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Abstract
The joint exploitation of data related to epidemiological, mobility, and restriction aspects of COVID-19 with machine learning
algorithms can support the development of predictive models that can be used to forecast new positive cases and study the
impact of more or less severe restrictions. In this work, we integrate heterogeneous data from several sources and solve a
multivariate time series forecasting task, specifically targeting the Italian case at both national and regional levels, during the
first three waves of the pandemic. The goal is to build a robust predictive model to predict the number of new cases over a
given time horizon so that any restrictive actions can be better planned. In addition, we perform a what-if analysis based on
the best-identified predictive models to evaluate the impact of specific restrictions on the trend of positive cases. Our focus on
the first three waves is motivated by the fact that it represents a typical emergency scenario (when no stable cure or vaccine
is available) that may occur when a new pandemic spreads. Our experimental results prove that exploiting the considered
heterogeneous data leads to accurate predictive models, reaching a WAPE of 5.75% at the national level. Furthermore, in
the subsequent what-if analysis, we observed that strong all-in-one initiatives, such as total lockdowns, may not be adequate,
while more specific and targeted solutions should be adopted. The developed models can help policy and decision-makers
better plan intervention strategies and retrospectively analyze the effects of the decisions made at different scales.

Keywords COVID-19 · Coronavirus · Time series forecasting · What-if analysis · Machine learning

1 Introduction

Initially appearing in Wuhan, China, in December 2019, the
novel coronavirus has spread rapidly worldwide, leading to
an ongoing pandemic known globally as COVID-19.1 Typ-
ical symptoms, which can appear two to fourteen days after
the exposure to the virus, often include fever, cough, fatigue,
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breathing difficulties, and, in severe cases, they can develop
into critical conditions, also leading to death.2 Older people
have a higher risk of developing severe symptoms among
the population. Unfortunately, COVID-19 is easily transmit-
ted when people breathe air contaminated with droplets and
small airborne particles containing the virus. The same is
true when people touch their eyes or nose after coming into
contact with contaminated surfaces.3 The rapid spread of the
disease has also been exacerbated by the fact that a fraction
of people who have been infected show no noticeable symp-
toms [34], making tracing operations very difficult.

Since the early stages of the pandemic, we have glob-
ally observed a severe impact on health infrastructures. This
has led policy and decision-makers, in addition to imposing
preventive measures such as wearing masks and avoiding
gatherings, to declare partial or severe lockdowns in several
regions or entire countries. However, long periods of iso-

2 https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/
symptoms.html
3 https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/
how-covid-spreads.html
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lation and reduced mobility between cities or regions have
also led to dramatic economic and social consequences [32,
41], arousing skepticism about the appropriateness of the
adoption of drastic lockdowns as all-in-one solutions [23].
At the time of writing, massive vaccination campaigns have
been launched around the world, but the pandemic is still
spreading.4

In this context, developing predictive models could sup-
port policy and decision-makers significantly. Several
attempts have been made in this direction using more classi-
cal statistical and epidemic models (see Section2), but they
mainly exploit only epidemiological trends (i.e., new posi-
tives, number of deaths, etc.). On the other hand, the possible
exploitation of additional data related tomobility and applied
restrictions has not received the right attention in previous
works. This paper proposes adopting machine learning solu-
tions based on multiple heterogeneous data sources to build
robust predictive models. Furthermore, we aim to leverage
knowledge about the current pandemic by retrospectively
analyzing the effects of decisions made, thus supporting the
development of more robust strategies to fight against future,
although undesirable, outbreaks.

The joint exploitation of data related to epidemiological,
mobility, and restriction aspects of COVID-19 with machine
learning algorithms is beneficial because it allows us to cap-
ture the complex interaction of different factors that influence
the spread of the disease. Epidemiological data, such as the
number of deaths, provide valuable information about the
virus transmission rate and the pandemic’s severity. On the
other hand, information about mobility, such as the number
of people traveling from one place to another, can help to
understand how the disease spreads geographically. Finally,
data related to applied restrictions, such as specific measures
taken by the government to limit the spread of the virus, can
provide insights into the effectiveness of these interventions.
Machine learning algorithms can identify patterns and rela-
tionships in the data that are difficult to detect with traditional
mathematical and statistical methods. In addition, machine
learning algorithms can handle the high dimensionality and
complexity of the data, which may be essential to model the
disease’s spread accurately.

In summary, this paper contributes along the following
directions:

– We focus on the Italian case during the first three waves.
The country is subdivided into regions with heteroge-
neous social, economic, and environmental conditions,
which have determined significantly different responses
and outcomes to the emergency. Although Italy has been
the subject of some studies at the national level (e.g.,

4 https://www.who.int/news-room/q-a-detail/coronavirus-disease-
(covid-19)-vaccines

[12, 46]), studies at the regional level are muchmore lim-
ited. We argue territorial specificity, which implies more
or less drastic containmentmeasures, cannot be neglected
in constructing an accurate predictive model. Therefore,
we trained different predictive models at national and
regional levels.

– Contrary to previous relevant works mainly focusing on
clinical data and mathematical models [7, 29, 47], we
integrate data from multiple heterogeneous sources and
learn predictive models through machine learning algo-
rithms that also consider the mobility conditions and the
imposed restrictions. Considering such relevant factors
may significantly support the modeling of this complex
phenomenon.

– We show the results achieved by severalmultivariate time
series forecasting models aimed at predicting the amount
of new positive cases daily. Note that by relying on a
multi-step ahead recursive approach [3, 13], the predic-
tion for a given day can be exploited as a training instance
to build predictive models for longer-term horizons, e.g.,
to forecast the epidemiological trend in the following 7
or 14 days.

– Finally, exploiting the most effective learned models, we
conduct a what-if analysis to evaluate the impact that dif-
ferent mobility and restriction scenarios could have had
on the spread of the virus. Except for some preliminary
attempts (e.g., [28, 35, 40]), this type of analysis has not
been systematically carried out in the literature, but it can
be valuable for retrospectively evaluating the effective-
ness of more or less severe decisions.

The rest of this paper is structured as follows. Section2
reviews existing studies in the literature related to this work.
In Sections3 and 4 we describe the data considered and
the experimental setup. Section5 presents and discusses the
obtained results. Finally, Section6 concludes the paper and
outlines the study’s limitations and future developments of
this research.

2 Related work

Research on the use of Artificial Intelligence (AI) to support
decision-making has a long tradition. Supporting decision-
makers involves collecting and analyzing evidence, identify-
ing and diagnosing problems, proposing possible courses of
action, etc. With AI, these tasks can be done accurately and
efficiently by processing huge volumes of data. This is espe-
cially important in clinical and biomedical scenarios, where
AI can enhance humans’ ability to collect, understand, and
make inferences about clinical/biomedical data to try tomake
optimal decisions. Recently, notable applications of clinical
decision support systems have been reported [4, 25, 30, 38].
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Building on this experience, since the beginning of the pan-
demic the research community has made a huge research
effort to face the ongoing crisis. Computer vision methods
have been applied to computed tomography and radiolog-
ical imaging to support faster and more reliable diagnosis
and prognosis [2, 45]. Natural language processing has been
successfully employed for better information retrieval and
literature-based discovery [8]. Time series forecasting has
been applied to build models capable of predicting epidemi-
ological trends. Our work is framed in the latter context.

A fraction of the literature addressing the problem of
developing predictive models for COVID-19 emerged from
the very early stages of the pandemic. From this body of
knowledge, several works have adopted statistical and epi-
demicmodels to help understand andmanage the pandemic’s
evolution and predict transmission scenarios. For example,
[7, 26, 29, 36, 47] applied classic mathematical models to
provide quantitative guidance in the application of control
measures in China, India, and South Korea. While these
models can effectively capture the crucial characteristics of
infectious diseases, they are typically based on basic assump-
tions, such as susceptibility to infection or recovery rate,
which may only hold in some scenarios. On the other hand,
pure sequential methods designed for time series forecast-
ing, such as the popular Autoregressive Integrated Moving
Average (ARIMA), can better uncover hidden patterns from
training data. Successful applications on the specific case of
COVID-19 include theworks [10, 14, 44].However, in recent
years, several supervised machine learning approaches have
begun to replacemore classicalmethods for this type of prob-
lem [5], even in the specific case of COVID-19 forecasting
(e.g., [9, 21, 39]). Popular methods, such as Random Forests
and LSTMs, may be even better suited to take advantage
of non-linear relationships within multidimensional data and
can further increase predictive performance. In this work, we
follow this direction.

Unfortunately, while many papers have successfully
applied various models to predict the epidemiological trend,
fewer attempts have been made in the simultaneous exploita-
tion of multiple heterogeneous data sources, as we do in
this paper. Moreover, only a few works performed what-if
analyses aimed at studying alternative scenarios to actual
measures. Some studies have adopted mathematical simula-
tion models to explore the effects of intervention measures
[48], vaccination coverage [18], possible reinfection scenar-
ios [31], or the spread of the virus in universities in different
conditions [19]. The works most closely related to ours are
[28] and [40]. In [28], several machine learning techniques
were applied to US demographic, environmental, and mobil-
ity data to assess the impact ofmobility onCOVID-19 at both
the national and county level, although only a short period of
two months was considered. In [40], a deep learning model
was proposed to assess and predict the impact of various

lockdown policies on COVID-19 cases, based on applying
a clustering approach on countries (emphasizing those with
similar lockdown policies) and then focusing on the case
of Qatar. In both studies, the Italian case, with its specific
territoriality, was not the study’s objective. In this specific
context, Parolini et al. [35] recently proposed a mathemati-
cal dashboard for analyzing data for the Italian COVID-19
epidemic, but they did not exploit the potential of machine
learning models.

From a methodological point of view, we exploit machine
and deep learning algorithms to derive predictive models,
as done in [9, 21, 39]. In addition, as reported in [40], we
exploit the developed models to perform what-if analyses.
Compared to these works, the main difference in this study
lies in the heterogeneity of the data considered, which con-
cerns the specific Italian case at national and regional levels.
In fact, to the best of our knowledge, this study can be con-
sidered the first attempt to exploit (i) epidemiological, (ii)
mobility, and (iii) restriction data to learn forecasting mod-
els, and to perform subsequent what-if analyses, specifically
targeting the first three waves in Italy, both at national and
regional levels.

3 Materials

This section describes the data we collected to perform the
study. Several public datasets have been considered, provided
by different authorities, research consortia, and companies,
covering multifaceted aspects of the COVID pandemic from
2020/03/01 to 2021/05/11 in Italy. This time interval is long
enough to cover the first three waves that hit the country.
Specifically, the collected data ranges from epidemiologi-
cal attributes (e.g., number of new cases, number of deaths,
number of newhospitalizations) to data representingmobility
trends and the specific restrictions imposed at the national or
regional level. It is worth noting that although these datasets
represent an invaluable resource for subsequent analyses,
their combined exploitation required significant efforts for
their integration. Therefore, in the following subsections, we
describe the steps we followed to perform data collection,
data integration, and data validation, emphasizing the differ-
ences in terms of type of data, peculiarities, and identified
issues. An overview of the features considered is given in
Table 1.

3.1 Data collection

3.1.1 Epidemiological data

Epidemiological data were collected from two different
sources: the dataset provided by the Italian Civil
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Fig. 1 Reproduction rate in Italy from March 2020 to May 2021

Protection5 and the dataset made available by Our World
in Data.6 The former was curated by the Italian Ministry
of Health and contains data on the national, regional, and
provincial epidemiological trends, updated daily. In this
study, as previously mentioned, we focused on national and
regional data. Since we were interested in studying the daily
trends, we transformed the three cumulative features shown
in Table 1 (i.e., recovered patients, total deaths, and total
tests) into non-cumulative daily features.

The dataset provided by Our World in Data contains
several epidemiological features related to continents and
countries, updated daily. From this dataset, we only selected
the reproduction rate, which represents an estimation of
the Rt index, carried out with the method proposed in [1].
Features representing other relevant information are already
collected in the Italian Civil Protection dataset, which also
offers these data at a regional granularity level. A graphical
representation of the trend of the national reproduction rate
in the considered period is shown in Fig. 1.

3.1.2 Mobility data

Data about mobility trends were collected from the Google
COVID-19 Mobility7 and Apple Mobility Trends8 datasets.
Google Maps uses aggregated and anonymous data to ana-
lyze the average number of people in specific categories
of places per hour. Such information can play a vital role
in making essential decisions against outbreaks. Data from
the Google COVID-19 Mobility dataset are provided at a
national, regional, and provincial granularity but are also
available globally. The data offered by this dataset were
updated every 2–3 days, as they were subject to some pre-
processing steps before being offered to the public. All the
features listed in Table 1 represent the shift, in terms of vis-
itors to specific locations, from a baseline representing the

5 https://github.com/pcm-dpc/COVID-19
6 https://github.com/owid/covid-19-data
7 https://www.google.com/covid19/mobility/
8 https://covid19.apple.com/mobility

pre-pandemic period. It is worth noting that the information
is missing for some days of the year and in some regions due
to the lack of sufficient data to aggregate.

Analogously, the dataset offered by Apple was generated
by counting the number of requests and driving directions
on Apple Maps in specific geographic areas. From a spatial
viewpoint, the information is offered at a national, regional,
and city level. In our case, we considered all the available
features at a national and regional granularity.

3.1.3 Restriction data

Mobility trends and the overall spread of the virus have been
influenced by restrictive measures put in place by national
and regional authorities. Therefore, we also considered data
related to the restrictions applied in Italy over time. To this
aim, we exploited data offered by the Oxford COVID-19
Government Response Tracker [20]. It collected systematic
information on government measures in different countries,
including Italy. Several indicators cover different areas in
which anti-COVID measures have been adopted, including
restrictive and containmentmeasures. The specific indicators
used in our analysis are reported in Table 1.

To consider this kind of information also at a regional
granularity, an additional dataset was manually created. It
contains, for each day, the color zones corresponding to
specific restrictive measures established by the ItalianMinis-
terial Decree of 3rd November 2020. The Italian government
launched this initiative to take into account the specificity of
each region, thus avoiding lockdown at the national level.
The color can be one of the following, depending on the
severity of the restrictions applied:white, yellow, orange, and
red. For example, white indicated basic restrictions, such as
the mandatory wearing of masks, physical distancing, and
closure of museums on weekends. At the other end of the
spectrum, red indicated severe restrictions, including night-
time curfews, bans on going out without justification, closure
of stores and malls, and distance education. To guarantee
consistency from a temporal viewpoint with data related to
other perspectives, the dataset was extended to include infor-
mation about restrictions for dates preceding the Ministerial
Decree based on the similarity of the applied restrictions. In
particular, from 1st to 4thMarch 2020, all regions were in the
white zone except for Lombardy (orange), Veneto (yellow),
and Emilia-Romagna (yellow). From 5th to 9th March 2020,
all regions in the white zone switched to the yellow zone.
From 10th to 21st March 2020, all regions were assigned to
the orange zone, while for the entire lockdown period (from
22nd March to 3rd May 2020), they were assigned to the red
zone. From 4th to 17th May 2020, all regions were assigned
the orange zone due to the relaxation of restrictions through-
out the national territory. From 18th May to 14th June 2020,
all regions were assigned to the yellow zone. Finally, for the
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Fig. 2 Color zone restrictions imposed on 2020-11-05, 2021-03-29 and 2021-05-06, respectively from left to right

whole summer and until 21st October 2020, all the regions
were assigned to the white zone. Figure2 shows some exam-
ples of the color zones imposed on three different days.

3.2 Data integration

The datasets considered are inherently heterogeneous and
require integration steps before they can be properly ana-
lyzed.We startedwith converting names and formatting dates
uniformly. In addition, to handle consistent and temporally
aligned data, 1st March 2020 was chosen as the starting
point, given that, at the beginning of March 2020, all Ital-
ian regions recorded the first cases of COVID-19 (while, at
the national level, the threshold of 550 cases per day was
already exceeded).

At the end of the integration process, one national dataset
and 21 regional datasets (considering the Autonomous
Province of Trento and Bolzano separately) were obtained.
Each row contains data from a single day in both datasets.

Fig. 3 Anomaly found in the epidemiological data related to Emilia-
Romagna

3.3 Data validation

The datasets obtained through the integration phasewere ver-
ified to detect possible errors, outliers, or anomalies. Some
anomalies were found in epidemiological data, arguably due
to data collection or management issues by the authorities.
Some relevant examples are shown in Figs. 3 and 4. We
can observe the case of the Emilia-Romagna region, which
declared a very anomalous number of new deaths compared
to the overall trend, and the case of the Campania region,
which declared a negative number of new COVID-19 cases.

As for the other data sources, no critical problems were
identified except for sporadic missing periods for some
mobility features in some regions. In particular, for the
Google Mobility indexes, we found some regions, such as
Abruzzo, Molise, Basilicata, Valle d’Aosta, and Umbria,
where periods of about 20 consecutive days with missing
values for some locations (e.g., parks and transit stations)
are present. Moreover, we identified three specific days with
no data from Apple Mobility. Unfortunately, there are also

Fig. 4 Anomaly found in the epidemiological data related to Campania
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Fig. 5 Comparison between total cases and retail and recreation

regionswhere these features are completely absent and there-
fore have not been included in our analysis. The feature
walking is missing from the Apple dataset for Basilicata,
Molise,Valle d’Aosta, Bolzano, andTrento. The feature driv-
ing is also missing for the latter two regions. In general, we
treated anomalies and missing values in two ways: by setting
them to a null value or by imputing them through polyno-
mial interpolation. Note that we treated all features equally
and applied these two alternative strategies for handling all
the missing values, considering them mutually exclusive.

Finally, we performed an exploratory data analysis, which
confirmed that epidemiological,mobility, and restriction data

Fig. 6 Correlation matrix between features in the national dataset (for
better visualization, we show only the corresponding heat map). The
color palette ranges from negative correlation (red) to positive correla-
tion (green)

Fig. 7 Comparison between retail and recreation in Puglia and in Lom-
bardia

are interrelated, thus strengthening our motivation for their
combined exploitation. A relevant example is depicted in
Fig. 5, which shows how the total positive cases are neg-
atively correlated with retail and recreation as an effect of
the restrictions applied. Positive and negative correlations
between features can also be observed in the correlation
matrix shown in Fig. 6. For the sake of brevity, this figure
only depicts national data, but regional data behave analo-
gously. Although some features appear to be correlated, we
preferred not to further reduce the available features through
feature selection approaches but to let the machine learning
algorithms fully exploit all available data.

The exploratory analysis also confirmed that each region
exhibits its peculiarities. In this respect, in Fig. 7, we show
how retail and recreation were much higher in Puglia than in
Lombardia during the summer of 2020, but this could be due
to the fact that the former is a typical tourist region, rather
than to aspects related to the pandemic.

Finally, Fig. 8 confirms that the government response to
the pandemic has not always been uniform according to
the epidemiological trend. After the first strict lockdown,
imposed not to saturate the Intensive Care Units, the same
severity was no longer applied, although the new positive
cases were consistently higher. Indeed, since the autumn of

Fig. 8 Comparison between total cases and government response index
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2020, more specific region-by-region restrictions have been
applied.

4 Methods

In the following, we describe the approach we followed to
achieve the first objective of this work, namely the construc-
tion of forecasting models to predict new positive cases.
Then, we exploited the resulting models to perform a what-if
analysis.

4.1 Learning of forecastingmodels

Given the features related to epidemiological, mobility, and
restriction aspects described in the previous section, our goal
has been to learn forecastingmodels able to predict new posi-
tive cases on a day-to-day basis. Specifically, from amachine
learning viewpoint, the task considered falls in the category
of multivariate one-step forecasting. This task can generally
be formulated as a regression problem in which the goal is
to predict yt+1 ∈ R, at time t + 1, given a d-dimensional
feature vector xt ∈ R

d , which also includes the value of the
target variable at time t . This strategy, commonly known
as the sliding window method [15], requires defining the
size of the window, which plays a crucial role as it deter-
mines the contribution provided by old observations and can
have a significant impact on the final results. Since, in our
specific context, symptoms can arise two to fourteen days
after exposure to the virus, corresponding to the time frame
required to evaluate the effectiveness of possible restrictions,
we learned our forecastingmodels with awindow sizew = 7
and w = 14.

For planning purposes, focusing the task on predicting
new cases for the next day can be quite limiting. However, as
already introduced in Section1, a one-step forecasting task
can be easily extended to a multi-step forecasting task by
adopting a recursive approach. Specifically, the predicted
value at time t can be adopted as a training instance to learn
a predictive model for time t + 1, t + 2, …, t + p, up to the
desired time horizon p. Of course, this strategy may lead to
the propagation of errors, but it can effectively be adopted to
achieve longer-term predictions.

As learning algorithms, we considered the following pop-
ular supervised methods:

– K-Nearest Neighbors (K-NN) [22], which is a classic
instance-based method that does not build a predictive
model but computes the target value to assign to a new
instance based on the target values of its k nearest neigh-
bors in the training set, where the similarity with them is
estimated according to the descriptive variables.

– Support Vector Regression (SVR), which is a well-
known supervised algorithm suitable for both linear and
non-linear regression [43]. The name derives from the
so-called support vectors, which are training examples
selected from the training set that allow identifying an
optimal separating hyperplane by solving a quadratic
programming problem. When a linear hyperplane may
not lead to a good separation, the so-called kernel trick
can be adopted, which is based on the computation of
a non-linear combination of the original features and
the projection of the training examples from the origi-
nal space into a higher dimensional space via a suitable
mapping function.

– RandomForest (RF), which is an ensemblemethod based
on the construction of multiple regression trees, each
learned from a random sample of training examples and
features [6]. Each leaf of a regression tree is associated
with a numerical value, representing the prediction pro-
vided to new examples falling in such a leaf. On the
other hand, internal nodes represent logical conditions
defined on the descriptive attributes. The ensemble’s goal
is to combine the predictions provided by several “weak”
learners to achieve a better generalization capability of
the final model.

– Adaptive Boosting (AdaBoost), which is an ensemble
method that, unlike RF, is based on “boosting” [16]. The
goal is to train weak learners sequentially rather than
in parallel to obtain a more robust model. More specifi-
cally, each learner is trained by focusing on instances not
predicted correctly by its predecessor. Therefore, each
instance is associated with a weight, which is iteratively
adapted, indicating the importance that the next learner
should provide.

– Gradient Tree Boosting, which is a more recent boosting
algorithm that, instead of adapting the instanceweights at
each iteration as done by AdaBoost, iteratively attempts
to fit the new model based on the gradient of a specific
loss function, computed on the predictions performed by
the previous learner [17]. The adopted loss function must
be differentiable and appropriate to the objective to be
pursued, such as the Mean Squared Error in the case of
regression tasks.

– Long Short Term Memory (LSTM) network, which is a
recurrent neural network (RNN) architecture suitable for
sequential data and specifically designed to model long-
term dependencies in the input space through a cell state
in addition to the classic hidden state of vanilla RNNs
[24]. In LSTMs, information can be explicitly retained
or removed from the cell state so that the cell’s inter-
nal state remains unchanged if there is no information
to retain. Three gates regulate this mechanism: the for-
get gate, the input gate, and the output gate. LSTMs can
be unidirectional or bidirectional (BiLSTM): in the first
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case, only past information is used; in the second case,
the network architecture allows information propagation
in both directions.

– Gated Recurrent Unit (GRU) network, which is an RNN
variant introduced as an improvement on the classic
LSTMs [11]. A GRU generally performs similarly or
better in terms of efficiency than a normal LSTM, as
it reduces the number of operations to be performed. In
fact, GRU combines the previous input and forget gate
into a single “update” gate.

– Naive regressor, which is a simple baseline that naively
predicts the number of new cases of the next day as those
of the previous day.

While the tree-based methods accept both categorical and
numerical data as input, all other methods require additional
preprocessing to encode categorical variables to numerical.
In this study, the only categorical feature was the color zone
in the regional datasets, which, as indicated in Table 1, has
been transformed into an ordinal variable with the following
encoding: 0 for white, 1 for yellow, 2 for orange, and 3 for
red.

Time series forecasting tasks require attention when
defining the experimental setting. Indeed, standard evalua-
tion strategies based on cross-validation cannot be directly
applied since they could lead to testing splits falling in past
periods with respect to training splits. For this reason, as
depicted in Fig. 9, we split the available data into:

– Training set: from 2020/03/01 to 2021/04/01;
– Validation set: from 2021/04/02 to 2021/04/21;
– Test set: from 2021/04/22 to 2021/05/11.

Note that, as stated earlier, the test set represents a time
horizon that is wider than one single day and, specifically,
spans over 20 days.We never considered the real value of any
day in the test set while learning the predictive models. On
the contrary, following the recursive approach, we adopted

Fig. 9 Graphical representation of the applied training-validation-test
splitting

the predicted values to learn predictive models for each day
of the test set from 2021/04/23 to 2021/05/11.

The adopted split is motivated by the need to exploit
as much data as possible for the training phase to learn
accurate models based on epidemiological trends observed
along multiple waves. The validation set was specifically
used to optimize the models’ hyperparameters, thus miti-
gating the possible occurrence of overfitting issues. Finally,
the best-identified hyperparameters were adopted to retrain
the models from the combined training and validation sets.

The optimization of the hyperparameters was performed
as follows. We applied a grid search that exhaustively
explores the hyperparameter space over the validation set for
K-NN, SVR, RF, AdaBoost, and Gradient Tree Boosting. On
the other hand, we adopted a Bayesian search for methods
based on neural networks (i.e., LSTM, BiLSTM, and GRU).
The main difference between the Bayesian and classic grid
search is that the former focuses on the most “relevant” part
of the search space, discarding ranges that are unlikely to
provide the best results. ForK-NN, the only optimized hyper-
parameter was the number of neighbors, with values ranging
from 1 to 5. For SVR, the search space included the poly-
nomial kernel degree, with values ranging from 1 to 9, and
the regularization parameter C , which took values of 1, 10,
20, up to 100. For the tree-based methods, we considered the
maximum depth of trees, with values ranging from 5 to 15,
and the number of trees in the ensemble, with values of 50,
100, 150, and 200. We also looked for the minimum num-
ber of samples needed to be in a leaf node and the minimum
number of samples needed to split an internal node, with four
combinations of considered values, namely (2, 4), (3, 6), (4,
8) and (5, 10). For Gradient Tree Boosting, we experimented
with two values for the learning rate, namely, 0.1 and 0.01.
Finally, for LSTM, BiLSTM, and GRU, the batch size was
set between 16 and 32. The search space also included: the
number of epochs, with values ranging from 10 to 100, in
steps of 10; the number of hidden units, with values ranging
from 8 to 128 in increments of 8; the activation function, set
to tanh or ReLU; the dropout rate, with values of 0 and 0.1;
the learning rate, which took values between 0.1 and 0.0001.
Moreover, we used the Adam optimizer, and the early stop-
ping patience was set to 3 for all neural network models.

To evaluate and compare the obtained performance, we
used the following well-known evaluation metrics:

– Mean Absolute Error (MAE), which measures the
expected value of the absolute error, calculated as
MAE = 1

N

∑N
i=1

∣
∣yi − ŷi

∣
∣, where N is the number of

samples in the testing set, while yi and ŷi are the true and
the predicted values for the i-th sample, respectively.

– Root Mean Squared Error (RMSE), which measures the
square root of the mean of the squares of the errors per-
formed on the testing set; it is computed as RMSE =
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√
1
N

∑N
i=1

(
yi − ŷi

)2, and generally provides a higher
penalization to larger errors with respect to MAE.

– Weighted Average Percentage Error (WAPE), which
measures the mean absolute percentage deviation of
the predicted values from the true values, computed as

WAPE = 100 ·
∑N

i=1|yi−ŷi |
∑N

i=1|yi |
.

4.2 What-if analysis

Based on the results obtained on the multivariate time series
forecasting task, we performed a set of what-if analyses to
assess the impact of possible different mobility and restric-
tion scenarios on the spread of the virus.We carried out these
analyses based only on the best forecastingmodels, i.e., those
that turned out to be the most accurate at testing time, both
on the national and the regional data. The adoption of inac-
curate models, in fact, would naturally have led to strong
distortions in the conclusions. Specifically, two alternative
scenarios were investigated, whose specific perturbations are
summarized in Table 2:

– Lockdown, simulated by perturbing the mobility and
restriction features of the test set to mimic the values
shown during the first wave ofMarch-April 2020, which,
in Italy, led to a total lockdown. It is worth noting that the
Italian government has no longer adopted the restrictions
applied during this period; instead, specific restrictions
have been introduced for each region, as previously men-
tioned.

Table 2 Summary of the perturbation introduced in the considered
what-if scenarios

Perturbed feature Lockdown Reopening

Retail and recreation ↓ ↑
Parks ↓ ↑
Transit stations ↓ ↑
Residential ↑ ↓
Driving ↓ ↑
Walking ↓ ↑
Transit ↓ ↑
School closing ↑ ↓
Workplace closing ↑ ↓
Public transport closing ↑ ↓
Stay at home ↑ ↓
Restrictions on gatherings ↑ ↓
Restrictions on internal movement ↑ ↓
The ↓ symbol indicates that the feature value has been decreased,
while ↑ indicates that the feature value has been increased. The
decrease/increasewas estimated on the actual relative changes observed
in March-April 2020 and the summer of 2020, respectively

– Reopening, simulated by perturbing the same features to
mimic the values observed during the reopening phase in
the summer of 2020 following the lockdown mentioned
above.

More precisely, wemodified the values of themobility and
restriction-related features of the test set to simulate a dif-
ferent scenario from what actually happened, i.e., to mimic
the increase/decrease observed in previous periods of total
closure or reopening. Since the time interval of the test set
was characterized by a gradual relaxation of restrictive mea-
sures in Italy, to simulate a lockdown, it was necessary to
decrease the value of mobility-related features and increase
that of restriction-related features. Conversely, we increased
the value of mobility-related features and decreased that of
restriction-related features to simulate a total reopening.

These scenarios were adopted to evaluate how more or
less severe restrictions lead to an increase or decrease in new
positive cases. In this way, by comparing the new positive
cases predicted on the perturbed test set with the actually
measured positive cases, we assessed the possible influence
of the simulated scenarios.

5 Results and discussion

In this section, we discuss the obtained results in detail.
Specifically, we first show and discuss the results of the
multivariate time series forecasting task. Then, we show the
outcome of the what-if analysis.

5.1 Results of the forecasting task

We report the results obtained for all dimensions of analysis
considered in a public repository (see “Availability”). For the
sake of brevity, in the following, we focus our attention on the
results of the three best models on the national dataset and on
the regions where we achieved interesting predictive perfor-
mances, i.e., Puglia, Toscana, and Lazio.We specify whether
a window size of 7 or 14 days was adopted and whether the
missing values andoutlierswere set to anull value or replaced
by imputation. For each experiment, metrics were calculated
on the test set using the best hyperparameter configuration
identified on the validation set.

The best-performing models were selected not only based
on the quantitative evaluation measures but also according to
qualitative comparisons between actual and predicted trends.
Indeed, a model may exhibit low error in time series fore-
casting while largely overestimating or underestimating the
underlying trend.

National data In Table 3, we show the results of the three
best-performing models on the national dataset. Generally,
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Table 3 Best results on the national dataset

Model MAE RMSE WAPE

GRU (7, null) 628.78 879.54 5.75%

LSTM (7, null) 876.47 1084.26 8.02%

BiLSTM (7, null) 887.27 1036.42 8.12%

we can observe that the models based on neural networks led
to the best results, with GRU achieving a very low WAPE
(∼ 5%). The good obtained results are confirmed by a visual
inspection of the predicted trends compared to the real one
(Fig. 10).

Puglia The best results obtained for the Puglia region, shown
in Table 4 and Fig. 11, confirm the superiority of models
based on neural networks. The predicted trends overlap with
the real ones, although not perfectly. The errors made by the
models are sometimes in a different order of magnitude than
those made at the national level; however, it must be consid-
ered that the scale of the target variable is much lower (the
new positives in the individual regions are much lower than
those recorded at the national level). Similar considerations
apply to all other regions.

Toscana Table 5 confirms the predominance of RNNs,
although the runner-up is SVR. All models exhibited inter-
esting performances, even though, as shown in Fig. 12, they
overestimated the number of new cases towards the end of
the testing period.

Lazio For the case of Lazio, GRU was once again the best-
performing model (Table 6). We can also notice that SVR
exhibited lower performance, largely overestimating the real
trend (see Fig. 13).

Summary In summary, as also observed in [27, 42], neural
networks generally showed the most accurate performance
among all the consideredmodels, probably due to their ability

Fig. 10 Comparison between actual and predicted epidemiological
trends for the national data

Table 4 Best results on the data related to Puglia

Model MAE RMSE WAPE

GRU (14, null) 182.64 235.34 17.83%

LSTM (7, imputation) 198.29 256.27 19.36%

BiLSTM (7, null) 216.22 253.70 21.11%

Fig. 11 Comparison between actual and predicted epidemiological
trends for the Puglia region

Table 5 Best results on the data related to Toscana

Model MAE RMSE WAPE

GRU (14, null) 88.98 112.28 11.73%

SVR (7, null) 93.36 113.60 12.31%

LSTM (14, null) 99.81 120.96 13.16%

Fig. 12 Comparison between actual and predicted epidemiological
trends for the Toscana region

Table 6 Best results on the data related to Lazio

Model MAE RMSE WAPE

GRU (7, imputation) 74.00 92.50 7.48%

BiLSTM (14, imputation) 97.88 118.67 9.90%

Naive 107.20 131.42 10.84%

SVR (14, null) 146.51 174.79 14.82%
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Fig. 13 Comparison between actual and predicted epidemiological
trends for the Lazio region

to keep “memory” of the past within their internal representa-
tion. Of course, no one-size-fits-all solution perfectly applied
to all cases. The predictions at the regional level were, in
general, less accurate than those obtained on the national
data. This situation was even more evident on the remaining
regions. This may be due to the fact that each region has its
specificity, and thus similar restriction or mobility trends did
not influence the epidemiological trends in the same way for
all the regions. This phenomenon has already been observed
in [28], where not all US county data produced accurate pre-
dictions. This variability may have been mitigated on the
national dataset due to the smoothing introduced by aggre-
gated, higher-level features.

5.2 Results of the what-if analysis

As already mentioned, we carried out several what-if anal-
yses only for those scenarios in which the models exhibited
the most accurate results, i.e., the national and regional
datasets related to Puglia, Toscana, and Lazio. In this type of
study, there is no ground truth for the alternative simulated
scenarios, making it impossible to assess each scenario’s
changes accurately. Therefore, in the following, we draw

Fig. 14 Percentage variation of new positive cases in the lockdown
scenario on the national data

Fig. 15 Percentage variation of new positive cases in the reopening
scenario on the national data

some hypothetical explanations. In particular, we show the
percentage variation of the new positive cases predicted in
each alternative scenario compared to the real underlying
trend. Furthermore, since there are 20 days in the test set,
we show the variations for the first ten days and the last ten
days separately, to highlight whether the trend variation is
somehow constant. Finally, we focus on the results in which
a variation of at least 5% was observed.

National data In Figs. 14 and 15, we show the epidemi-
ological trend predicted in the simulated scenario of total
lockdown and reopening with respect to the real one. As for
the former, we can observe that most models predicted a
decrease in new positive cases, sometimes greater than 30%.
As for the latter, the agreement among the models is less
clear, with some counter-intuitively predicting a lower virus
spread while imposing fewer restrictions. This disagreement
may indicate that, unlike a lockdown, less severe restrictions
do not necessarily imply a change in the trend. This may also
be motivated by the fact that the testing period was already
characterized by some gradual reopening initiatives, mainly
due to the beginning of summer. We can also observe more
evident variations between the two considered periods of ten
days. This indicates that the effects of restrictive measures
can be better appreciated in the long term, confirming what
has already been highlighted in [28].

Puglia In Figs. 16 and 17,we show the changing trend of new
positive cases when simulating a lockdown or a reopening on
the data related to the Puglia region. In this case, all models
agree in both scenarios andpredict an increase in newpositive
cases in the lockdown scenario and a decrease in reopening.
These results could appear counter-intuitive since they indi-
cate that a severe lockdown may make the situation worse
than reopening. However, this situation becomes reasonable
if we consider that severe restrictions were adopted in this
region only in a much more severe epidemiological situation
(first wave), which may not reflect the trends observed by the
model in the testing period.
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Fig. 16 Percentage variation of new positive cases in the lockdown
scenario in the case of Puglia

Toscana Figures18 and 19 show the predictions for the
Toscana region. While, simulating a lockdown, the models
agree that there is a reduction in new positive cases, there
is less agreement in the reopening simulation, and GRU
strongly suggests that the contagion would spread again.
However, it can be seen that all models agree that there is
a decrease after the first ten days, albeit to a different extent.
This may suggest that even with a reopening, the situation
can improve and possibly stabilize in the long term.

Lazio Figures20 and 21 show the results of the what-if anal-
ysis carried out on the Lazio region. Similar considerations
with respect to those already made for the Puglia region
can be drawn, as 2 out of 3 models predict an increase of
new positive cases during the lockdown and a decrease after
the reopening. Moreover, while a lockdown leads to a grad-
ual change over time, reopening leads to relatively constant
changes.

Summary Although what-if analyses are inherently uncer-
tain, somehypotheses can still be drawn.Thefirst observation
is that themodels tend to change their predictions when a dif-
ferent scenario is simulated. This phenomenon confirms that
mobility and restrictions affect the epidemiological trend.

Fig. 17 Percentage variation of new positive cases in the reopening
scenario in the case of Puglia

Fig. 18 Percentage variation of new positive cases in the lockdown
scenario in the case of Toscana

The disagreement between the models and some counter-
intuitive results could instead be a symptom of contradictory
patterns in the training data. This may also be due to the
imposition of too severe restrictions too early or reopen-
ing when the situation still needed to be sufficiently safe.
This seems to confirm that lockdowns as all-in-one solutions
may not be effective and that applying targeted initiatives
based on constant monitoring may lead to better effects on
the pandemic. After the first wave, in fact, the Italian govern-
ment itself began to introduce diversified policies according
to individual cases. Finally, even without considering the
large number of external variables we have not considered
in this study, it should be noted that the behavior of the pop-
ulation has evolved to face the pandemic situation, and has
begun to adapt to new emergencies. For example, new secu-
rity protocols have been introduced, and smart working has
started to spread over companies and institutions. Hence, the
effectiveness of predictive models may have been influenced
by concept drift phenomena introduced by these evolutions,
which call for further studies on the whole historical data
about COVID-19.

Fig. 19 Percentage variation of new positive cases in the reopening
scenario in the case of Toscana
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Fig. 20 Percentage variation of
new positive cases in the
lockdown scenario in the case of
Lazio

6 Conclusion

In this paper, we applied multivariate time series forecasting
methods to new positive COVID-19 cases, specifically tar-
geting the Italian case during the first three waves. To this
end, epidemiological data and data related to mobility and
restrictions have been exploited to learn predictive models.
This activity has been performed assuming that these fea-
tures are interrelated and, therefore, should be studied jointly
to obtain more reliable predictive models. Decision-makers
can exploit these models to better plan intervention strate-
gies. In addition, we performed what-if analyses to study the
impact that more or less severe restrictions could have had on
the spread of the virus. The results obtained seem to confirm
the hypothesis that strong initiatives, like total lockdowns or
total reopening, may generally not be adequate and that more
specific, focused solutions should be adopted, such as those
applied at the level of individual regions.

Fig. 21 Percentage variation of new positive cases in the reopening
scenario in the case of Lazio

The present study outlines several points for possible
further studies. First, we have limited ourselves to epidemi-
ological, mobility, and restriction data which are unlikely to
be the only relevant factors contributing to the spread of the
virus: there are many other social, economic, and environ-
mental variables that we have not considered and which may
be crucial for the task at hand. Second, the temporal extension
considered in this paper included only the first three waves
of contagion in Italy before the new decline during the sum-
mer of 2021. Therefore, we did not study the medium-term
effects of the mass vaccination campaign nor the diffusion
of the several variants we have seen. However, these open
up other research questions, such as the impact of adverse
reactions to COVID vaccines or their effectiveness in slow-
ing the epidemic curve, which were not the main focus of our
study. Finally, from a purely methodological perspective, we
point out that the smoothing effect of the data at national
granularity on the fluctuations of the individual regions can
be exploited by relying on transfer learning approaches [33,
37]. In future work, the knowledge learned about a country
could be transferred to more specific data to develop more
robust local predictive models.
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