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Abstract
Medical image processing has become increasingly important in recent years, particularly in the field of microscopic cell
imaging. However, accurately counting the number of cells in an image can be a challenging task due to the significant
variations in cell size and shape. To tackle this problem, many existing methods rely on deep learning techniques, such as
convolutional neural networks (CNNs), to count cells in an image or use regression counting methods to learn the similarities
between an input image and a predicted cell image density map. In this paper, we propose a novel approach to monitor the
cell counting process by optimizing the loss function using the optimal transport method, a rigorous measure to calculate the
difference between the predicted count map and the dot annotation map generated by the CNN. We evaluated our algorithm
on three publicly available cell count benchmarks: the synthetic fluorescence microscopy (VGG) dataset, the modified bone
marrow (MBM) dataset, and the human subcutaneous adipose tissue (ADI) dataset. Our method outperforms other state-
of-the-art methods, achieving a mean absolute error (MAE) of 2.3, 4.8, and 13.1 on the VGG, MBM, and ADI datasets,
respectively, with smaller standard deviations. By using the optimal transport method, our approach provides a more accurate
and reliable cell counting method for medical image processing.

Keywords Cell counting · Density regression · Optimal transport · Convolutional neural network model

1 Introduction

With the development of computer vision counting and artifi-
cial intelligence counting, machine learning methods should
generally be used to count objects in digital images. The
counting problem is the estimation of the number of objects
in a still image or video frame. It arises in many applications,
including cell counting inmicroscopic images [1], estimating
the scale of social events [2], and estimating animal crowds
for ecological surveys [3], to name a few.

Cell counting based on microscopic images is a funda-
mental part of medical diagnosis and biology. Doctors and
researchers encounter the problem of quantitatively process-
ing a large number ofmedical images; if the data is effectively
quantified, the efficiency of doctors’ disease diagnosis can
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be improved. Therefore, it makes sense to conduct statis-
tics and analysis of quantitative results through scientific
research [4] to obtainmore accurate and valid findings.Many
works in biology and medicine require counting or detecting
the localization of cells in cell images to help diagnose dis-
eases and select the appropriate treatments. For example, a
patient’s health status can be inferred from the number of red
blood cells and white blood cells; in clinical pathology, cell
counting can be used to investigate hypotheses about devel-
opmental or pathological processes; in molecular biology,
the cell concentration can be used to regulate the number of
chemicals used in an experiment.

Counting the number of cells inmicroscopic cell images is
a tedious task.Manual counting consumes considerableman-
power and material resources. In addition, due to fatigue and
other reasons,workers are prone to errorswhenmanually cal-
culating the number of cells in hundreds of microscopic cell
images, and the calculated number of cells is also affected
by subjective reasons. Because the cell density in the cell
images is relatively high, cells often block and adhere to one
another, while the microscopic image resolution is low, the
quality of the cell images cannot be well guaranteed, and
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blurring or low contrast may occur. All of these factors can
negatively affect the accuracy of the counting work. In addi-
tion, for medical images, the limited number of trainable
images must be considered in medical image processing. To
solve these problems, we can use machine learning methods
to automatically estimate the number of cells from micro-
scopic images. Considering the limited trainable data, the
data processing adopts data enhancement methods such as
random clipping and flipping to enhance the robustness of
the method and prevent the training results from overfitting.

In our work, the labels in the dataset to train the neural
network are annotated so that there is a single point annota-
tion at the center of the cell in the image. The model training
is difficult due to the sparse binarized form of the point anno-
tations in the dataset. Therefore, to facilitate model training,
the format of the data is converted to a smoother format. The
prediction countmap that shouldmatch the ground-truth den-
sity map is calculated by padding and convolving the input
microscopic cell images. Since the annotations in the anno-
tated map consist of binary matrices, while the generated
prediction count map consists of smooth real-valued matri-
ces, it is difficult tomeasure the difference between annotated

mapandprediction countmap in auniform format.Usingvar-
ious methods, the input annotation map can be transformed
into a ground-truth density map that can be computed as a
difference with the prediction count map generated by the
neural network. The current popular generation method uses
a Gaussian function to blur the annotation points and con-
verts the annotation points into a Gaussian blob to obtain a
ground-truth density map [5, 6].

The L2 loss is a pixel-to-pixel computational procedure
that trains the density map estimator between pixels as a
regression problem (Fig. 1). Many works use the L2 loss to
measure the gap between prediction count map and ground-
truth density map and use the difference that it calculates
to train the model [7, 8]. Thus, the accuracy of the ground-
truth density map greatly affects the accuracy of the counting
work, and most methods to generate the ground-truth density
map use a Gaussian function to convert each cell marked by a
point into a label range that the Gaussian function generates
[9]. In fact, this method relies too much on the size selec-
tion of the Gaussian kernel, so it affects the accuracy of the
model. Moreover, the L2 loss, which is a pixel-to-pixel loss
calculation method, is not conducive to the attention of cells
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estimator

Prediction count map Ground-truth density mapInput image

Optimal transport Loss

Gaussian kernels
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Fig. 1 The working process of the density regression microscopic cell
counting method is represented visually. a A Gaussian function is used
to generate the ground-truth density map, and the difference between
the prediction count map generated by the density map estimator and
the ground-truth density map is measured using L2 loss. b The gen-

erated predictive output uses the optimal transport method to directly
compute the error between the predicted counts and annotations and
employs VGG19 as the network backbone to construct the density map
estimator
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in the image during training. The density change of a unit in
the background area is equivalent to the density change of a
unit near the cell annotated by a point.Methods that paymore
attention to the changes in the pixel units of annotated cells
will result in more accurate numbers. With these problems,
this work uses a loss function that is not limited to the pixel
difference metric. In brief, our contributions in this paper can
be summarized as follows:

• We propose a new cell counting method based on deep
learning to accurately count cells by directly learning the
mapping from the prediction count map to the annotation
map.

• We propose a loss function based on an optimal trans-
port algorithm that treats cell counting as a probability
distribution problem, converts a map of density values
and binary dot annotation into probability density func-
tions, and measures the gap between them to reliably
supervise the counter. The introduction of this loss func-
tion eliminates the need for dot annotation to construct
the likelihood function through the Gaussian function to
generate the ground-truth density map. It also eliminates
the negative impact of the determination of the width
of the Gaussian kernel in the Gaussian function on the
accuracy of the ground-truth.

• We add an entropy regularization constraint term to the
loss function to improve the stability of the training pro-
cess and make the prediction count map closer to the
ground-truth density map.

• We conducted experiments on the public datasets VGG,
MBM, and ADI, which were given labels with point
annotations at the center of each cell. Our method was
experimentally validated for its effectiveness and better
performance than other automated cell counting meth-
ods.

2 Related works

Current automatic cell counting methods can be categorized
into detection-based methods [10–13] and regression-based
methods [7, 14–17].

Most of the early works adopted the direct detection
method. The detection-based automated cell counting meth-
ods generally use a sliding window [18], an SVM framework
[11], and extremal region trees [13]. Detection-based meth-
ods generally directly detect or segment cells in images,
which encounter two main challenges. First, automated
cell counting methods require lower cost consumption than
manual counting while ensuring accuracy. Second, train-
ing object detectors requires bounding-box or instance mask
annotations, which is much more labor-intensive in dense-
cell microscopic images. In particular, this detection-based

approach has limitations, and for very dense cells, mutual
occlusion among the cells can negatively affect the results.

Anothermethodbasedondensity estimation does not need
to detect or segment the cells in the image in advance but
calculates the number of cells by generating a density map
and integrating the estimated density map. Cell counting and
density estimation in this method avoid the difficult detection
and segmentation of individual cells, which makes it more
effective for tasks that require only the number of cells in any
region. Lempitsky and Zisserman first proposed the method
of density map estimation [14]. They used dense SIFT fea-
tures from the images as a linear regression to predict the
density map, which avoids location-based detection of indi-
vidual cells. Later, Fiaschi et al. [19] integrated the predictive
density graph generated by input images to count according
to the work of Lempitsky et al. The linear regression was
changed to random forest to calculate the object density,
which improved the training efficiency. With the develop-
ment of methods based on density regression. Arteta [20]
proposed an interactive counting method, which can quickly
feedback and display annotation dots. This work also proves
that the ridge regression method can be used to simply, accu-
rately, and effectively estimate object density.

In recent years, deep learning methods have been widely
used in various research fields. The excellent performance of
neural networks in many computer vision tasks has inspired
researchers to calculate the nonlinear relationship between
images and density maps and apply neural networks to gen-
erate predicted density maps for regression calculations in
the area of cell counting. Interestingly, deep convolutional
neural networks have been shown to outperform the latest
techniques in many computer vision tasks. Xie et al. [5] used
a convolutional neural network [21] to regressively calculate
the density map generated after Gaussian function process-
ing. Cohen et al. [16] incorporated the methods of Segui et
al. [22] to predict counts in a redundant manner and generate
a predictive density map using a smaller network running on
the image that was trained to count the number of objects in
its rectangular sense field of a particular size. The U-Net net-
workmodel [23] designed byRonneberger et al. has achieved
very good performance in different biomedical image seg-
mentation tasks.

Many counting works use the L1 loss and L2 loss to bal-
ance the gap between prediction and ground truth. However,
experiments show that such pixel-level loss calculation is
greatly affected by the selection of the Gaussian kernel size
[24]. Recent work has been devoted to reducing the influence
of Gaussian kernel selection on model accuracy. Therefore,
several methods that are not limited to pixel-level loss have
been proposed in several works. Ma et al. [25] proposed a
different loss function from the previous method of convert-
ing point annotations into predicted density maps using the
Gaussian kernel. The loss function in this work calculates the
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expected count at each annotation point by summating the
posterior probability of target occurrence at each pixel and
the density predicted by the neural network, which shows
better results on several common reference datasets.

Inspired by several computational methods [26, 27], we
realized that themethod of converting the dot annotationmap
to the ground-truth density map using a Gaussian function
would generate errors in generating the ground-truth density
map due to the difficulty of adapting the size of Gaussian
kernel. In many works, this size was manually determined,
which reduced the accuracy of the countingwork. Then, these
works discarded the use of the Gaussian function, treated
the counting work as a probability distribution problem, and
measured the difference between the prediction count map
generated by the counter and the annotated true value as a
probability distribution problem.

3 Method

In ourwork,weutilize the neural networkmodelVGG19 [28]
to analyze microscopic cell images. Specifically, we input
these images into the model to regress density maps, which
are subsequently used to generate accurate cell counts. To
ensure the accuracy of our approach, we employ a straight-
forward loss function to supervise the regression process. In
this section, we will provide a detailed description of our
method for defining the loss function. Additionally, we will
explain the expected error bounds and demonstrate the the-
oretical validity of our approach.

3.1 Loss based on optimal transmission

The optimal transport [29] distance is theminimum transmis-
sion mass required to convert one probability distribution
to another. Optimal transport is widely used in industry,
economics, and other fields. It is also increasingly used to
solve various problems such as color or texture processing
in imaging science, shape manipulation of images, and in
machine learning for regression, classification, and gener-
ative modeling. The shortest path principle employed by
optimal transport can guide the generation of most deci-
sions in application areas such as planning traffic and sending
information to several fixed points. Based on its coremethod,
theory, and the mathematical form in which it applies to pop-
ulation distribution, we believe that optimal transport theory
is equally applicable to analyzing the distribution of cells in
microscopic cell images and predicting the number of cells.

TheEarthMover’s distance [30],Monge-Kantorovich dis-
tance [31], andWasserstein distance [32] are commonly used
in various fields of machine learning. In this work, we regard
the direct gap between the dot annotation map and the pre-
diction count map as a probability problem and use the

Monge-Kantorovich distance to measure the gap between
probability measures.

Let X and Y be two sets of points, and let X = {xi |i ∈
{1, . . . , n}}, Y = {y j | j ∈ {1, . . . , n}}. Let c(x, y) be the
cost function from set of points x to set of points y. Let μ

and ν be two probability measures defined on X and Y , The
Monge-Kantorovich distance is defined as

W = min
φ∈�(μ,ν)

〈C, φ〉, (1)

whereC is the costmatrix corresponding to two sets of points
X and Y , Ci j = c(xi , y j ). μ and ν are the probability mea-
sures defined on X and Y . We define φ as the transmission
mode from one probability measure μ to another probability
measure ν. �(μ, ν) := {φ ∈ R

n×n+ : φ1 = μ, φT 1 = ν}
represents the set of all possible ways to transport a prob-
abilistic mass from point set X to Y , i.e., the transmission
scheme space of two probability measures μ and ν.

Kantorovich optimal transport is a specialized linear pro-
gramming problem designed for discrete probability vectors
[33]. Its objective is to extend the transport mapping to a
transport scheme,which allows for the probabilistic transport
of mass from one source to multiple targets. Kantorovich’s
key idea is to relax the deterministic nature of transport,
which assumes that the source can only be assigned to a single
point or location. Instead, he proposes the concept of proba-
bilistic transport, recognizing that mass at any point may be
dispersed to several places. Advanced linear programming
algorithms can be used to solve this problem.

Linear programming algorithms, such as the simplex
method, interior point method, and ellipsoid method, can
encounter limitations when faced with many existing prob-
lems. In such cases, entropy regularization is often employed
to overcome these challenges. By limiting the complexity of
the optimal transport problem solution, entropy regulariza-
tion can significantly reduce problem complexity and yield
an approximate solution to the problem at hand.

The optimal transmission problem of entropy regulariza-
tion is defined as

W = min
φ∈�(μ,ν)

〈C, φ〉 − εH(φ), (2)

where H(φ) is the entropy regularization function, and we
define ε as the entropy regularization parameter. Entropy
regularization remains a concept that requires effective algo-
rithms to unlock its potential, and the particular structure
of the problem allows the use of balancing algorithms [34],
which are also known as Sinkhorn algorithms [35] and RAS
[36]. The images in our dataset contain an irregular point
set of cells, requiring a convergent solution from the transfer
matrix approach. Therefore, we use the Sinkhorn algorithm
in each training iteration to generate predicted count maps
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at minimal cost. As ε approaches 0, the optimal solution
of the approximate optimal transport problem theoretically
converges to the optimal solution with maximum entropy
in the Kantorovich optimal transport problem. By definition,
this predicted cell distribution can converge to a near-optimal
solution, allowing formore accurate cell location predictions.

Furthermore, based on the existence of dyadic forms in
Monge-Kantorovitch problem, theMonge-Kantorovitch dis-
tance can be expressed as

W = min
φ∈�(μ,ν)

〈C, φ〉 = max
k,v∈Rn

〈k, μ〉 + 〈v, ν〉, (3)

where (k, v) is the solution to the dual problem, and
ki + v j ≤ c(xi , y j ). For this approach, the best-known com-

plexity bound in the literature is Õ
(
n2

ε3

)
to obtain Eq. (2).

They also show that the regularization parameters should be
proportionally chosen to ε, which requires the use of matrix
exp(−C/ε) and leads to the problem of numerical stability of
the algorithm, i.e., the approximate optimal solution obtained
by algorithm [37] is set as � = ki v j exp(−Ci j/ε).

We denote ai as the binary vectorization mapping func-
tion of point annotation and âi as the vectorization function
mapping of the intermediate prediction density graph gen-
erated by the neural network. Let ‖a‖1 and ‖â‖1 be the L1
norm of a and â. Let A(a) = a

‖a‖1 be the probability den-
sity functions of a. Naturally, the loss function based on the
Monge-Kantorovich distance can be described as

Lmk(a, â) = min〈A(a), A(â)〉 = 〈k, a

‖a‖1
〉 + 〈v,

â

‖â‖1
〉.
(4)

The gradient of Eq. (4) with respect to â is

∂Lmk

∂ â
= v

‖â‖1
− 〈v, â〉

‖â‖21
. (5)

Let I denote the set of microscopic cell images and A
denote the set of dot annotation maps. Suppose that {Hi } are
hypothesis spaces, each i = 1, . . . ,m. Let G = H1 × . . . ×
Hi , each g ∈ G maps I ∈ I to each dimension of a ∈ A. Let
Z denote the i.i.d. sample of (I , a) in the hypothesis space.
Let S = ((I1, a1), . . . , (Im, am)) be the sampling of the joint
distribution of M image sets and dot annotation maps.

To prove the effectiveness of the algorithm, we use the
empirical Radmacher complexity to express the bounds to
compute the optimal transport loss. According to [38], the
empirical teacher complexity of G is

RS(G) = E[sup
g∈G

1

M

m∑
i=1

σi g(Ii )], (6)

where variables σm in {σ } are distributed i.i.d. according to
P[σ = +1] = P[σ = −1] = 1

2 , {σ } = (σ1, . . . , σm) ∈
{±1}m .

Let � = H1 × . . . × Hi × Fm be the space mapping;
each γ ∈ � can be considered a mapping from (I , a) to
(â, a), where F is a single function space. R(S, γ, 
) =
E(I ,S)[
(S, γ (I ))] is the expected risk. Assume that for all
x ∼ Z , we have 
(x, x ′) ≤ c. Based onMcDiarmid inequal-
ity, the expression inequality for the extension bound can be
obtained as follows:

RS(E, g, 
) − RZ (Z, g, 
) ≤ 2R(
 ◦ �) + 5c

√
2 log(8/δ)

m
,

(7)

E is the Empirical Risk Minimization (ERM) rule, which
finds a hypothesis that is close to the optimal hypothesis
in S, and c is a Lipschitz constant based on 1-Lipschit z.
Lipschitz optimization [39] is based on the assumption that
the slope of the objective function is bounded.

The Lipschitz constant in the Monge-Kantorovich dis-
tance can be obtained as follows:

Lmk =
∑
i j

Ci jφi j ≤
∑
i j

Cmaxφi j = Cmax, (8)

where Cmax is the maximum value in C . Assume that


(x, x ′) =
∥∥∥ x

‖x‖ 1 − x ′
‖x ′‖ 1

∥∥∥
1
; then, 
(x, x ′) is 2n-Lipschit z.

For ∀p, p′, q, q ′ ∈ R
n+, we have

|
(p, p′) − 
(q, q ′)| ≤ 2n(‖p − q‖1 + ‖p′ − q ′‖1). (9)

3.2 Loss of total variation distance

When Sinkhorn is used as the entropy regularization algo-
rithm, only the optimal approximate solution can be obtained
[40]. Therefore, the density map of the cell image predicted
by the intermediate predicted cell density map generator can
only be close to the ground-truth density map but cannot be
consistent. The total variation (TV) distance [41] can be used
to measure the gap between two probability distributions to
optimize our loss function. The TV distance is defined as

Ltv(a, â) = sup
∣∣A(a) − A(â)

∣∣
1

= 1

2

∥∥∥∥
a

‖a‖1
− â

‖â‖1

∥∥∥∥
1
.

(10)

To simplify the description, we define o = a
‖a‖1 − â

‖â‖1 .
The gradient of Eq. (10) with respect to â is

∂Ltv(a, â)

∂ â
= −1

2

(
sign(= o)

‖â‖1
− 〈sign(= o), â〉

‖â‖21

)
. (11)
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The slope in the TV loss function is calculated to obtain
the constant in Lipschitz optimization, which is

Ltv = 1

2

∥∥∥∥
a

‖a‖1
− â

‖â‖1

∥∥∥∥
1

≤ 1

2

(∥∥∥∥
a

‖a‖ 1

∥∥∥∥
1
+

∥∥∥∥
â

‖â‖ 1

∥∥∥∥
1

)

= 1.

(12)

3.3 Count loss of cell number

Sparse features are extracted by the L1 norm to optimize the
learning process, which is also an effective regularization
method in common machine learning. The loss function is
used to compute the cost so that the generation forecasting
density figure approaches the real groud-truth density map
to make us count the cell image closer to the point with the
real value.

Thus, we must directly calculate to limit the counting
gap between their differences. Their counting gap is directly
defined as

Lct (a, â) = |‖a‖1 − ‖â‖1|. (13)

Similar to Eq. (9), the 1-Lipschit z constant for ∀p, p′, q,

q ′ ∈ R
n+ can be calculated as follows:

|
(p, p′) − 
(q, q ′)| ≤ ‖p − q‖1 + ‖p′ − q ′‖1. (14)

Given our assumption that the function on the mapping
space is bounded by a constant c, we calculate the Lipschitz
constant in Lct as Lct ≤ c.

To enhance the accuracy of the predicted cell image den-
sity map, we propose a loss function for the optimized
training process. This loss function is defined by combin-
ing Eqs (4), (10), and (13) as follows:

L(a, â) = αLmk(a, â) + β‖a‖1Ltv(a, â) +Lct (a, â), (15)

where α, β are adjustable hyperparameters, but the TV dis-
tance loss term is multiplied by ‖a‖1 so that Ltv and Lct are
in the same proportion.

Point annotations in microscopic cell image datasets pro-
vide information about the location of cells. However, most
density estimation algorithms require regions of varying sizes
in the background corresponding to the pixel location of each
cell. Therefore, diffusion parameters need to be determined
based on the size of each cell in the image. In dense cell
counting images, cell size is usually related to the distance
between the centers of neighboring cells. To generate ground-
truth densitymaps that are adaptive to determine the diffusion
parameters of each cell based on the average distance from
each cell to its neighboring cells, many studies utilize Gaus-
sian functions.

The ground-truth density map a′, which is traditionally
generated by a Gaussian function, is generated here by con-
volving the ground-truth dot annotation map â with the
position of each cell marked as 1 with the Gaussian kernel
kσ :

a′ = â ∗ kσ . (16)

Previous studies that use Gaussian kernels to generate
ground-truth density maps have shown some error in both
the density and point annotation maps. This error is due
to the selection of Gaussian kernel size and can impact the
accuracy of cell prediction density map generation. The error
caused by using the Gaussian method is even more signifi-
cant when the cell distribution is irregular and dense in the
images of the dataset. To demonstrate the theoretical supe-
riority of our method, we calculated error bounds for these
methods using the same theoretical analysis we used to cal-
culate error bounds for our approach based on the generalized
Gaussian method.

Assume that g is the kernel function on G with kσ as the
Gaussian kernel; then, let A′ be the set of predicted density
maps generated by the Gaussian function. Let Z ′ denote the
i.i.d. sample of (I , a′) in the hypothesis space. According
to the definitions of the empirical Radmacher complexity
and Gaussian Blur function [42], we can obtain the upper

(a) VGG Cells (b) MBM Cells (c) Adipocyte Cells
crop crop crop

Fig. 2 Examples of images in three datasets
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Table 1 Comparison of our results with previous work on the VGG
dataset

Method Ntrain MAE

[14] 32 3.5±0.2

[19] 32 3.2±0.1

[5] 64 2.9±0.2

[7] 64 2.6±0.4

[16] 50 2.3±0.4

[17] 64 2.3±0.3

Ours 64 2.3±0.2

bound on the generalization error in the process of generat-
ing the ground-truth density map for a kernel function with
Gaussian kernel σ as follows: RZ ′(Z ′, g′,L′) + 2nR(H) +
5c

√
2 log(8/δ)

m +E(I ,a)∼Z‖a − a′‖1,whereL′ is the loss func-
tion.

Similarly, the upper bound on the generalization error
of this work can be obtained by substituting the Lips-
chitz constants of each partial loss function: RZ (Z, g,L) +
(α4n2Cmax + βNn2 + 2n)R(H) + 5(αCmax + βN +
c)

√
2 log(8/δ)

m , where N is the maximum cell count in the dot
annotation maps.

In the above analysis of the upper exact bound on the

generalization error, we observe that R(H) and
√

2 log(8/δ)
m

gradually converge to 0 as m increases. This implies that, in
the training process using Gaussian smoothed ground-truth
density maps, the upper bound on the generalization error
converges to RZ ′(Z ′, g′,L′)+E(I ,a)∼Z‖a − a′‖1, while in
the optimal transportation method, the upper bound on the
generalization error tends to RZ (Z, g,L). By contrast, our
method, which uses direct computation of the point annota-
tion map and prediction count map gap, has a more compact
upper bound on the generalization error.

The use of theoretical proof provides a more intuitive
understanding of our method’s effectiveness, as measured by
the empirical Rademacher complexity measures and the rate
of uniform convergence. This demonstrates the theoretical
accuracy of our approach.

Table 2 Comparison of our results with previous work on the MBM
dataset

Method Ntrain MAE

[5] 15 21.3±9.4

[16] 15 8.8±2.3

[7] 15 5.7±1.2

Ours 15 4.8±0.4

Table 3 Comparison of our results with previous work on the ADI
dataset

Method Ntrain MAE

[16] 50 19.4±2.2

[7] 50 14.2±1.6

[17] 50 13.5±1.6

Ours 50 13.1±1.5

4 Experimental

4.1 Datasets

We evaluate the proposed method on three public cell
counting benchmarks: the synthetic fluorescencemicroscopy
(VGG) dataset, Modified Bone Marrow (MBM) dataset, and
human subcutaneous adipose tissue (ADI) dataset [16].

(1) There are 200 images with a 256×256 resolution, which
contain simulated bacterial cells from fluorescence-light
misroscopy in the VGG dataset. Lempitsky and Zisser-
man [14] used the method in [43] to create this dataset.
Each image contained 174± 64 overlapping cells at dif-
ferent focal distances.

(2) The MBM dataset consisted of 11 bone marrow images
of height healthy individuals based on the 1200×1200
resolution introduced by Kainz et al. [44], where the
nuclei of various cell types were marked blue using stan-
dard procedures. In [16], each 1200×1200 resolution
source data image was cropped into four 600×600 res-
olution images, i.e., a total of 44 images in the dataset.
There were 126 ± 33 cells in each image.

(3) The source data of the ADI dataset is a human subsuta-
neous adipose tissue dataset obtained by the Genotype-
Tissue Expression Consortium (GTEx) [45]. There are
200 images with a 150×150 resolution. On average,
there are 165 ± 44.2 cells per image.

Due to the small size of the dataset, to train a better neural
network model and avoid problems such as overfitting, we
performed mirror flipping on the data to amplify the data
volume and randomly clipped each image in the dataset for
training. The clipping size of the VGG and ADI datasets is
112×112, and that of theMBMdataset is 224×224. Figure2
shows the image examples of the three datasets used in this
paper and their corresponding annotated visualizations.

4.2 Evaluationmetric

Based on previous work, we randomly selected images from
the test set and used these images to evaluate the perfor-
mance of the proposed model. We use the mean absolute
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error (MAE) of cell counts between the prediction and the
ground-truth of each test image as the evaluation criterion,
which is formulated as follows:

MAE = 1

N

N∑
i=1

|ŷi − yi |, (17)

where N is the total number of test images, i denotes the
image index, yi is the ground-truth value of the number of
cells in the current ith image, and ŷi is the number of cells
predicted by the current i-th image.

4.3 Optimization

In our experiment, we optimized the neural network param-
eters using the Adam optimizer. We addressed the issue of
moment estimators in the adaptive gradient descent algo-
rithm of Adam by computing the gradient using a moment
and second-moment estimation, and designing parameters
for different independent vector adaptabilities. We set the
weight decay value to 0.0001 and the initial learning rate
to 0.00001. Throughout all experiments, we used parameter
values of 0.1 for α and 0.01 for β. To regularize our results,
we utilized the Sinkhorn algorithm, setting the regulariza-

Input Target L2 Loss Ours

True count = 78

True count = 112

True count = 119

Predict count = 65.85

Predict count = 100.32 Predict count = 125.17

Predict count = 80.22

Predict count = 89.20 Predict count = 97.53

Fig. 3 Visualization of the predicted count maps generated with dif-
ferent loss functions. The first column shows the input cell image, and
the second column shows the corresponding count target. Each white
annotated point represents a cell to be counted in the input image. The
third column displays the prediction count map of the corresponding
input image generated by the neural network under the L2 loss function,

while the fourth column displays the predicted count map of the same
input image generated by the neural network under our proposed loss
function. As seen in the visualization, our proposed loss function yields
prediction counts that are closer to the true counts compared to the L2
loss function
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VGG MBM ADI

Fig. 4 Experimental results for multiple methods with different N. N
refers to the number of images used for training in the dataset. The left
panel displays the results on the VGG dataset, the middle panel shows
the experimental results on theMBM dataset, and the right panel shows

the experimental results on the ADI dataset. The horizontal axis indi-
cates the number of images N used for training, and the vertical axis
represents the MAE results on the test data

tion parameter of the Sinkhorn entropy to 10, and running
100 iterations.

4.4 Results and discussion

We divided the training set and test set for each dataset
according to the evaluation criteria proposed in previous
works [5, 14, 16]. The number of images used for training,
denoted as Ntrain , was kept consistent across all experi-
ments to ensure the fairness and credibility of our results.
We used the same parameter settings as those in the compar-
ison work. The experimental results for the VGG,MBM, and
ADI datasets are presented in Tables 1, 2, and 3, respectively.
The second column of each table indicates the segmen-
tation methods for the number of training set images in
the datasets of different methods, and the third column
shows the mean absolute error (MAE) values of the exper-
imental results. To facilitate the comparison of different
methods, we only present the best results obtained for dif-
ferent Ntrain divisions in each table. Specifically, for the
VGG dataset, we obtained the best results when Ntrain was
set to 64, while for MBM and ADI, the values of Ntrain

were 15 and 50, respectively. Our method performed simi-
larly to the existing best-performing methods on the VGG
and ADI datasets, while outperforming them in terms of
accuracy.

We conducted 10 experiments with different training set
size divisions in various datasets using the same configu-
ration environment. We calculated the mean values of the
results and compared them with those of previous works.
The prediction count maps using different training losses are
shown in Fig. 3. Our method produced more accurate pre-
dictions and localizations compared to the previous works.
Figure4 provides a comparison of ourmethodwith the previ-

ous work in several aspects, demonstrating that our approach
outperforms the previous work.

4.5 Ablation study

In our work, the loss function is comprised of three com-
ponents: the loss of counts (Lct), which directly measures
the difference between predicted and actual counts; the
total variance distance (Ltv), which acts as a regulariza-
tion to smoothen the density map predictions; and the
Monge-Kantorovitch distance loss (Lmk), whichmatches the
predicted and true images through distribution matching. To
evaluate the effectiveness of our proposed loss function, we
conducted ablation experiments on the VGG dataset using
different combinations of these three components during
training. The experimental results are shown in Table 4,
which demonstrate that our proposed loss function improves
the accuracy of the prediction count map generated by the
model. By incorporating the loss of counts, we are able to
directly measure the difference between predicted and actual
counts, resulting in more accurate predictions. Additionally,
the total variance distance acts as a regularization to pre-
vent overfitting and smoothen the density map predictions,
while theMonge-Kantorovitch distance lossmatches the pre-

Table 4 Different combinations of loss functions

Loss funtion Combinations

Lct
√ √ √ √

Ltv
√ √

Lmk
√ √

MAE 5.3 ± 1.8 4.9 ± 1.5 2.6 ± 0.3 2.3 ± 0.2
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Fig. 5 Comparing the results of
setting different experimental
parameters

dicted and true images through distributionmatching, further
improving the accuracy of our predictions.

In the loss function, α and β are adjustable parameters,
and we adjust the parameter values on the VGG dataset. We
fix the value of α to 0.1 and adjust β to 0.001, 0.01, 0.03,
0.05, and 0.07. Themodel results performed best whenβ was
0.01, so we set β to 0.01. Additionally, the value of α was
adjusted to 0.01, 0.1, 0.3, 0.5, and 0.7, and the model results
showed the best performance when α was 0.1. Therefore, we
set α = 0.1 and β = 0.01 in all datasets. The comparison
results are shown in Fig. 5.

We set different numbers of Sinkhorn iterations. The
experimental results show that after the number of iterations
has been set to 100, the experimental results gradually tend
to be stable. Table 5 shows the experimental results on the
VGG dataset with different numbers of Sinkhorn iterations.
When the Sinkhorn value is set to 100, the counting results
in the dataset are the most accurate.

5 Conclusion

In this paper, we propose to use an optimal transport theory
approach to supervise density regression for cell count-
ing and demonstrate its effectiveness on public microscopic
cell datasets. A neural network model is utilized to gen-
erate prediction count maps, and the difference between
the generated predictions and annotated data is treated as
a distribution matching problem, which optimizes the pre-
dicted count result. This approach weakens the negative
impact on the count results caused by issues such as mutual
occlusion of cells in the cell images and low quantity of

Table 5 Set different numbers of Sinkhorn iterations

Sinkhorn iterations MAE

60 2.9 ± 0.2

80 2.8 ± 0.3

100 2.3 ± 0.2

120 2.4 ± 0.2

140 2.4 ± 0.2

training data. Our distribution matching approach demon-
strates strong generalization power in counting work with
different datasets. The visualization figures and results across
three datasets show that compared with commonly used
loss functions such as L2 loss, the prediction count maps
obtained by our proposed method based on the loss func-
tion constructed by optimal transport theory have more
compact prediction maps and better quantification results.
In conclusion, our proposed approach based on optimal
transport theory provides a powerful tool for supervis-
ing density regression in cell counting tasks. Our results
demonstrate the superiority of our approach over commonly
used loss functions, showing that it is effective in han-
dling mutual occlusion of cells and low quantity of training
data.
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