
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Moreover, our CCI-Net achieved 94.60% identification accu-
racy, which exceeded the ResNeXt WSL module. In addition, 
the parameters and time are at a moderate level compared 
to other methods. Therefore, we can infer that our CCI-Net 
exhibits excellent performance in the chromosome cluster 
identification task, and this can directly prove that the com-
bination of SE-block and MFF module and the identification 
head extract more discriminative features for classification.

To further explore the identification performance of CCI-
Net for each cluster type, a confusion matrix is presented in 
Fig. 8. As illustrated in Fig. 8, the accuracy of the CCI-Net 
on each type of chromosome cluster in the test dataset is 
96.67%, 95.42%, and 90.81%. For touching and overlapping 
clusters, the significant loss of the confusion matrix was 
4.94% of clusters that were misclassified as overlapping ones 
and the rest were misjudged as touching ones.

Table 2   Comparative experimental results for the CCI-Net

Bold emphasis words represent our submodules, and bold numbers represent the performance of our approach

Methods Recall (%) Precision (%) Accuracy (%) F1 (%) Parameters Time (s)

DenseNet-121 [32] 81.68 85.59 87.65 82.23 6.69×106 20.10
ResNet-50 [18] 85.68 88.30 90.15 86.08 25.60×106 8.34
ResNet-101 [18] 87.92 90.65 91.89 88.32 42.51×106 17.40
ResNet-152 [18] 88.79 90.71 91.97 89.09 58.15×106 24.30
ResNeXt-101 [33] 89.10 90.79 92.27 89.36 88.79×106 26.97
ResNeXt WSL [27] 92.79 93.08 94.09 92.84 88.85×106 29.40
DenseNet-121+SE-block 81.71 85.81 87.75 82.31 6.93×106 20.09
ResNet-50+SE-block 85.73 88.35 90.19 86.21 25.84×106 8.56
ResNet-101+SE-block 88.53 90.78 91.93 88.84 42.75×106 17.68
ResNet-152+SE-block 88.82 90.86 92.09 89.23 58.39×106 24.68
ResNeXt-101+SE-block 89.27 90.89 92.29 89.41 89.03×106 27.37
ResNeXt WSL+SE-block 92.83 93.18 94.20 92.90 89.09×106 29.74
DenseNet-121+MFF 81.73 85.79 87.81 82.35 7.08×106 21.12
ResNet-50+MFF 85.75 88.41 90.21 86.19 25.99×106 8.60
ResNet-101+MFF 88.51 90.81 91.95 88.92 42.90×106 17.75
ResNet-152+MFF 88.85 90.83 92.12 89.27 58.54×106 24.83
ResNeXt-101+MFF 89.31 90.91 92.33 89.42 89.18×106 27.56
ResNeXt WSL+MFF 92.84 93.23 94.25 92.93 89.24×106 29.96
DenseNet121+SE-block+MFF 81.79 86.17 87.95 82.55 7.32×106 22.31
ResNet-50+SE-block+MFF 85.89 88.49 90.39 86.47 26.23×106 10.40
ResNet-101+SE-block+MFF 90.90 90.91 92.00 89.52 43.14×106 19.55
ResNet-152+SE-block+MFF 89.02 91.03 92.23 89.40 58.78×106 25.42
ResNeXt-101+SE-block+MFF 89.39 91.00 92.58 89.55 89.42×106 28.12
ResNeXt WSL+SE-block+MFF 93.07 93.41 94.49 93.01 89.48×106 31.58
DenseNet121+SE-block+MFF+Head 81.80 86.18 87.96 82.57 7.08×106 22.32
ResNet-50+SE-block+MFF+Head 85.91 88.51 90.43 86.46 25.99×106 10.41
ResNet-101+SE-block+MFF+Head 90.93 88.02 92.03 89.54 42.90×106 19.56
ResNet-152+SE-block+MFF+Head 89.03 91.04 92.25 89.41 58.54×106 25.43
ResNeXt-101+SE-block+MFF+Head 89.42 91.03 92.61 89.57 89.18×106 28.12
ResNeXt WSL+SE-block+MFF+Head 93.11 93.42 94.51 93.02 89.24×106 31.60
CCI-Net (SE-ResNet61+MFF+Head) 94.32 94.13 94.60 93.57 47.19×106 21.79

Fig. 8   The confusion matrix of CCI-Net for chromosome cluster clas-
sification. T, O, and T and O represent touching, overlapping, and 
touching and overlapping clusters, respectively
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4.4 � Results of automatic progressive segmentation 
approach

In this section, we present experimental segmentation 
results in three parts. Firstly, we compare our approach 
with state-of-the-art methods under three metrics: IOU, 
Dice, and accuracy. These methods were proposed spe-
cifically designed for chromosome segmentation. Table 3 
gives the comparison results provided by their own papers. 
The first three methods were traditional methods and they 
all applied to separate the entire metaphase chromosome 
image. Among them, Altinsoy’ algorithm showed better 
segmentation accuracy of 98.94%. The rest of four methods 
were grouped as CNN-based methods only used to separate 
chromosome clusters. We find that Lin’s method obtained 
the lowest results with 85% accuracy. The other neural net-
works modified from U-Net architecture were applied to seg-
ment semi-synthetically overlapped chromosomes. Although 
they all performed with high accuracy that exceeded 96%, 
they just were utilized to handle one type of chromosome 
clusters, and thus they may not be suitable for the whole 
metaphase chromosome image segmentation. In contrast, 
we employ a segmentation scheme combining deep learning 
with traditional methods to segment the entire metaphase 
chromosome image progressively. On the basis of the high 
classification accuracy achieved by the above CCI-Net, we 
adopt different methods to segment different clusters, thus 
greatly improving the segmentation accuracy. As we can see 
in Table 3, compared to the abovementioned algorithms, our 

segmentation method outperforms all other models with an 
accuracy of 99.15%, IOU of 99.06%, and Dice of 99.01%.

Then, to further demonstrate the effectiveness of our 
segmentation method, we showed the compared results 
with segmentation baseline models (Mask-RCNN [34], 
U-Net [30]). All segmentation experiments were imple-
mented on our chromosome datasets, and the results are 
shown in Table 4. These models were carried out from 
scratch with two chromosome datasets: the entire meta-
phase images and chromosome clusters. For simplicity, we 
used data #1 and data #2 to represent metaphase chromo-
some images and chromosome clusters, respectively.

As illustrated in Table 4, for data #1, Mask-RCNN and 
U-Net yielded 81.61% and 81.78%, respectively. But for 
data #2, these two methods had only obtained the accu-
racy of 60.57% and 65.81%, respectively. It shows that 
these two methods cannot perform well on the cluster 
segmentation task. In contrast, for data #1, our proposed 
method achieves the accuracy, dice, and IOU of 99.15%, 
99.01%, and 99.06%, respectively. Meanwhile the accu-
racy of 99.32%, IOU of 99.51%, and Dice of 99.17% are 
obtained from data #2. Furthermore, we compare the 
results between one-stage and three-stage methods and 
find that the one-stage method has a similar result with 
Mask-RCNN. As a side note, the one-stage method applies 
the rough segmentation using thresholding-based and geo-
metric-based methods. It demonstrates that our segmen-
tation algorithm performs an encouraging segmentation 
result for either data #1 or data #2.

Table 3   Comparison 
experimental results with 
specifically designed methods. 
“–” represents that no relevant 
data is provided

Bold numbers represent the experimental results of our approach

Methods No. of metaphase 
images

No. of clusters ACC (%) IOU (%) Dice (%)

Minaee et al. [11] 25 62 91.90 90.72 91.35
Yilmaz et al. [12] 145 – 97.83 98.13 97.74
Altinsoy et al. [20] 508 – 98.94 97.65 98.63
Lin et al. [14] 500 4876 85.00 87.76 86.39
Hu et al. [13] – 13434 92.72 94.70 93.15
Saleh et al. [15] – 13434 99.53 99.68 99.21
Song et al. [16] – 13434 99.16 99.08 99.07
Ours 1148 6950 99.15 99.06 99.01

Table 4   Comparison results 
with segmentation baseline 
models on our datasets

The last two lines are bolded to represent the segmentation performance of our one-stage and three-stage 
methods respectively

Methods Data #1 Data #2

ACC (%) IOU (%) Dice (%) ACC (%) IOU (%) Dice (%)

Mask-RCNN 81.62 85.76 81.13 60.57 62.15 60.51
U-Net 81.78 86.12 81.57 65.81 65.39 64.76
One-stage method 81.71 85.80 81.21 60.31 61.68 60.35
Three-stage method (ours) 99.15 99.06 99.01 99.32 99.51 99.17
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Finally, to visualize the performance of segmentation meth-
ods more intuitively, we show the visualization results of Mask-
RCNN, U-Net, and our proposed method in Fig. 9. To better show 
the segmentation results, we marked 46 chromosomes with dif-
ferent colors. Even though as the popular segmentation baseline 
methods, Mask-RCNN and U-Net have made many excellent 
results in natural image processing, they perform poorly at touch-
ing or overlapping chromosome separation. Synthesizing four sets 
of results, we can see that two baseline methods are almost unable 
to separate three types of chromosomes correctly, as shown by the 
green, red, and blue boxes in Fig. 9. U-Net sometimes can seg-
ment partially overlapping clusters, but it ignores the overlapped 
area indicated by the blue box in Fig. 9(c). Compared to others, 
our proposed method enables us to separate each type of clusters 
correctly and achieves better segmentation performance.

4.5 � Discussion

In this section, we further analyze the causes of experi-
mental results. To our knowledge, karyotyping is the gold 

standard for diagnosing chromosome disease. Automatic 
chromosome segmentation is the first challenge problem 
for karyotyping. This paper proposes a three-stage pro-
gressive segmentation approach for chromosome separa-
tion automatically. Compared with other methods, the most 
distinctive highlights of our approach include (1) an auto-
matic progressive chromosome segmentation is adopted 
to separate the entire metaphase images; (2) CCI-Net is 
introduced to classify chromosome clusters as three types; 
and (3) for better performance of chromosome instance 
segmentation, we design respective separation methods to 
segment each type of the cluster.

Among all the compared models, for segmentation 
baseline methods shown in Table  4 and customized 
CNNs-based methods in Table 3, due to the unpredicted 
shapes of chromosome clusters, these networks maybe 
cannot grasp discriminative features to segment all chro-
mosome clusters. Meanwhile, for specifically designed 
traditional segmentation methods in Table 3, uneven 
staining and manually handcrafted features contribute to 

The Metaphase

Chromosome Images Ground Truth Mask RCNN U-Net Proposed Method

(a)

(b)

(c)

(d)

Fig. 9   Visualization of performance of different segmentation approaches. a–d Four sets of experimental results. Green, blue, and red boxes in 
each image delineate touching, overlapping, and touching and overlapping clusters
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drawing the segmentation performance down. To address 
the shortcomings of the above methods and achieve bet-
ter segmentation results, our approach applies a pro-
gressive segmentation style to separate chromosomes 
gradually. Two main aspects lead to better segmentation 
results. On the one hand, CCI-Net is employed to identify 
types of clusters.

It is a vital prerequisite for chromosome segmenta-
tion. Compared to other classification approaches, CCI-
Net mainly focuses on extracting discriminative features 
based on SE-ResNet61 and MFF modules to implement 
dual feature enhancement. Table 2 shows the effectiveness 
of these two modules and the high classification accu-
racy of CCI-Net. On the other hand, compared with other 
chromosome segmentation methods, we design a specific 
separation method for each type of chromosome cluster 
according to their characteristics of clusters. Final separa-
tion results exhibit superior performance shown in Table 3 
and Table 4.

However, for some cases where chromosomes with large 
bending angles overlap together, our overlapping cluster 
segmentation method may not be able to handle them. Our 
future work will address this problem.

5 � Conclusion

We have proposed an automatic progressive chromosome 
segmentation method in this paper. It aims to implement 
chromosome segmentation on the basis of high accuracy 
of chromosome cluster identification and consists of three 
stages. Firstly, a thresholding-based method is applied to 
divide the whole metaphase chromosome image into fore-
ground and background roughly. After real chromosome 
clusters are judged by geometric characteristics, CCI-Net 
is introduced to identify three types of clusters. The core 
idea of this network is to make full use of multi-scale rep-
resentations to enrich the final features, so as to achieve 
high accuracy cluster identification. Finally, we present 
different separation methods for different types of clusters. 
For touching clusters, we use cut-points and the feature 
of junction area to find a reasonable separation path, and 
for overlapping ones, we combine U-Net with traditional 
image processing to separate them, and touching and over-
lapping ones are segmented using the combination of these 
two separation methods. To verify the effectiveness and 
robustness of the proposed method, we conduct extensive 
experiments conducted on chromosome clusters and the 
entire metaphase images. The results demonstrate that the 
designed CCI-Net obtains 94.60% identification accuracy, 
and our segmentation approach outperforms state-of-the-
art methods with high segmentation accuracy of 99.15%. 

In summary, our network shows excellent adaptability and 
performance in automatic chromosome segmentation.
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