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Abstract
Automatic seizure detection and prediction using clinical Electroencephalograms (EEGs) are challenging tasks due to factors
such as low Signal-to-Noise Ratios (SNRs), high variance in epileptic seizures among patients, and limited clinical data
constraints. To overcome these challenges, this paper presents two approaches for EEG signal classification. One of these
approaches depends onMachine Learning (ML) tools. The used features are different types of entropy, higher-order statistics,
and sub-band energies in the Hilbert Marginal Spectrum (HMS) domain. The classification is performed using Support Vector
Machine (SVM), Logistic Regression (LR), and K-Nearest Neighbor (KNN) classifiers. Both seizure detection and prediction
scenarios are considered. The second approach depends on spectrograms of EEG signal segments and a Convolutional Neural
Network (CNN)-based residual learning model. We use 10000 spectrogram images for each class. In this approach, it is
possible to perform both seizure detection and prediction in addition to a 3-state classification scenario. Both approaches
are evaluated on the Children’s Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT) dataset, which
contains 24 EEG recordings for 6 males and 18 females. The results obtained for the HMS-based model showed an accuracy
of 100%. The CNN-based model achieved accuracies of 97.66%, 95.59%, and 94.51% for Seizure (S) versus Pre-Seizure
(PS), Non-Seizure (NS) versus S, and NS versus S versus PS classes, respectively. These results demonstrate that the proposed
approaches can be effectively used for seizure detection and prediction. They outperform the state-of-the-art techniques for
automatic seizure detection and prediction.
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1 Introduction

Epilepsy is a neurological disease that is not contagious, not a
mental illness, and not a developmental disability. A seizure
is a brief disruption of the electrical activities in the human
brain [1]. Epileptic seizures are attributed to deformities in
the human brain that make the patient prone to seizures,
which are usually frequent and recurrent [2]. According
to the International League Against Epilepsy (ILAE), the
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most recent definition is that “Epilepsy is a disorder of the
brain characterized by an enduring predisposition to gener-
ate epileptic seizures”. This definition of epilepsy requires
the occurrence of at least one epileptic seizure. The seizures
occur because of sudden and abnormal electrical activities
in the brain, or excessive electrical discharges in a group of
brain cells. Different parts of the brain can be the source of
such discharges. When the nerve cells send distorted signals,
they ignite patients with distressed feelings making them act
strangely, usually as a spasm or a violent vibration involving
the muscles [3–6].

Research studies provided by the World Health Organi-
zation (WHO) show that approximately 50 million people
suffer from epilepsy worldwide. The estimated proportion
of the general population with active epilepsy, i.e., continu-
ing seizures or with the need for treatment at a given time,
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is between 4 and 10 per 1000 persons [7]. However, some
studies in low- and middle-income countries reveal that the
proportion is much higher, between 7 and 14 per 1000 per-
sons. Most seizures last from 30 seconds to 2 minutes and do
not cause lasting harm [8]. However, there is a medical emer-
gency if seizures last longer than 5 minutes or if a person has
many seizures and does not wake up between them. Seizures
may start at any time during life and occur sporadically at
infrequent intervals or frequently.

EEG is the recording of electrical activities along the scalp
produced by the discharging of neurons within the brain.
It refers to the recording of the brain spontaneous elec-
trical activities over a period. When brain cells (neurons)
are activated, local current flows are produced. The electri-
cal activities are detected using small, and flat metal discs
(electrodes) attached to the brain scalp. The brain cells send
electrical impulses that are active all the time, even during
human sleeping [9].

Automatic seizure detection and prediction fromEEG sig-
nals have received considerable research attention for a better
understanding of epilepsy and more efficient management of
the disease. Feature extraction is a key step in performing
EEG signal classification for detection or prediction [10].We
imagine courageously amethod inwhich classification is car-
ried out without complex feature extraction, and the recent
development of CNN has provided a new way of addressing
this issue. Original EEG signals converted to images using
spectrogram estimation are directly used to train a CNN. We
not only consider binary epilepsy scenarios, e.g., NS versus
S and NS versus PS, but also verify the ability to classify NS
versus S versus PS.

In this paper, two approaches for detecting and predicting
epileptic seizures in EEG signals are introduced. The first
one is based on feature extraction in the HMS domain. EEG
signals are first split into Intrinsic Mode Functions (IMFs).
The instantaneous frequency spectrum of each of the col-
lected IMFs is then obtained using the Hilbert transform.
For IMFs, main features such as spectral entropy, skewness,
kurtosis, and sub-band energies are extracted and then used.
SVM, LR, and KNN are the three classifiers utilized. Sec-
ondly, an efficient approach for activity detection from EEG
signals is proposed. It incorporates the generation of spectro-
grams of EEG signals. A CNN is used for the classification
of spectrogram images. The proposed model depends on the
use of residual learning and depth concatenation techniques.
The main contributions of this work can be listed as follows:

– Proposal of an approach that depends on HMS domain
and SVM for seizure detection and seizure prediction.

– Proposal of an approach that generates spectrograms of
EEG signals and performs various classification scenar-
ios for seizure detection and prediction.

– Proposal of a CNN model to be used for classification.
The proposed model incorporates depth concatenation
and residual learning strategies.

– Study of the impact of different CNN hyper-parameters
on the classification performance.

– Measurement of the performance of the proposedmodels
and comparison with different state-of-the-art models.

2 Related work

In recent years, there has been a growing interest in the
utilization of ML and Deep Learning (DL) models for the
classification of biomedical data. These models have been
applied on a wide range of data types, including EEG sig-
nals, Magnetic Resonance Imaging (MRI) scans [11, 12],
and electrocardiography (ECG) signals. Various ML and DL
techniques, such as SVMs, kNNs, Random Forests (RFs),
CNNs, and Recurrent Neural Networks (RNNs), have been
used to classify biomedical data with high accuracy and
precision. Additionally, several studies have used ensem-
ble methods, such as boosting and bagging, to improve the
classification performance. Overall, the use of ML and DL
models for the classification of biomedical data is a promis-
ing area of research with the potential to revolutionize the
field of healthcare [13, 14]. For epileptic seizure detection
using EEG signals, many strategies have been developed. In
[15], the researchers suggested an automated seizure detec-
tion approach in the Empirical Mode Decomposition (EMD)
domain. Higher-order statistics, including variance, kurto-
sis, and skewness, are extracted and utilized as features. An
artificial neural network is used for the classification task.
Bizopoulos et al. [16] presented HMS analysis in combina-
tion with k-means clustering to detect epileptic seizures. The
authors of [17] employed a method for detecting seizures
from EEG signals based on HMS. As discriminative fea-
tures, spectral entropies and sub-band energies are utilized.
An SVM is used for classification. Ibrahim et al. [18] intro-
duced threemodels for the classification task of EEG signals.
Two of the models are patient-specific and designed for the
classification of NS versus PS activities for seizure predic-
tion, and NS versus S activities for seizure detection. The
third model is patient non-specific, making it better suited
for general classification tasks. The first model utilizes a
CNN with residual blocks, containing thirteen layers and
four residual learning blocks. It works on spectrograms of
EEG signal segments. The second model depends also on
a CNN with three layers and works on spectrograms. The
thirdmodel, in contrast, depends onPhase SpaceReconstruc-
tion (PSR) to eliminate the limitations of spectrograms used
in the first two models. A five-layer CNN is used with this
strategy.
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Riaz et al. [19] presented a technique for extracting
features fromEEGsignals using theEMD. It depends on tem-
poral moments of the third order, as well as spectral features
like the spectral centroid, coefficient of variation, and spec-
tral skewness of the IMFs. These features are physiologically
meaningful as they can differentiate normal EEG signals
frompathological EEGsignals in terms of temporal and spec-
tral centroids, dispersions, and symmetries. The extracted
features are then fed into an SVM classifier. For epileptic
seizure detection, Hassan et al. [20] employed Complete
Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN). Once the EEG signal segments have
been decomposed into CEEMDAN IMFs, these IMFs are
modeled using the symmetric Normal Inverse Gaussian
(NIG) Probability Density Function (PDF). The estimated
NIG parameters are then used as features for the epileptic
seizure detection algorithm. The symmetric NIG PDF is a
variance-mean mixed density in which the inverse Gaussian
density constitutes the mixed distribution. The scale and fea-
ture factors of the NIG PDF computed from each of the
CEEMDAN IMFs are utilized as features in the epileptic
seizure detection algorithm. Bouaziz et al. [21] have man-
aged to segment the EEG signals of CHB-MIT into 2-second
frames, and then transformed them into a spatial represen-
tation by producing a set of intensity images. These images
were fed to a CNN, which has a total of eight layers com-
prising one initial input layer, five hidden layers, one fully-
connected layer, and anoutput layer. Their approach achieved
an accuracy of 99.48%. It managed to reduce dimensionality,
and then allow the Genetic Algorithm (GA) classification.

Rajaguru et al. [22] adopted Multilayer Auto-Encoders
(MAEs) and Expectation-Maximization merged with Princi-
pal Component Analysis (EM-PCA). The performance index
represented in classification accuracy was 93.78%. Natural
and abnormal brain activities were studied by Roy et al. [23],
as they proposed four different DL schemes. The develop-
ment of the ChronoNet model was conducted based on other
models. This model gave 90.60% and 86.57% training and
testing accuracies, respectively. A multi-scale 3D-CNNwith
a bidirectionalGatedRecurrentUnit (GRU)modelwas intro-
duced by Choi et al. [24] for cross-patient seizure detection.
Short-Time Fourier Transform (STFT) was used to get spec-
tral and temporal features from EEG signals.

Any proposed method should be able to distinguish
between NS and S states, when it comes to seizure detection.
Shoeb [25] employed an SVM classifier to identify seizures.
His approach achieved a False-Positive Rate (FPR) of 0.08
/h and an average accuracy of 96%. Thodoroff et al. [26]
presented a seizure detection approach based on a recurrent
convolutional neural network and an image-based EEG sig-
nal representation. The results showed a sensitivity of 96%
and an FPR of 0.08 /h. In [27], the authors used a hybrid
method to select IMFs extracted by EMD and Ensemble

EmpiricalMode Decomposition (EEMD). For classification,
an SVM is utilized. By using EMD and the EEMD, aver-
age accuracies of 94.56% and 96.06%, respectively, have
been achieved. Truong et al. [28] used the Freiburghigher-
order statistic spital intracranial EEG (iEEG) dataset, the
CHB-MITdataset, and theAmericanEpilepsySociety (AES)
Seizure Prediction Challenge dataset. To construct spectro-
grams, the STFT algorithm has been applied to raw data.
This patient-orientedmodel gave sensitivity values of 81.4%,
81.2%, and75%andFPRvalues of 0.06/h, 0.16/h, and0.21/h,
for the pre-mentioned datasets, respectively.

For seizure prediction, the Hilbert-Huang Transform
(HHT) and a Bayesian classifier were utilized in [29]. First,
signals are pre-processed for noise reduction. The HHT
is then used to extract features. For feature selection, a
Correlation-based Feature Selection (CFS)methodwas used.
For classification, Bayesian networks were utilized. Finally,
post-classification, a post-processing technique, was used
to merge the individual probabilities gained. This approach
has a sensitivity of 96.55% and an FPR of 0.21/h. Consul
et al. [30] introduced a Hilbert domain hardware prediction
algorithm. After obtaining the instantaneous phase using the
Hilbert transform, the Phase-Difference (PD) approach has
been used. This approach achieved a prediction time ranging
from 51 seconds to 188 minutes and a sensitivity of 88.2%.

Chu et al. [31] used an attractor state-analysis-based
seizure predictive model. The accuracy of this model was
86.6%, with a false prediction rate of 0.367/h and an aver-
age prediction time of 45.3 minutes. Sedik et al. [32] used a
statistical framework based on the use of various digital fil-
ters to predict seizures. A prediction time of 66.6 minutes, an
accuracy of 96.2485%, and a false-alarm rate of 0.10526/h
have been achieved. Emara et al. [33] presented an automatic
seizure detection approach based on Scale-Invariant Fea-
ture Transform (SIFT) in the frequency domain as a feature
extraction tool. This approach has been tested on the CHB-
MIT dataset. An accuracy of 99.97% has been achieved.
Emara et al. [34] proposed an approach for EEG seizure pre-
diction and channel selection in the Hilbert domain. Signal
attributes in the Hilbert domain, including amplitude, deriva-
tive, local mean, local variance, and median, are analyzed
statistically to perform the channel selection and seizure
prediction tasks. An average prediction rate of 96.46%, an
average false-alarm rate of 0.028/h, and an average predic-
tion time of 60.16 min for a 90-min prediction horizon have
been reported.

Yoo et al. [35] proposed another time-domain detection
technique, where the signal energy is computed during S
and NS intervals on patient-specific data. They used SVM
as a classifier with an accuracy of 84.4%. In addition, there
are several seizure detection methods based on frequency
domain processing. Rana et al. [36] proposed a technique
based on multi-channel Electro-Cortico-Gram (ECoG) and
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the phase-slope index. Another technique was introduced
dependingon frequency-moment signatures to detect patient-
specific seizures with a sensitivity of 91% [37]. Furthermore,
several methods have been proposed based on dividing the
EEG signals into time intervals, and then applying a suit-
able transform. Gabor transform, Fourier transform, and
many other transforms have been used to obtain suitable
seizure features. Zhou et al. [38] proposed another technique
using lacunarity and Bayesian linear discriminant analysis
for seizure detection with a sensitivity of 96.25%. Liu et al.
[39] proposed a wavelet-transform-based technique, using
SVM in long-term iEEG with a sensitivity of 94.46%, and a
specificity of 95.26%.

The CNN-based classification methods achieve remark-
able results on various datasets. To study these methods,
several aspects should be taken into consideration, including
the number and the architecture of CNNs, the dataset used
for training, the type of loss function and the incorporated
learning strategies. Vidyaratne et al. [40] proposed cellular
neural networks and bi-directional recurrent neural networks
to extract temporal features for seizure analysis. Shoeb et al.
[41] presented a patient-specific ML technique based on the
CHB-MIT dataset. They extracted spectral and spatial fea-
tures and then combined non-EEG features to form feature
vectors. Their approach detected 96% of 173 test seizures in
an event-based assessment. Pramod et al. [42] and Turner et
al. [43] used deep belief networks applied to multi-channel
EEG data for seizure detection. Moreover, Kashif et al. [44]
designed a hybrid Local Binary Pattern (LBP) wavelet-based
approach to classify EEG signals for epilepsy patients. LBP
is used to transform the EEG signal into a new signal, and
then the Discrete Wavelet Transform (DWT) is employed to
decompose the obtained signal. Linear Discriminant Anal-
ysis (LDA) classifier has been used for the classification
process. Experiments were carried out on 105 seizures for
14 randomly-selected subjects of the CHB-MIT dataset.

Lorena et al. [45] developed a patient non-specific strat-
egy for seizure detection based on the Stationary Wavelet
Transform of EEG signals. Their approach was tested on
scalp EEG records of 24-48 h for 18 epilepsy patients. Safi
et al. [46] proposed a framework based on Convolutional
Denoising Auto-encoder (CDA) for multivariate time series
imputation. In addition, they performed a pre-processing step
to encode time series data into 2D images using Gramian
Angular Summation Field (GASF).Wang et al. [47] designed
an approach to convert time series data into novel repre-
sentations using Gramian Angular Field (GAF) and Markov
Transition Field (MTF) images. Barra et al. [48] presented a
method for forecasting certain patterns by applying DL tech-
nologies and encoding time series on GAF images. In [49],
epileptic seizures have been classified based on the reinforce-
ment learning technique. In this technique, Hilbert-Huang
transform is used to extract 19 time-frequency domain fea-

tures. Its classification accuracy reached 96.79%. In [50],
seizure classification has been performed depending on brain
activities. In addition, wavelet transform is used for EEG sig-
nal decomposition. Classification accuracy reached 89.60%
using cubic SVMclassifier and 87.00%usingweightedKNN
classifier.

3 Materials andmethods

3.1 CHB-MIT dataset

The experiments have been carried out on large datasets to
ensure generality. The CHB-MIT dataset [51] is a publicly-
available dataset from physionet.org that contains 686 sEEG
taken for 24 patients treated at Boston Children’s hospital.
Only 198 of the 686 records contain seizures. The worldwide
10-20 standard EEG electrode placement and labeling have
been employed for dataset acquisition. However, 17 of the
seizure files exhibited distinct channel montages. As a result,
these 17 records havebeen eliminated from this study, leaving
181 seizure files. Table 1 provides detailed information about
the dataset used to evaluate the proposed approach.

Table 1 Summary of the utilized EEG dataset

Patient No. No. of Hours No. of Seizures Gender Age

1 40.55 7 F 11

2 35.16 3 M 11

3 36 7 F 14

4 150.7 4 M 22

5 39 5 F 7

6 68.24 10 F 1.5

7 67.05 3 F 14.5

8 20 5 M 3.5

9 65.02 4 F 10

10 50.02 7 M 3

11 34.62 3 F 12

12 23.671 40 F 2

13 32 12 F 3

14 25.851 8 F 9

15 39.42 20 M 16

16 19 10 F 7

17 22 3 F 12

18 35.633 6 F 18

19 29.93 3 F 19

20 27.595 8 F 6

21 31.816 4 F 13

22 32 3 F 9

23 25.733 7 F 6

24 12 16 M 12.5
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3.2 ML-based approach

Figure 1 depicts the main architecture of the proposed
approach for seizure detection and prediction. EEG sig-
nal analysis involves segmentation, EMD, HHT, and ML
classifier to detect epileptic seizures. The first step is the
segmentation process, which involves dividing the EEG
recording into small segments of a specific length. A win-
dow refers to the specific time frame or duration used to
divide the EEG recording into smaller segments. The win-
dow size can have a significant impact on the analysis and
interpretation of the EEG signals. A smaller window size
will provide a higher temporal resolution and will allow for
the detection of short-lived events, such as seizures. How-
ever, smaller window sizes can also increase the amount of
noise,making itmore difficult to detect seizures. On the other
hand, larger window sizes will provide a lower temporal res-
olution but will reduce the amount of noise, making it easier
to detect seizures. The segmentation process is followed by
the application of the HHT on the segments. The HHT is a
signal processing technique that can be used to decompose
a non-linear and non-stationary signal into its IMFs. The
HHT is based on the EMD and the Hilbert transform. The
EMD decomposes the signal into a set of IMFs, each repre-
senting a different intrinsic oscillatory mode present in the
signal [52–54]. The Hilbert transform is then applied on each
IMF to obtain the corresponding instantaneous frequency. By
applying the HHT on the segments, the proposed approach
provides a detailed analysis of the EEG signal and extracts
relevant features that can be used to detect seizures. TheHHT
allows for a frequency-time analysis of the EEG segments,
providing further information about the signal dynamics, and
the IMFs obtained from the EMD allow isolation of differ-
ent intrinsic oscillatory modes present in the signal. After
that, spectral entropies, sub-band energies, and higher-order
statistics are used as features to classify the EEG segments as
S or NS. These features are extracted from the segments after
applying the HHT and are used to train MLmodels. Spectral

Fig. 1 Block diagram of the proposed epileptic seizure detection
approach using HMS with different classifiers

entropies, such as Shannon, Tsallis, and Renyi entropies, are
calculated from the power spectra of the signals. They can
be used to distinguish S segments from NS segments. This
can be done by comparing the entropy of the signal during S
and NS states and identifying any significant differences in
complexity. Sub-band energies represent the energy present
in different frequency bands of the signal. They can provide
information on the distribution of energy in different fre-
quency bands. This strategy can be used to detect any changes
in energy distribution that may be indicative of seizures.
Higher-order statistics are statistical features that capture the
characteristics of a signal beyond the traditional second-order
features such as power and energy. Examples of higher-
order statistics include kurtosis and skewness. These features
can provide additional information about the signal that can
be used to detect seizures. They can be used to detect any
changes in the distribution of the signal thatmay be indicative
of seizures. Overall, these features are chosen to reflect the
characteristics of the EEG signal that can help to distinguish
S fromNS or PS segments. These features are then combined
to provide a comprehensive analysis of the EEG signal. The
features are fed into ML models like SVM, to classify the
segments as S, NS, and PS. ML models are used to classify
the EEG segments as S or NS based on the features extracted
from the segments. The proposed approach depends on the
use of three different types of ML models: SVM, KNN, and
LRmodels. SVM is a supervised learning algorithm that cre-
ates a hyperplane or a set of hyperplanes in high-dimensional
space to separate different classes. SVM is known for its
ability to handle high-dimensional and non-linearly separa-
ble data, which makes it a good candidate for EEG signal
analysis. KNN is a non-parametric tool that assigns a class
label to a new data point based on the major class among its
k-nearest neighbors. KNN is a simple and easy-to-implement
algorithm that is known for its good performance on small
datasets. LR is a supervised learning algorithm that mod-
els the relationship between a dependent variable and one
or more independent variables by fitting a probability dis-
tribution function. LR is a simple and easy-to-implement
algorithm that can be used to model the probability of an
event occurring. These three algorithms have been selected
as they are known to be good classifiers, and they have been
widely used in EEG signal analysis. The tuning parameters of
thesemodels are presented inTable 2. The performance of the
models has been evaluated using metrics such as accuracy,
sensitivity, and specificity, and fine-tuned, accordingly. The
combination of these ML models with the proposed feature
extraction method, which gives spectral entropies, sub-band
energies, and higher-order statistics, will provide a compre-
hensive analysis of the EEG signal and increase the chances
of detecting seizures with high accuracy.
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Table 2 Tuning parameters definitions and their values for SVM, KNN, and LR classifiers in the proposed approach for seizure detection and
prediction

Model Parameters Definition Value or Func-
tion

SVM Kernel function Kernel function to transform the input data into a higher dimen-
sional space, where it becomes linearly separable

Radial Basis
Function (RBF)

Regularization
parameter (C)

A parameter that controls the trade-off between maximizing the
margin and minimizing the mis-classification error

0.1

Gamma A parameter that controls the width of the RBF kernel 0.1

Tolerance Aparameter that is used to stop the optimization process. Smaller
tolerance values will result in more accurate solutions, but will
also require more time to train the model.

10−4

KNN K Aparameter that represents the number of nearest neighbors used
to classify a new data point.

5

Distance metric A parameter that represents the method used to measure the dis-
tance between data points.

Manhattan dis-
tance

Weighting
scheme

A scheme that represents the method used to assign a weight to
each nearest neighbor, when classifying a new data point.

Distance-based
weighting

Normalization A process that represents the method used to normalize the fea-
ture values.

Z-Score nor-
malization

LR Regularization
parameter (C)

A parameter that controls the trade-off between maximizing the
likelihood of the model and minimizing the complexity of the
model.

0.1

Optimization
Algorithm

A tool that represents the method used to optimize the cost func-
tion.

Gradient
Descent

Tolerance Aparameter that is used to stop the optimization process. Smaller
tolerance values will result in more accurate solutions, but will
also require more time to train the model.

10−5

Penalty A parameter that is used to specify the type of regularization. LII

3.2.1 The Hilbert-Huang Transform (HHT) and its spectrum

The Hilbert transform is applied on each IMF component
once the IMFs have been computed using the EMD [51].

H [qi (t)] = 1

π

ˆ +∞

−∞
qi (τ )

t − τ
dτ (1)

where qi (τ ) and H [qi (t)] form a complex conjugate pair that
specifies an analytic signal Zi (t).

Zi (t) = qi (t) + j H [qi (t)] (2)

It can be represented as:

Zi (t) = ai (t)exp( jωi (t)) (3)

where ai (t) is the amplitude and θi (t) represents the phase.

ai (t) =
√
ci (t) + H2[ci (t)] (4)

θi (t) = arctan

(
H [ci (t)]
ci (t)

)
(5)

Thus, the instantaneous frequency ωi (t) can be defined as:

ωi (t) = dθi (t)

dt
(6)

Therefore, the original data can be defined as follows:

E(t) = Re
L∑

i=1

ai (t)exp( j
ˆ

ωi (t)dt) (7)

where the residue ul(t) has been discarded. Hilbert-Huang
spectrumrepresentstheinstantaneousamplitudeandtheinstanta-
neous frequency in a three-dimensional plot, where the
amplitude represents the height in the time-frequency plane.

H(ω, t) = Re
L∑

i=1

ai (t)exp( j
ˆ

ωi (t)dt) (8)

Finally, the marginal spectrum h(ω) can be expressed as fol-
lows:

h(ω) =
ˆ T

0
H(ω, t)dt (9)
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The marginal spectrum gives a measure of the total energy
contribution from each frequency value. Thus, the local
marginal spectrum of each IMF component is defined as:

hi (ω) =
ˆ T

0
Hi (ω, t)dt (10)

The local marginal spectrum hi (ω) gives a representation of
the total amplitude contribution versus frequency ω that we
are interested in.

3.2.2 Feature extraction

The distinctive attributes of a signal are represented by fea-
tures. The next step is to identify discriminating features
of EEG signals for different classes. Different attributes,
namely, Renyi entropy, Tsallis entropy, Shannon entropy,
sub-band energies, skewness, and kurtosis are extracted and
used as the main features.

1. Spectral Entropies Entropy is an indication of disorder
in physical systems. It is related to the amount of infor-
mation obtained by observations of disordered systems.
Spectral entropy depends on the PDF of spectral proba-
bilities. Flat probability distribution means high entropy.
On the other hand, peaked probability distribution means
low entropy [56]. The Fourier-spectrum-based entropies
have a great contribution to the success of EEG seizure
detection problems [56, 57]. Entropy is a statistical mea-
sure of the variability within the EEG signal. HMS-based
entropy is exploited to provide a better performance in
EEG signal analysis, due to its highest performance in
non-stationary signal analysis. Three different statistical
entropies are employed and discussed. To estimate the
entropy, the spectrum should be normalized to obtain the
probability mass function.

pi = Pi∑n
i=1 Pi

(11)

where Pi represents the energy content corresponding to
the frequency component i . Moreover, pi represents the
probability density function of the spectrum. Then, the
Shannon entropy is expressed as follows [58]:

SEN = −
n∑

i=1

pi logpi (12)

where pi is the probability density of the spectrum:

n∑

i=1

pi = 1 (13)

The Renyi entropy is expressed as follows [59]:

RENα = 1

1 − α
log

n∑

i=1

pα
i (14)

The Tsallis entropy is expressed as follows [60]:

T ENα = 1

1 − α
(1 −

n∑

i=1

pα
i ) (15)

where α is a tuning factor to generate a profile that is less
sensitive to the shape of probability distributions. In this
paper, α is set to 2 for both Renyi and Tsallis entropies.

2. Sub-band energies Sub-bands are obtained with digital
filters to extract features from each one. The used sub-
bands are delta: 0-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz,
beta: 12-30 H, and gamma: 30-50 Hz [61]. The energy
distribution between S andNS segments is quite different
[62]. For a normalEEGsegment, the energy is included in
the delta wave, while the same wave in the seizure con-
tains a small proportion of the total energy. Therefore,
sub-band energy is effective in EEG seizure detection.
The sub-band energies in HMS are expressed as follows
[63]:

ei =
k−1∑

f =0

h2i (16)

where k represents the total number of frequency bins
and hi is the i th sub-band of the spectrum.

3. Higher-order statistics The distribution of the samples
of an EEG signal is characterized by its level of disper-
sion and asymmetryμ. Hence, skewness and kurtosis are
utilized as main features for the EEG seizure detection
problem. For an N-point sequence, X = x1, x2, ..., xN ,
the corresponding skewness β1, and kurtosis β2 are cal-
culated as follows [64]:

β1 = 1

N

N∑

i=1

(
xi − μ

σ
)3 (17)

β2 = 1

N

N∑

i=1

(
xi − μ

σ
)4 (18)

whereμ represents the sample mean of the sequence and
σ denotes its StandardDeviation (SD). The skewness and
kurtosis are computed from the second-order, third-order,
and fourth-order moments.
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Fig. 2 Comparison of HHT spectral analysis of Seizure (S) and Non-Seizure (NS) EEG signals for the frequency band of 0-90 Hz

3.2.3 Performance metrics

The proposed approach performance is evaluated using stan-
dardmetrics such as sensitivity, specificity, and accuracy [65,
66]. TP is the total number of true seizure events, whereas
Tn denotes the total number of true normal events. The vari-
ables FP (False positive) and Fn (False negative) denote the
total number of erroneous seizures andnormal events, respec-
tively.

Sensi tivi t y = Tp

Tp + Fn
× 100% (19)

Speci f ici t y = Tn
Tn + Fp

× 100% (20)

Accuracy = Tp + Tn
Tp + Tn + Fp + Fn

× 100% (21)

3.2.4 Results and discussion

The proposed approach performance is evaluated on the
CHB-MIT dataset [51]. EMD processing is performed, and
hence, HHT is applied on the EEG signals. Then, the HMS
can be calculated. Figure 2 shows the HMS spectrum for S
and NS EEG signals. It is clear that the magnitude of the
HMS is different for S and NS activities.

Figure 3 illustrates the spectral entropies distribution for S
and NS activities for multi-channel EEG signals. The mean
and SD for the features collected for the different activities of
EEG signals are shown in Tables 3 and 4. The mean values
for S, NS, and PS activities are all distinct. Except for the
kurtosis, all features have a small SD. Furthermore, in com-
parison with other activities, the mean values of kurtosis for
S, NS, and PS activities are relatively large. The kurtosis is
progressively decreased as the IMF level increases (Table 5).

Table 6 presents the obtained results for SVM, KNN,
and LR classifiers. An accuracy of 100%, a sensitivity of
100%, and a specificity of 100% are obtained for both
SVM, KNN, and LR classifiers. For the last case, which
is especially important during on-line detection of seizure
occurrence for an epilepsy patient, an accuracy of 100%, a
sensitivity of 100% and a specificity of 100% are obtained
for both SVM, KNN, and LR classifiers. Thus, these results
might be valuable for implantable devices such as the cra-
nial implanted Respirator Neuro-Simulator (RNS) [67]. The
proposed approach holds prospect for such devices, since it
can detect seizures accurately as evidenced from the ability
to discriminate pre-seizure from seizure classes with a 100%
accuracy (Fig. 4).

3.3 CNN-based approach

This proposed approach for seizure detection and prediction
is described in Fig. 5. It adopts the spectrogram estimation
process to transform the EEG signals into an image-like for-
mat. The spectrogram of an EEG signal is an estimation of
the time evolution of the EEG frequency content. After image
acquisition, a CNN is used to extract deep features from the
spectrogram images. The CNN is responsible for taking an
input image and assigning learnable weights and biases to
different objects in that image. Convolutional, pooling, and
depth concatenation layers are used for the process of feature
extraction. Finally, the extracted deep features are used for
classification to obtain the detection and prediction results.

3.3.1 Spectrogram estimation

A spectrogram shows how the frequency content of a sig-
nal changes with time. The spectrogram graph shows the
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Fig. 3 Entropy distribution of Shannon (a), Renyi (b), and Tsallis (c) of Seizure (S) and Non-Seizure (NS) EEG signals for CHB-MIT dataset

Table 3 Mean values of entropies of S, NS and PS activities (SD shown in parenthesis) for the CHB-MIT dataset

NS PS S
Shannon Renyi Tsallis Shannon Renyi Tsallis Shannon Renyi Tsallis

IMF1 4.3706 3.8382 0.9744 3.7977 3.0006 0.9223 3.8515 3.2291 0.8895

(0.4519) (0.5674) (0.0174) (0.8838) (0.9236) (0.0835) (1.4323) (1.5181) (0.1456)

IMF2 4.7507 4.3060 0.9840 4.5312 3.9908 0.9790 4.8051 4.4925 0.9875

(0.3521) (0.5204) (0.0131) (0.3659) (0.4912) (0.0122) (0.3791) (0.4442) (0.0065)

IMF3 4.5356 4.0332 0.9795 4.3750 3.7635 0.9738 4.5242 4.0834 0.9818

(0.3503) (0.4831) (0.0154) (0.3537) (0.4806) (0.0142) (0.2631) (0.3595) (0.0091)

IMF4 4.3239 3.7328 0.9735 4.1856 3.52461 0.9672 4.2474 3.6896 0.9729

(0.3251) (0.4127) (0.0147) (0.3617) (0.4383) (0.0176) (0.2711) (0.3725) (0.0129)

IMF5 4.0547 3.3446 0.9621 3.9014 3.1683 0.9528 3.9760 3.2830 0.9589

(0.3038) (0.3562) (0.0169) (0.3552) (0.4271) (0.0322) (0.3363) (0.3877) (0.0231)

IMF6 3.7622 2.9144 0.9437 3.6417 2.8494 0.9369 3.6202 2.8083 0.9340

(0.2544) (0.2651) (0.0176) (0.3311) (0.3655) (0.0371) (0.3547) (0.3882) (0.0354)

IMF7 3.3683 2.4255 0.9054 3.3117 2.4309 0.9068 3.3995 2.4397 0.9073

(0.3281) (0.3393) (0.0430) (0.2994) (0.3232) (0.0359) (0.2975) (0.3269) (0.0382)

IMF8 2.8289 1.6579 0.8030 2.6209 1.5346 0.7748 2.6766 1.5177 0.7719

(0.2474) (0.2619) (0.0518) (0.3123) (0.2920) (0.0709) (0.2975) (0.2769) (0.0698)

IMF9 2.1142 1.0196 0.6321 2.0599 1.0061 0.6267 2.0648 0.9713 0.6153

(0.2204) (0.2060) (0.0689) (0.2735) (0.2065) (0.0753) (0.2265) (0.1827) (0.0673)

IMF10 1.6243 0.6819 0.4906 1.5542 0.6508 0.4740 1.5944 0.6541 0.4764

(0.1817) (0.1237) (0.0612) (0.2044) (0.1300) (0.0671) (0.1867) (0.1218) (0.0610)
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Table 4 Mean values of
skewness and kurtosis of S, NS
and PS activities (SD shown in
parenthesis) for CHB-MIT
dataset

Non-Seizure Pre-Seizure Seizure
Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

IMF1 0.5657 3.5376 3.7993 43.5668 4.5030 55.2191

(0.7585) (2.0221) (4.3115) (58.3711) (5.0127) (71.7170)

IMF2 1.2270 3.4819 1.3135 3.9643 1.3809 4.0160

(0.1051) (0.3977) (0.2739) (1.6347) (0.3107) (1.5803)

IMF3 2.1869 7.4109 2.2035 7.7050 2.2155 7.7862

(0.1069) (0.7320) (0.2496) (2.2554) (0.3909) (4.6256)

IMF4 3.2745 14.6212 3.3475 15.4304 3.3044 15.6607

(0.1354) (1.1885) (0.3020) (3.7378) (0.5531) (7.5842)

IMF5 4.8023 29.9230 4.8657 30.8909 4.7642 30.3498

(0.2333) (3.0580) (0.4248) (6.9060) (0.5686) (9.4347)

IMF6 6.9888 62.9239 6.9959 62.8244 6.9265 62.4425

(0.3599) (6.9274) (0.3963) (7.6077) (0.6010) (11.7561)

IMF7 8.2815 81.6593 8.2954 81.7209 8.6577 89.6726

(0.3144) (6.7364) (0.3556) (7.3254) (0.5184) (11.3421)

IMF8 11.6449 156.2259 11.5788 154.3954 11.9603 163.6994

(0.3382) (8.1622) (0.2988) (7.3454) (0.4945) (11.9010)

IMF9 13.4746 198.7594 13.4497 198.1396 13.5202 199.7580

(0.1945) (4.7042) (0.2110) (5.1438) (0.4329) (10.5091)

IMF10 14.3710 219.5694 14.3747 219.6605 14.4454 221.2934

(0.1359) (3.2596) (0.1495) (3.6079) (0.2056) (4.9348)

energy content of a signal expressed as a function of time and
frequency. The produced graph shows amplitude-dependent
colors with the horizontal and vertical axes as time and fre-
quency. The first step to calculate the spectrogram is the
segmentation of the EEG signal to equal-length windows.
The window size should depend on the non-stationary nature
of the EEG signal. The idea here is that the spectral properties
of an EEG non-stationary signal can be displayed through a
series of spectral snapshots. As a non-stationary signal, EEG
signal frequencies change with time. Choosing the segment
length is the most important step in the spectrogram estima-
tion, because it determines andfixes the frequency resolution.
The segment length (time resolution) must be short enough.
In this proposal, we use a sliding window of size 1 second,
and a temporal resolution of 1 second with no overlapping.
The next step in the signal analysis is the computation of
the spectrum to get the short-time Fourier transform. Finally,
the power of each spectrum is displayed segment by seg-
ment. These spectra are laid side by side to form the image.
A magnitude-dependent color map is produced as an image.
Figure 6 shows a number of spectrogram images including
the NS, PS, and S cases. These images belong to patients 1,
2, and 3.

3.3.2 Convolutional neural network (CNN)

The CNN architecture is inspired by the organization of
the visual cortex. In addition, this architecture is similar
to the connectivity pattern of neurons in the human brain.
Individual neurons respond to stimuli only in a restricted
region of the visual field known as the receptive field. Such
fields overlap to cover the entire visual area. The CNN
depends on relevant filters to extract the temporal and spatial
dependencies in an image. In this work, we propose a CNN
model in which the residual learning and depth concatena-
tion strategies have been adopted as illustrated in Fig. 7. The
size of the input layer is 227× 227× 3. The proposed model
contains thirteen convolutional layers, each of which pro-
duces an output feature map f c,lx,y,k for a particular layer l

and an input f
Op,l−1
x,y [18]:

f c,lx,y,k = Wl
k
T
f
Op,l−1
x,y + blk (22)

whereWl
k are the shared weights, b

l
k is the bias and c denotes

convolution. Op represents the input image, for l = 1, while
it represents convolution, pooling or activation, for l > 1.
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Table 6 Classification Performance using SVM, KNN, and LR classifiers for CHB-MIT dataset

Cases SVM KNN LR
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

S, NS 100 100 100 100 100 100 100 100 100

NS, PS 100 100 100 100 100 100 100 100 100

Fig. 4 Box plot of each
sub-band energy features for S
and NS activities

Fig. 5 Block diagram of the
proposed CNN-based approach
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Fig. 6 Various spectrogram images for patients 1, 2, and 3: (a) NS case, (b) PS case, and (c) S case

Furthermore, we use different kernels for each convolutional
layer. For example, layers (1, 6, 7, 12, and 13) have 192 ker-
nels, layers (3, 5, 9, and 11) have 128 kernels, and layers
(2, 4, 8, and 10) have 64 kernels. All layers have kernels of
size 3 × 3 except layers 2 and 8 that have kernels of size
1 × 1. Each convolutional layer is followed by a Rectified
Linear Unit “ReLU” activation function. This function trans-
forms the weighted sum of inputs that goes into the artificial
neurons.

In addition, a residual learning strategy is applied. This
strategy is used to optimize the loss of CNNs in an easy way.
The output of a residual block R can be expressed as:

f R,l
x,y,k = f

Op,l−q
x,y + F( f

Op,l−q
x,y ,Wk) (23)

where f
Op,l−q
x,y is the input feature map, F(.) is the residual

mapping to be learned, and q is the total number of stacked
layers. The proposed model includes four residual learning
blocks. Each block includes a depth concatenation layer to
increase the depth of the feature map by concatenating the
featuremaps that are generated by various filter sizes. The 1st

depth layer concatenates the output from the 3rd and 5th con-
volutional layers. The2nd depth layer concatenates the output
from the 1stand 6th convolutional layers. The 3rd depth layer
concatenates the output from the 9th and 11th convolutional
layers. Finally, the 4th depth layer concatenates the output
from the 7th and 12th convolutional layers. By adding the

concatenation layers, the number of units at each stage can
be increased without an uncontrolled blow-up in the compu-
tational complexity at later stages. The improvement of the
computational resources allows for increasing the number
of stages and the width of each stage of a CNN. Moreover,
maximum pooling, fully-connected, and softmax layers are
found in the proposed model. The maximum pooling layer
computes the maximum value in a local spatial neighbor-
hood, and then reduces spatial resolution. Fully-connected
and softmax layers are used for classification and computing
the loss, respectively. Table 7 provides the number of kernels
and the size of each kernel for each convolutional layer.

3.3.3 Experimental results

Experiments are carried out on the signals of a group of
patients from the CHB-MIT dataset. The used dataset is
divided into three classes, namely NS, PS, and S. The per-
formance of the proposed approach is measured in terms
of accuracy, specificity, precision, sensitivity, and F-score.
Moreover, the performance of the proposed approach is com-
paredwith those of pre-trainedCNNmodels such asVGG19,
ResNet101, and Inceptionv3.

Our target is to reach the optimal performance of the
proposed CNNs. To achieve that, we have to select the Opti-
mization Algorithm (OA) to be used and adjust the values of
various hyperparameters such as weight decay, momentum
value, mini-batch size, maximum epochs, and learning rate.
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Fig. 7 The architecture of the
proposed CNN model Input
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– TheOAs aremainly used to reduce the losses by changing
weights and learning rate. Here, three optimization algo-
rithms are selected, namelyAdaptiveMoment estimation
(Adam), RootMean Square propagation (RMSprop), and
Stochastic Gradient Descent with Momentum (SGDM).

– Weight decay is a DL technique that adds a penalty
term to the cost function to shrink the weights dur-
ing back-propagation. The best value of weight decay

is between 0 and 0.1. Here, the weight decay is set to
5 × 10−4.

– Momentum is a gradient-descent algorithm used to over-
come the oscillations of the cost across flat spots and
noisy gradients of the search space. Themomentumvalue
is set to 0.9.

– Mini-batch size is defined as the amount of data included
in each epoch weight change. Each epoch consists of one
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Table 7 The number and size of kernels for each convolutional layer
of the proposed CNN model

Convolutional Layer Number of Kernels Kernel Size

Conv_1 192 3 × 3

Conv_2 64 1 × 1

Conv_3 128 3 × 3

Conv_4 64 3 × 3

Conv_5 128 3 × 3

Conv_6 192 3 × 3

Conv_7 192 3 × 3

Conv_8 64 1 × 1

Conv_9 128 3 × 3

Conv_10 64 3 × 3

Conv_11 128 3 × 3

Conv_12 192 3 × 3

Conv_13 192 3 × 3

forward pass and one back-propagation pass over all the
training samples. The mini-batch size is set to 32. Also,
we select the maximum epochs to be 5.

– Learning rate is a parameter used to adjust the CNN
model in response to the estimated error, when the
weights are updated. We select three values of learning
rate, namely 0.1, 0.01, and 0.001.

Table 8 shows the performance of the proposed CNN. We
consider the data of patient 1 and the classification scenario
of NS vs. PS. As mentioned before, we have three classes
for each patient. All NS images of all patients are grouped
together under the same class NS, and this is also applied
to PS and S images. We have 10,000 images for each class.
These images are divided into 70% for training and 30% for
testing.We intend to perform three scenarios of classification.

In the 1st scenario, classification is performed between NS
and PS classes. The 2nd scenario provides the classification
results between NS and S classes. Finally, the 3rd scenario
differentiates between NS, PS, and S classes, as shown in
Table 9. Figures 8, 9 and 10 introduce the ROC and precision
sensitivity curves for PS and S, S and NS and finally, PS, S,
and NS cases, respectively.

The results demonstrate the effectiveness of using CNN
models for EEG signal classification and seizure detection.
The proposed CNN model achieved an accuracy of 97.66%
for NS versus PS, 95.59% for NS versus S, and 94.51% for
NS versus S versus PS cases. This accuracy is significantly
higher than that of other models used in this study, such as
VGG19, ResNet101, and Inceptionv3. The high accuracy of
the proposed CNNmodel is attributed to its ability to extract
features from the EEG signals that are more relevant to the
task of seizure detection. The CNN model uses a combina-
tion of residual learning convolutional and pooling layers
to extract features from the EEG signals, which allows it to
learn complex patterns in the data. Additionally, the use of
a large number of parameters in the CNN model allows it
to capture more information from the EEG signals, which
in turn leads to better performance. In terms of sensitivity,
precision, and F-score, the proposed CNN model also out-
performs the other models. The sensitivity, precision, and
F-score of the proposed CNN model are 95.79%, 94.86%,
and 95.32%, respectively, for NS versus PS, 94.73%, 93.68%
and 94.2%, respectively, for NS versus S, and 93.04%,
92.47%, and 92.75%, respectively, for NS versus S versus
PS cases. Hence, the proposed CNN model is not only accu-
rate, but also highly specific and sensitive in identifying
seizures.

However, it is important to note that the results presented
here are based on a specific dataset, the CHB-MIT dataset,
which contains 6 male and 18 female subjects. Therefore, it
is essential to test the proposed CNNmodel on other datasets

Table 8 Performance of the
proposed CNN for different
optimization algorithms and
learning rates

OA Learning rater Accuracy Specificity Sensitivity Precision F-score

0.1 0.9573 0.9586 0.9432 0.9469 0.945

SGDM 0.01 0.9697 0.9713 0.9529 0.9618 0.9573

0.001 0.9788 0.9798 0.9626 0.9721 0.9673

0.1 0.9548 0.956 0.9457 0.9524 0.949

RMSprop 0.01 0.9558 0.9567 0.9437 0.9517 0.9476

0.001 0.9536 0.9542 0.9429 0.9476 0.9452

0.1 0.9655 0.9667 0.9445 0.9624 0.9533

Adam 0.01 0.9682 0.9695 0.9515 0.9637 0.9575

0.001 0.9673 0.9685 0.9523 0.9632 0.9577
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Table 9 Classification
performance using CNN-based
model with CHB-MIT dataset

Scenairo Method Accuracy Sensetivity Precision Specificity F-score

NS and PS VGG19 88.7 88.16 86.96 88.89 87.55

ResNet101 91.65 90.8 90.06 91.73 90.42

Inceptionv3 94.4 93.87 92.67 94.57 93.26

Proposed CNN 97.66 95.79 94.86 97.81 95.32

NS and S VGG19 86.09 85.28 84.63 86.21 84.95

ResNet101 89.18 88.45 87.8 89.34 88.12

Inceptionv3 91.92 90.97 90.67 92.09 90.81

Proposed CNN 95.59 94.73 93.68 95.72 94.2

NS, PS, and S VGG19 83.66 82.86 82.16 83.78 82.5

ResNet101 85.84 85.19 84.94 85.96 85.06

Inceptionv3 89.15 88.37 87.81 89.27 88.08

Proposed CNN 94.51 93.04 92.47 94.64 92.75

to confirm its generalizability. Additionally, the used dataset
is not large enough for generalization.

3.4 Comparison with the state-of-the-art methods

A comparison between the proposed approaches and other
published ones on theCHB-MIT dataset is presented in Table
10. It is clear that the proposed approaches achieve better

results than those of the state-of-the-art methods. It produces
improvement in terms of accuracy for the classification of
NS and S classes. It provides an accuracy that reaches 100%
and 95.59% with ML-based and CNN-based classification,
respectively. In addition, it outperforms the other methods
for the classification of PS and NS classes. It provides an
accuracy that reaches 100% and 97.66% with ML-based and
CNN-based classification, respectively.

Fig. 8 ROC and precision recall curves for PS versus S cases
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Fig. 9 ROC and precision recall curves for S versus NS cases

Fig. 10 ROC and precision recall curves for PS, S and NS cases
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Table 10 Comparison between the proposed approaches and the other existing methods in terms of accuracy using the CHB-MIT dataset

Authors Technique Dataset Classes Accuracy

Shoeb [25] SVM CHB-MIT NS-S 96

Sedik et al. [32] SIFT, digital filters, and threshold
classifier

6 patients from CHB-MIT NS-S 99.16

PS-S 96.24

Emara et al. [33] FFT and ANN CHB-MIT NS-S 99.97

Emara et al. [34] HHT and threshold classifier CHB-MIT PS-S 96.24

B. Bouaziz et al. [21] CNN CHB-MIT NS-S 99.48

Rajaguru et al. [22] MAE+EM-PCA CHB-MIT NS-S 93.78

Roy et al. [23] ChronoNet CHB-MIT NS-S 86.57

Choi et al. [24] 3D-CNN+GRU CHB-MIT NS-S 89.4

Truong et al. [28] Spectrograms+STFT Freiburg higher-order statisticspital
intra-cranial EEG

NS-S 81.4

CHB-MIT 81.2

S-PS 95.6

M. Zhou et al. [38] CNN CHB-MIT NS-S 97.5

NS-S-PS 93

S-PS 96.7

Freiburg NS-S 95.4

NS-S-PS 92.3

Kashif et al. [44] LBP+LDA 14 patients from CHB-MIT NS-S 99.6

S-PS 97.66

Proposed approaches Spectrogram+CNN CHB-MIT NS-S 95.59

NS-S-PS 94.51

S-PS 100

HMS, sub-band energies, spec-
tral entropies, higher-order statistics
and SVM

NS-S 100

4 Conclusions

Two different approaches have been adopted for EEG sig-
nal classification in this paper. The first one depends on the
HMS, spectral entropies, higher-order statistics and sub-band
energies, while the second ones depends on a CNN model
with spectrogram images. The models were evaluated on the
CHB-MIT dataset. The obtained results for the ML-based
model were 100% for accuracy, while the obtained results
for the second CNN-based model were 97.66%, 95.59%,
and 94.51% for seizure versus pre-seizure, non-seizure ver-
sus seizure, and non-seizure versus seizure versus pre-seizure
classes, respectively. These results reveal that the proposed
approaches have high accuracy in detecting seizures, and can

be used for seizure detection in clinical settings. However,
there are also some limitations to this research.One limitation
is the small sample size of the CHB-MIT dataset, which may
not be representative of the general population. Additionally,
themodels were only evaluated using EEG data, and it would
be beneficial to evaluate the models using other types of
neurological data as well. Future work could include expand-
ing the dataset to include a larger and more diverse sample
of individuals, evaluating the models using other types of
neurological data, and exploring other ML techniques to
improve the performance of the models. Additionally, it
would be valuable to conduct a clinical trial to test the prac-
tical applicability of the proposed approaches in a real-world
setting.
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