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Abstract
Obesity is one of leading risk factors for type 2 diabetes and other types of chronic diseases. Synchronized intestinal electri-
cal stimulation (SIES) has been explored for treating obesity and diabetes. In SIES, electrical stimulation is delivered to the 
small intestine in synchronization with the intrinsic intestinal myoelectrical activity (its basic rhythm is called slow wave) 
and therefore, the accurate detection of intestinal slow waves is critically important for SIES. The aim of this study is to 
detect the peaks in intestinal slow waves in real-time based on the automatic multiscale peak detection (AMPD) method. 
In this paper, we introduce an efficient technique for real-time detection of peaks in intestinal slow waves. The presented 
method is based on peak estimation of a given quasi-periodic signal using the AMPD method. This method uses a multi-scale 
approach to identify the peaks of the intestinal slow waves with high detection accuracy and a minimal delay. Throughout 
the experiments, the multi-scale technique is used to estimate the quasi-periodic signals using different signal-to-noise ratio, 
λ (optimal scale), and the “lag” β (number of datapoints for right hand estimation) as important performance factors. The 
performance of the presented method is also calculated and utilized in the comparison process for 10 datasets of the intes-
tinal slow waves from rats at λ = 150 ms and two values of β = 100 ms and 150 ms. The experimental results show that the 
presented method has good overall accuracy for online peak detection while maintaining low memory and computational 
complexity. Numerically, the overall accuracy is above 90%, and 98% for the rodent intestinal slow waves at a time-lag of 
150 ms. The developed SIES system has been applied to successfully reduce postprandial blood glucose in a rodent model 
of hyperglycemia. In conclusion, the developed algorithm is adequate for on-line peak detection of the intestinal slow waves; 
the SIES method used the developed peak detection algorithm which is effective in reducing postprandial blood glucose in 
a rodent model of hyperglycemia.
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1 Introduction

Obesity is defined as the accumulation of excess body fat 
deposition in relation to height and sex [1]. The prevalence 
of obesity has been steadily increasing throughout the last 
decades owing to an increase in economic growth, indus-
trialization, the adoption of a sedentary lifestyle, and the 
increased consumption of processed foods. It affects around 
a third of the current world population. It is estimated that 
by 2030, 38% and 20% of the worldwide population will be 
overweight and obese, respectively [2]. Obesity increases 
risk factors of a variety of chronic diseases such as cardio-
vascular, immunological, and neurological diseases and is a 
major risk factor of developing type 2 diabetes (T2D).
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While there are various interventions for obesity and dia-
betes such as behavioral modifications, diets, and medica-
tions, it has been shown that there is a tendency for patients 
to regain weight after a certain time since the body can build 
tolerance to medications rendering them ineffective [3]. In 
addition, medications may cause potential harmful side 
effects such as kidney failure [4].

Bariatric surgery has been increasingly used to treat 
obesity and diabetes. In one meta-analysis study consisting 
of 3188 patients who underwent bariatric surgery, obesity 
was resolved in 78% of patients and resolved or improved 
in 87% of patients [5]. There are various physiological and 
anatomical mechanisms that explain why bariatric surgery is 
effective in treating diabetes and obesity: a reduction in food 
intake due to reduction in stomach size, reduced intestinal 
absorption due to intestinal bypass, inhibition of a hunger 
hormone, ghrelin due to resection of the majority part of 
the stomach where ghrelin is secreted, increased release of 
glucagon-like peptide-1 (GLP-1). Suppression of ghrelin and 
enhancement of GLP-1 is known to stimulate insulin secre-
tion, leading to a reduction in blood glucose [6]. While the 
bariatric surgery is effective in most cases, it is irreversible 
in most cases, invasive, expensive, and may have complica-
tions such as infection or bleeding [7].

The basic rhythmic event of myoelectrical activity of the 
intestines is called slow wave and characterized by a quasi-
periodical signal of varying frequencies: 0.15–0.20 Hz and 
0.58–0.82 Hz for humans and rats, respectively [89]. The 
intestinal slow wave determines the frequency of intestinal 
contractions and the propagation of intestinal peristalsis 
along the small intestine. When the slow waves are super-
imposed with spikes, the small intestine contracts.

Intestinal electrical stimulation (IES) was introduced for 
treating intestinal dysmotility and obesity [10]. Typically, 
IES is delivered at a frequency similar to the intrinsic fre-
quency of small intestinal slow waves and designed to accel-
erate intestinal transit but delay gastric emptying (Fig. 1). 
The IES-induced delay in gastric emptying results in reduced 
food intake and decreased ghrelin release, whereas the IES-
induced acceleration in small intestinal transit reduces 
nutrient absorption and enhanced release of glucagon-like 
peptide-1 (GLP-1) [11–14]. These combined effects lead to 
weight loss and reduced blood glucose. Accordingly, IES has 
a great potential for treating obesity and diabetes [8, 13, 15]. 
Due to its similarity in mechanisms of action with the gastric 
bypass procedure, IES is also called electronic bypass.

Subsequent research has demonstrated that IES deliv-
ered in synchronization with small intestinal slow waves, 
a method called synchronized IES or SIES is more potent 
than IES in accelerating small intestinal transit [16]. For the 
implementation of SIES, accurate and real-time detection of 
slow wave peaks is required. Since IES is accomplished via 
a surgically implanted pulse generator [17], it is critically 

important that the peak detection algorithm must be as effi-
cient as possible, i.e., use less computational power to pro-
long the limited battery life imbedded in the pulse generator.

There are a variety of methods to detect peaks. Those 
include the traditional window threshold technique [1718], 
the usage of multiple transform functions such as wavelet 
and Hilbert transforms [1920], hidden Markov models, clus-
tering techniques [21], and artificial neural networks [2223]. 
Despite the abundance of algorithms, most of them typi-
cally involve extensive pre-processing and feature extraction 
and thus are computationally expensive. In addition, some 
of them require the presence of an entire signal and thus 
are suitable only for an offline estimation. Detecting peaks 
in signals is a significant step in most biomedical applica-
tions. So far, several different approaches have been used to 
detect peaks in biomedical signals, such as artificial neural 
networks (ANN), morphological filtering, Kalman filtering 
(KF), Gaussian derivative filtering, and nonlinear energy 
operators (NEO) [24–30].

The problem with most current peak detection methods 
is that they are usually related to the free parameters in the 
algorithm such as window lengths or thresholds that allow 
those methods to detect peak values. However, algorithms 
with some common features are excluded from the detection 
of R peaks in electroencephalogram (ECG) signals or the 
use of special parameters such as peaks in chromatographic 
recordings. In addition, the presence of noise in the recorded 
signal is a challenge for current peak detection methods [28, 
31–35].

Detection of peaks in intestinal slow waves (ISW) in rats 
is important for both qualitative and quantitative analyses. 
This is because the amount of information increases as more 
peaks are identified. However, peak overlap and baseline 
noise make peak detection relatively difficult. Peak location 
and amplitude are best estimated when the exact peak shape 
model and peak width are known in advance. In addition, a 
false peak may be detected when the signal-to-noise ratio is 
low or there are artifacts with high amplitude, or a peak may 
be missed when the occurrence of overlap is not recognized. 

Fig. 1  Mechanisms of intestinal electrical stimulation for treating 
obesity and diabetes
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The most commonly used detection methods do not use peak 
geometry or baseline noise assumptions. Derivatives of the 
signal are usually evaluated and peaks are detected when 
the threshold is exceeded. All the information used in these 
peak detection methods is that the peaks are the rising and 
falling signals.

Based on the knowledge that information in ISW data-
sets can be affected due to shortcomings associated with 
current peak detection techniques, new simple and useful 
peak detection algorithms for clinical use with finely modi-
fied indexes have been developed [36–40]. We can identify 
peaks of any signals by (i) finding all local features using 
the multiscale method and (ii) automatically analyzing the 
results of the multiscale method used. Specifically, the aim 
of this study is to develop an online peak detection method 
that does not contain any free parameters unrelated to ISW 
and can detect intestinal slow wave peaks with high detec-
tion accuracy and minimal delay. In addition, the algorithm 
needs to be computationally cheap and run-on low memory 
capacity to enable its integration on a chip implant.

This paper is constructed as follows: section II presents 
the method of peak detection for SIES. The results of devel-
oped peak detection method are shown in section III. Sec-
tion IV shows an application of the proposed SIES method 
for lowering blood glucose level in a rodent model of acute 
hyperglycemia. Discussion is presented in section V. Finally, 
section VI concludes the paper.

2  Materials and methods

This section describes the proposed algorithm for automatic 
online detection of peaks in ISW, and how to apply the pro-
posed algorithm to an ISW dataset obtained from rats of 
varying recording lengths (30–60 min). The closed loop 
synchronized system hardware has two components. The 
first component is a recording device that can record slow 
waves and the second hardware is the stimulator with a peak 
detection algorithm integrated into it (Fig. 2).

The recording device used in the study consists of 4 slow 
wave recording channels. First, the slow wave signal is col-
lected and converted into digital signal by an A/D converter. 
The digital signal is passed to a real time peak detection 
module. Once a peak is detected, it will send out a signal to 
the stimulator that delivers stimulation to the rat.

2.1  Measurement of the slow wave signal from rats

The small intestinal slow wave was recorded with a bandpass 
filter (0.05–35 Hz) and sampled at 200 Hz. The filters have 
a high degree of phase linearity to keep the distortion level 
as minimal as possible. The slow wave recording includes a 
fasting session of 30 ~ 60 min after an overnight fasting and 

a postprandial session of 30 min right after the consump-
tion of 4 g regular chow food. The recordings were obtained 
from 10 rats. We used two different group of datasets: slow 
waves in one group for algorithm development and those in 
another group for validation. For the slow wave peak detec-
tion, the data was down sampled to 20 Hz (low pass filter 
before down-sampling to avoid aliasing) since the frequency 
of the small intestinal slow waves in rats is lower than 1 Hz.

2.2  Online peak detection algorithm

The proposed technique for peak detection is essentially 
based on identifying the highest value of the slow waves 
by comparing each datapoint to succeeding and preceding 
datapoints.

First, an automatic multiscale-based peak detection 
(AMPD) algorithm was used on the slow wave recordings 
to extract the ground truth peaks in offline mode [24]. The 
AMPD is a peak detection algorithm that is robust in find-
ing peaks of periodic and quasi-periodic noisy signals, thus, 
making it suitable for the detection of peaks in slow waves. 
A major advantage of this algorithm is that it is parameter 
free estimation not requiring any parameters prior to the 
peak estimation. The algorithm uses a multi-scale tech-
nique to find the peaks and outputs a parameter termed the 
“optimal scale,” λ, which defines the optimal scale for peak 

Fig. 2  Illustration of the hardware/algorithm of SIES system



2320 Medical & Biological Engineering & Computing (2023) 61:2317–2327

1 3

estimation of a given quasi-periodic signal. More specifi-
cally, a datapoint is defined as a peak if it is bigger than all 
the values that preceded and succeed it by λ/2 datapoints 
as follows:

where, x is the slow wave signal and x(t) is the datapoint 
that’s being evaluated as a peak or not. Clearly, this function 
requires the a priori availability of the complete signal and 
is offline in nature.

Next, the formulation for the online peak detection 
is established. It follows a similar formulation to AMPD 
(Eq. 1) with a modification for the right-hand estimation. 
It is clear here that the estimation of a peak can be eas-
ily derived by mere left- and right-hand side comparison 
which corresponds to comparing previous and succeeding 
datapoints, respectively. Concerning real-time peak detec-
tion algorithm, only the left-hand side comparison can be 
estimated with λ/2 datapoints. This would be problematic 
for the right-hand side in case λ/2 was substantially large 
enough since it would introduce a delay between the onset 
of the peak and the time of estimation. Thus, we introduce an 
experimental parameter called the “lag,” β, which essentially 
defines the number of datapoints for right hand estimation. 
Thus, the formulation for slow wave online peak estimation 
is defined as follows:

where β ≤ λ/2. This parameter introduces an inherent trade-
off between the overall accuracy of the peak detection algo-
rithm and the intestinal stimulation delay. More specifically, 
for each new element x(t), we are evaluating whether it is 
larger than all its preceding elements up to λ/2 and all its 
succeeding elements up to β. Only when those two condi-
tions are met, the candidate peak is labeled as a real peak.

This question explores the presented algorithms for 
detecting maximum peaks in ISW data in MATLAB format 
as follows:

P = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 
1 1.1 0.9 1 1.1 1 1 0.9, …

1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 
3 2 1 1 1 0.9 1 1, …

2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1].
Now that the formulation for the peak estimation is estab-

lished, additional constraints need to be imposed to avoid 
early detection of peaks with respect to the last peak. A set of 
given parameters are defined for establishing the constraints: 
the average cycle (cycleavg), upper cycle range (cycleupper), 
and lower cycle range (cyclelower). The average cycle is the 

(1)

x(t) =

{

peak ∶ x(t) = max
{

x(k) ∶ k ∈
[

t − �∕2, t + �∕2
]}

not peak ∶ otherwise

}

(2)

x(t) =

{

peak ∶ x(t) = max
{

x(k) ∶ k ∈
[

t − �∕2, t + �
]}

not peak ∶ otherwise

}

average rate of the intestinal slow wave for a given animal. 
For instance, the slow wave frequencies of a rat are given by 
the range 0.58–0.82 Hz; thus, the average slow wave cycle 
range is 1.21–1.72 s which corresponds to an average cycle 
of 1.46 s. The upper and lower range are defined as 75% 
and 125% of the average cycle, respectively. Table 1 below 
summarized all those values for the slow waves of the rats:

Cycleupper and Cyclelower are used to establish a detection 
window: at the beginning of the slow recording or after esti-
mating a peak, the algorithm will only start to estimate the 
next peak at defined in the range [ Cycleupper and Cyclelower ] 
from the last detect peaks.

This detection windows play an important role in avoid-
ing the early detection of peaks with respect to the last peaks 
to avoid over stimulating the intestines. On the other hand, 
if no peak is detected in the detection window, then a new 
relaxed detection window with an upper range of Cyclelower 
is initialized from the end range of the previous detection 
window. This enables the detection of potential missed peaks 
from a close vicinity instead of initializing a new regular 
detection window. The block diagram of the online peak 
detection algorithm is illustrated in Fig. 3. Upon the detec-
tion of an intestinal slow wave peak, the following stimulus 
is delivered: a pulse train with on-time of 0.3 s and off-time 
of 1.2 s, and pulse frequency of 40 Hz, width of 3 ms, and 
amplitude of 2 mA [8]. This set of stimulation parameters 
was previously reported to be able to capture intestinal slow 
waves [10, 12]. In its applications for treating obesity and 
diabetes, SIES is typically performed for 1–3 h immediately 
after food intake [9–11].

In terms of computational implementation, the algorithm 
itself was implemented in C code with GNU GCC com-
piler with code-blocks as IDE. Experiments were run on a 
computer with an Intel(R)Core (TM) i5-8265U processor 
running at 1.60 GHz with 8.00 GB of RAM, running C. A 
1-dimensional float array buffer was created for storing the 
values needed for the peak estimation algorithm.

In our work, float values were used, and additional 
dynamical allocations were required instead of a circular 
buffer for following reasons: float values use a ring buffer 
which is an efficient FIFO buffer because it uses a fixed-size 
array that can be pre-allocated upfront and allows an efficient 
memory access pattern. In addition, the buffer operations are 
constant time (0/1), including consuming an element, as it 
does not require a shifting of elements.

Table 1  Summary of frequency ranges, average cycle, upper cycle 
range, and lower cycle range for the intestinal slow waves in rats

Animal Slow wave rate 
range (s)

Cycle
avg

(s) Cyclelower(s) Cycleupper(s)

Rat 1.21–1.72 1.46 1.1 1.82
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The length of the array is equal to the number of data-
points needed to store the current datapoint to be estimated, 
x(t) and the values for the left-hand side (λ/2) and right-hand 
side comparison (β). This array is updated on each iteration 
when a new value is introduced. In terms of the computa-
tional complexity, the algorithm consisted of simple compar-
ative operations (Eq. 2) for the estimation of the peak. Since 
the general detection of peaks require the observation of a 
decreasing signal following the peak, the accuracy metric of 
the peak detection method was estimated as the number of 
correctly detected peaks that are located at distance ≤ 10% 
of the cycleavg from the ground truth peaks (derived from 
AMPD). This corresponds to 146 ms for the rats. White 

noise was added to the signal to quantify the accuracy of the 
online peak detection estimation at different SNR levels. A 
real-time scenario was stimulated by introducing one new 
input at a time on the offline datasets.

2.3  Adaptive online peak detection algorithm

Another slight modification of the online peak detection 
algorithm is formulated. The adaptive version of the algo-
rithm aims to regulate the pace of the intestines in case the 
slow waves are undergoing a dysrhythmic pace (frequency 
of oscillation is above or below the expected range for an 
animal). The initial non adaptive algorithm assumes that 

Fig. 3  Flow chart of the online 
peak detection algorithm
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the intestinal rhythm is oscillating at a normal rate. For the 
adaptive version, additional mechanism needs to be imple-
mented to regulate back the rhythm to its normal pace. A 
simple modification is introduced to the original algorithm 
when the end of the detection window is reached, but no 
peak is detected. Figure 4 illustrates the potential outcomes 
for the adaptive online peak detection algorithm for four 
different scenarios. For dysrhythmia, the detection window 
might miss a lot of the peak if the fluctuation frequency is 
too high (peak precedes the detection window) or too low 
(peak succeeds the detection window). For the former case, 
it is enough to abstain from sending a stimulation when a 
peak appears too early wait until a peak appears in the range 
of the detection window (this is already implemented is the 
normal online peak detection algorithm). In the latter case, 
the stimulus is delivered when the end of the detection win-
dow is reached so that stimulation frequency is in accord-
ance with the normal frequency range of the intestinal slow 
waves.

3  Results

3.1  Ground truth and λ estimation from AMPD

Figure 5 illustrates the estimation of peaks in offline mode 
using the AMPD. Those peaks are estimated after deriving 
the optimal scale λ. For all the given slow waves datasets, 
λ was found to be consistent for a given animal: 150 ± 0.04 
(ms).

3.2  Online peak detection algorithm 

Figure 6 illustrates the result of the online peak detection 
algorithm for rats (β = 100 ms). For rodent slow waves, 

the detected peaks can be located before the ground truth 
peaks due to the occasional occurrence of sub-peaks that 
are adjacent to the ground truth peaks.

Figure 7 illustrates the different statistics of the accuracy 
of the peak detection algorithm assessed on the 10 datasets 
of the intestinal slow waves of the rats for λ = 150 ms and 
two values of β: 100 ms and 150 ms.

Table 2 illustrates the results of the mean and standard 
deviation of the presented peak detection algorithm on intes-
tinal slow waves in rats-5 during fasting and postprandial 
periods. The mean and standard deviation are calculated 
based on the presented results in Table 1.

The overall accuracy is overall higher for the rat at 150 ms 
of lag compared to 100 ms when no white noise is added. 
However, for additional noise levels, the algorithm with the 
higher lag levels performed slightly worse.

3.3  Memory consumption and computational 
complexity 

In terms of memory consumption, the dynamical memory 
allocations are restricted to the array buffer that stores the 
time signal values. The size of the buffer depends on λ and 
β, and the sampling frequency. With a float size of 4 bytes, 
β equal to 10% of cycleupper, and a sampling frequency of 
20 Hz, the detection algorithm uses a buffer length of 33 ms 
and buffer size of 132 bytes.

3.4  Application of the proposed SIES

The above peak detection algorithm and the SIES system 
were applied in a rodent model of acute hyperglycemia under 
an animal research protocol approved by the Institutional 
Animal Care and Use Committee at University of Michi-
gan. Under general anesthesia of 2% isoflurane, twelve male 
Sprague–Dawley rats were surgically implanted with two 

Fig. 4  a One-minute slow 
waves with superimposed 
spikes. b Illustration of the out-
come of the adaptive algorithm 
for intestinal slow wave with 
normal intestinal rate (upper 
left), abnormal slow intestinal 
rate (lower left), abnormal fast 
intestinal rate (upper right), 
and abnormal slow and fast 
intestinal rate (lower right). 
The dotted lines represent the 
start and end of the detection 
window with reference to the 
last detected peak. The blue 
dots are the detected peaks, and 
the red arrows correspond to the 
delivered peak stimuli

Spikes Spikes

a

b
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pairs of electrodes at the duodenum for the detection of slow 
waves and delivery of stimulation [8]. The electrode connect-
ing wires were subcutaneously tunneled and externalized at 
the back of the neck. Upon a fully recovery from the surgical 
procedure and 5 h of fasting, the animals were injected (i.p.) 
with glucagon (0.5 mg/kg, Sigma-Aldrich) to induce acute 
hyperglycemia. Immediately after this, glucose (40%, 2 g/kg 
of body weight) was given by gavage to investigate the oral 
glucose tolerance. Blood samples of 10 µl were collected via 
the tail vein at 0 (before gavage), 15, 30, 60, 90, and 120 min 
after the glucose ingestion. Blood glucose was assessed using 
a glucometer. This test was performed in three randomized 
sessions on separate days, one with SIES using the developed 
system, one with regular IES, and the other with sham-SIES 
(same setup but no stimulation). In the session with SIES, the 
intestinal slow wave was recorded from the proximal pair of 
electrodes using the method described in “Methods”. A train 
of pulses (duration of 0.3 s, frequency of 40 Hz, pulse width 
of 3 ms, and amplitude of 2 mA) was delivered to the small 
intestine via the distal pair of electrodes upon the detection 
of each slow wave peak using the developed peak detection 
algorithm. The SIES was performed during the entire 120 min. 
The regular IES was delivered using the same train of pulses 
at an interval of 1.5 s or a rate of 40 trains/min, which was the 
same as the mean frequency of the small intestinal slow waves.

The following results were obtained: (1) the developed 
real-time detection of intestinal slow wave peaks and deliv-
ery of IES in synchronization with the slow wave peaks were 
assessed by visual inspection, which revealed an accuracy 
of above 90%. (2) Compared to sham, IES and SIES signifi-
cantly reduced postprandial blood glucose at 30 min by 17% 
and 20% (one-way ANOVA followed with Tukey’s test), 
respectively. SIES but not IES showed a further inhibitory 
effect at 60 min (147 vs. 171 mg/dl, P = 0.001, vs. sham), 
demonstrating that SIES was more effective than IES.

4  Discussion

We have presented a peak detection algorithm that has sev-
eral distinctive features: (1) different from most of existing 
algorithms, our algorithm is on-line and can be used for 
real-time peak detection; (2) a few parameters associated 
with the performance of the algorithm can be easily deter-
mined based on the characteristics of the small intestinal 
slow waves that are known to users; (3) the algorithm has 
been successfully applied for SIES, resulting in a better 
performance in suppressing postprandial blood glucose in 
a rodent model of acute hyperglycemia.

The AMPD was used as a method for deriving the optimal 
scale λ and the ground truth peaks. The parameter λ was found 
to be consistent across different datasets and correspond to 
the cycleavg value for a given animal (relatively small error 
of 5.33%). Thus, the optimal scale for detection corresponds 
to the average fluctuation range of the intestinal slow waves. 

Fig. 5  Illustration of the ground 
truth peak estimation of the 
intestinal slow wave of a rat 
from AMPD. The maximal 
optimal scale is illustrated to 
showcase the methods in which 
the peaks are estimated

Fig. 6  Peak detection algorithm results for rats with β = 100 ms
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Overall, λ can be estimated a priori for a given subject either 
from literature (knowledge of the mean frequency of the 
small intestinal slow waves of the corresponding species) or 
from the baseline small intestinal slow wave recording of the 
subject. Concerning the ground truth peaks, the AMPD was 
proven to be a robust method for automating the annotation 
process of the peaks (see Fig. 7). Nevertheless, the lack of 
consensus on which peaks can be considered the ground truth 
peak can be an element of future studies.

In the presented paper, the intestinal slow wave in rats 
has two general features: (1) basic noise with a general 
mean, (2) maximum peaks that significantly deviate from 
the noise. Furthermore, assuming that (a) the width of the 
peak cannot be determined in advance, (b) the height of the 
peak deviates significantly from other values, and (c) the 
algorithm is updated in real time based on λ/2. With the 
algorithm presented, the comparison can be performed only 
at left side of λ/2. This is a problem on the right side, as if 
λ/2 is large enough, it will create a delay between the start 
of the peak and the estimated time. In these situations, one 
needs to generate a boundary value that triggers the sig-
nal. However, the boundary value cannot be static and must 
be determined in real time based on an algorithm. If the 
new data point is x general deviations away from a moving 
average, the algorithm sends a signal. The algorithm is very 
robust because it produces separate moving averages and 
deviations so that the signal does not exceed the threshold. 
Therefore, future signals will be recognized with about the 

same accuracy, regardless of the number of previous signals. 
The algorithm takes three inputs. For example, if the lag is 
5, use the last 5 observations to smooth the data. If the data 
points are 3.5 standard deviations away from the moving 
average, the threshold 3.5 is notified. Also, the effect of 0.5 
gives the signal half the effect of a normal data point. Also, 
the effect of 0 completely ignores the signal for recalculat-
ing the new threshold. Therefore, the effect of 0 is the most 
stable option. Setting the influence option to 1 is at least 
stable. For non-stationary data, the impact option should be 
set between 0 and 1.

Fig. 7  Boxplot illustration for the online peak detection algorithm on the intestinal slow waves of rats for different noise levels and lag values 
(n = 10)

Table 2  The mean and standard deviation of the presented peak 
detection

Dataset Mean ( second) Standard 
deviation 
( �)

Rat 1 fasting 0.507134 0.284995
Rat 1 postprandial 0.036860 0.021942
Rat 2 fasting 0.407134 0.327499
Rat 2 postprandial 0.299250 0.300065
Rat 3 fasting 0.507658 0.278576
Rat 3 postprandial 0.506293 0.265443
Rat 4 fasting 0.507134 0.284995
Rat 4 postprandial 0.036860 0.021942
Rat 5 fasting 0.407134 0.327499
Rat 5 postprandial 0.299250 0.300065
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Periodical artifacts are common in biomedical signal pro-
cessing or peak detection [42.43]. In our case, these include 
electrical cardiac signal and respiration artifacts. The cardiac 
signal is of a frequency of about 400 beats/min [43] and 
largely filtered out by the amplifier. The respiratory artifact 
is of a frequency of about 80–100 beats/min (several times 
of intestinal slow waves). However, it is hardly present in the 
recording due to the use of bipolar recordings. Moreover, 
the intestinal slow wave recording is made using electrodes 
implanted in the muscle layer and is of high signal to noise 
ratio. Accordingly, the major interference in the recording 
is attributed to non-periodic motion artifacts.

For the estimation of the overall accuracy, the choice of the 
accuracy metric of the peak detection method (peaks that are 
located at distance ≤ 10% of the cycleavg from the ground truth 
peaks) implies that upon peak detection, the electrical stimula-
tion will still occur at a very close distance to the peak. For the 
accuracy of estimation in the rat, it increased substantially for the 
noiseless signal from 100 to 150 ms. However, at a higher noise 
level, the accuracy is higher for a lower β level. This is attributed 
to the fact that the high frequency range of the white noise has a 
higher probability of inducing contamination in the values after 
the peak that affect the peak estimation method (Eq. 2). Those 
values will in turn have a higher amplitude than the actual peaks 
and thus the algorithm will fail to detect the peak (false negative) 
or might detect it at the contamination. It is thus important to 
note that increasing the lag does increase the overall accuracy if 
there is no substantial noise in the recording. Nevertheless, the 
algorithm will be implemented on a chip implant with a band 
pass filter of (0.05–35 Hz); this implies that the effect of white 
noise should not be an issue in real-time peak estimation.

The SIES method was compared with regular IES in its 
inhibitory effect on blood glucose and found to be more 
potent than the regular IES, suggesting a great therapeutic 
potential for treating diabetes. The SIES system is currently 
being used for treating diabetes in two rodent models of 
T2D. An implantable pulse generator is being developed to 
accomplish the proposed SIES for humans.

The performance of peak detection algorithm in future 
human applications is expected to be much better for the fol-
lowing reasons: (1) the small intestinal slow wave in humans 
is of a frequency of 0.15 to 0.2 Hz, i.e., the peak-to-peak 
interval is about 5 s instead of 1.5 s in rats. This would allow 
more delay in peak detection and thus a higher accuracy; (2) 
the quality of intestinal slow waves in humans is higher, and 
the SNR is higher.

There are several limitations of the proposed algorithm. 
First, there is a time delay between the actual peak and esti-
mated peak due to real-time processing. However, for the appli-
cation of SIES, this delay is tolerable and does not affect the 
performance of SIES. Second, the user should be familiar with 

the characteristics of intestinal slow waves to determine a few 
parameters that are used in the algorithm.

5  Conclusion

This study presents a robust and effective online peak detection 
algorithm for small intestinal slow waves based on the AMPD 
technique. The developed algorithm has been validated using the 
small intestinal slow wave recording in rats and the entire SIES 
system has been applied to reduce postprandial hyperglycemia in 
rats and compared with sham stimulation and conventional IES. 
Our results demonstrated that the online peak detection provided 
a good overall accuracy while still respecting the requirements 
for low memory conservation and computational complexity. 
The fulfillment of those requirements makes the algorithm well 
suited for an implantable pulse generator to be used in future 
clinical applications.
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