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Abstract
The digital health industry is experiencing fast-paced research which can provide digital care programs and technologies to 
enhance the competence of healthcare delivery. Orthopedic literature also confirms the applicability of artificial intelligence 
(AI) and machine learning (ML) models to medical diagnosis and clinical decision-making. However, implant monitoring 
after primary surgery often happens with a wellness visit or when a patient complains about it. Neglecting implant design 
and other technical errors in this scenario, unmonitored circumstances, and lack of post-surgery monitoring may ultimately 
lead to the implant system’s failure and leave us with the only option of high-risk revision surgery. Preventive maintenance 
seems to be a good choice to identify the onset of an irreversible prosthesis failure. Considering all these aspects for hip 
implant monitoring, this paper explores existing studies linking ML models and intelligent systems for hip implant diagnosis. 
This paper explores the feasibility of an alternative continuous monitoring technique for post-surgery implant monitoring 
backed by an in vitro ML case study. Tribocorrosion and acoustic emission (AE) data are considered based on their efficacy 
in determining irreversible alteration of implant material to prevent total failures. This study also facilitates the relevance 
of developing an artificially intelligent implant monitoring methodology that can function with daily patient activities and 
how it can influence the digital orthopedic diagnosis.

Keywords Artificial intelligence (AI) · Machine learning (ML) · Tribocorrosion · Acoustic emission (AE) · Random forest 
(RF)

1 Introduction

Recent medical diagnosis trends focus on identifying the sig-
nificance and feasibility of intelligent models [1]. Literature 
details various studies in healthcare applications utilizing 

technological advancements [2]. Our goal is to explore the 
field of data science, artificial intelligence (AI), and machine 
learning (ML), focusing on orthopedic implant diagnosis. 
Figure 1 gives some insight into the correlation between the 
above mentioned technological areas. As depicted in Fig. 1, 
ML is a subset of AI which includes a set of methods to 
detect patterns in data automatically. These uncovered pat-
terns can assist in future data prediction and in performing 
effective decision-making. Key notion behind any ML model 
is learning from data. Data science is the interdisciplinary 
approach that comprises of mathematics, statistics, and com-
puter science to effectively process these data to formulate 
actionable outcomes from it [3].

An orthopedic implant can fail due to its design flaws, 
manufacturing flaws, metallurgical failures, anti-bacterial, or 
anti-inflammatory reasons (infection), mechanical loosening, 
periprosthetic fractures, wear and osteolysis, dislocation, and 
surgical errors [4, 5]. Implant diagnosis is often performed 
when a patient complains about pain or discomfort, which is 
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often followed by a sequence of steps to confirm the problem 
[6]. Once an implant fails, revision surgery is the only avail-
able alternative with high risks involved. So, it is advisable 
to explore various options to identify the onset of failures 
and act as an early preventive measure to avoid any total 
or irreversible failure [7]. With the recent advances in the 
digital world, studies and trials with ML, AI, and data sci-
ence are gaining popularity, and they are even considered for 
early diagnosis and preventive care in medical applications.

Thus, this paper is mainly driven by the following ques-
tion: “Up to what extent the smart systems can find their 
future in orthopedic implant diagnosis?” This work is 
focused on exploring the applicability of ML, AI, and data 
science, through reported research studies, also investigating 
the need of a continuous monitoring tool that can predict 
the failure level of biomedical implants, especially those 
addressing THA implants.

2  Technological advancements 
in orthopedic diagnosis

As mentioned by Pei et al., digital orthopedics, along with 
advanced diagnostic imaging, surgical techniques, and 
advanced materials, supports surgeons in diagnosing and 
performing minimally invasive procedures to assist patient 
safety [8]. The usage of diagnostic imaging techniques is 
found to be promising in human health risk diagnosis but 
with challenges such as high operator-dependency (ultra-
sound), increased radiation burden (computed tomogra-
phy CT), cost burden (magnetic resonance imaging MRI), 
and inability to predict local tissue reactions, presence of 

tribocorrosion, degree of intra-operative soft-tissue destruc-
tion, and so on [9].

Orthopedic research focusing on joint replacement sur-
geries can be categorized based on the type of replacement 
procedure performed, such as hip, knee, ankle, wrist, shoul-
der, and elbow; implant failure category in sight; and diag-
nosis technique that is being used to identify the implant 
failure. The literature section has narrowed its focus to stud-
ies on orthopedic hip implant evaluation utilizing AI/ML or 
data science.

2.1  Literature review—Intelligent models for total 
hip arthroplasty (THA) monitoring

Present AI/ML studies for hip implants cover a wide range 
of applications, including implant detection, loosening 
detection, fracture classification, prediction of complications 
and wear rate, prediction of early revision surgery, predicting 
arthroplasty outcomes, and so on. Key aspects that need to 
be considered while designing an intelligent model are the 
selection of the dataset as well as the selection of appropri-
ate algorithms for the dataset to provide better performance 
or accurate outcomes. These ML studies are grouped in 
this section based on the model’s outcome, as depicted in 
Table 1. It is also noted that radiographs are the most com-
monly used dataset for ML hip-related studies.

2.1.1  Implant detection models

The primary aim of implant detection models is to confirm 
the presence or absence of implants from diagnostic images 
(Fig.  2). If developed considering appropriate training 

Fig. 1  Schematic interpretation 
of the relation between data sci-
ence, artificial intelligence (AI), 
and machine learning (ML)
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factors, these models can play a vital role in clinical deci-
sion-making [10]. One of the models that work on YOLOv3 
convolutional neural network (CNN)-based approach can 
function as a stem detection model using the postopera-
tive hip anteroposterior (AP) X-rays dataset [11]. Karnuta 
et al. explored the possibility of developing an artificially 
intelligent model to identify the implant manufacturer and 
model that learn based on AP plain radiographs and perform 
decision-making. This scheme also utilizes CNN models and 
supports pre-operative analysis before revision surgeries but 
can be applied only for the femoral component [12]. Another 
deep CNN approach described in [13] supports pre-operative 
planning before revision surgery implants and risk preven-
tion. This model relies on AP hip X-ray dataset to generate 
a fully automatic and interpretable model that can identify 
the design of THA. The authors also claim that it is a novel 
study in this field that can be advanced to an AI method 
incorporating supplementary radiographic views. Another 
approach confirms that pre-operative identification of failed 
hip implants could help properly plan revision surgeries [14]. 
ResNets and k-nearest neighbors (k-NN) achieve anatomical 
localization and classification of metallic implants, espe-
cially implants in the femur, with whole-body post-mortem 
computed tomography (PMCT) scans as the dataset, which 

can help to draw pattern-recognition and conclusions in a 
clinical and forensic setting [15].

Deployment of the implant detection ML model is effec-
tive in implant diagnosis and performing properly planned 
decision-making before revision surgery. It can also assist 
in identifying the design and manufacturer of the failed 
implants where a manual evaluation is challenging.

2.1.2  Implant failure prediction models

Hip implant failure can be due to its loosening from bone 
caused by wear and tear, or tribocorrosion, failed osseointe-
gration, infection, damaged bearings causing malposition of 
its parts, and crack or fracture. ML studies dealing with such 
failures can act as secondary evidence in clinical decision-
making by bridging the gap between evidence-based medi-
cine and the patient’s personal context [10]. Pre-operative 
AP and lateral radiographs with the CNN model predict hip 
implant loosening with an accuracy of 90.1%, concluding 
that ML models can predict implant loosening using radio-
graphs [16]. Another use of ML is observed when it can 
predict hip fractures from the radiographs with an increased 
accuracy of 19% compared to human evaluation. This model 
also utilizes a CNN-based localization and classification 
approach using AP pelvic and AP radiographs [17]. Since 
the malposition of the acetabular component relies on pel-
vic-sagittal inclination, its assessment can support patient-
specific THR surgery planning. Jodeiri et al. developed a 
fully automated scheme that can measure the inclination of 
THR and assist in clinical decision-making using CT images 
[18] (Fig. 3).

The simultaneous wear and corrosion in the biological 
environment can cause implant failures. Though studies 
relating to this viewpoint are limited, the corrosion sever-
ity estimation model at the stem taper of retrieved THA 
implants employs a pattern-recognition approach for the 
image dataset [19]. This model with SVM Bayesian opti-
mization gave an accuracy of 85% for the visual scoring 
method. Rouzrokh et al. developed a model to assess the risk 
of hip dislocation [20] and a fully automated tool that meas-
ures the acetabular component angles from the radiographs 
[21]. Based on the results, this tool can interpret the risk of 
hip dislocation from radiographs.

Even though implant failure prediction is highly sig-
nificant, dictated ML models mainly consider radiographic 

Table 1  Roadmap of existing 
ML algorithms deployed for 
monitoring or performing 
decision-making after THR 
surgery is categorized as 
depicted based on their 
applications

AI/ML models

Implant detection models Implant failure prediction models
Post-operative decision-making models Pre-operative decision-making models
Clinical and patient-reported outcomes models Structural monitoring models
Simulation models

Fig. 2  Example of radiographs (drawings) that can be given as input 
to the ML model for implant detection
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images as their main source of learning data. It limits the 
chances of predicting failures before it happens and opens 
the door for ML models that can even predict the chances 
of failures.

The following sections from Sects. 2.1.3 to 2.1.5 discuss 
ML models that consider patient’s clinical or electronic 
records as their main learning source. Any failure to comply 
with routine follow-up can lead to data deficiency affecting 
the model’s accuracy, which highlights the need for data sets 
of these types of models needs to be updated regularly for a 
promised outcome.

2.1.3  Postoperative decision‑making models

Here the main focus of ML models is to predict the chances 
of revision surgery after primary THR. Patient characteris-
tics such as clinical variables, demographics, comorbidities, 

cognitive appraisal processes, and surgical variables are 
considered following revision surgery indications such as 
aseptic loosening, dislocation/instability, periprosthetic joint 
infection, periprosthetic fracture, adverse local tissue reac-
tion/metallosis, and miscellaneous (Table 2). Based on these 
patient factors, Kunze et al. developed a clinical decision-
making tool to confirm its discriminative capability in per-
forming patient health assessment after THA [22], while 
Klemt et al. confirmed the potential of the ML models to 
support clinical practice in quantifying the risk of revision 
THR surgery through patient-specific characteristics [23]. 
Another different approach that predicts postoperative THA 
outcome score at 3 months utilizes the least absolute shrink-
age selection operator (LASSO) for its ML model. In this 
work, Sniderman et al. confirmed that cognitive appraisal 
processes contribute more to determining the postoperative 
hip disability and osteoarthritis outcome score (HOOS) [24].

Fig. 3  Understanding implant 
failures from a radiograph 
(drawings): a loosening, b 
malposition due to loosening, c 
fracture; examples of ML model 
inputs

Table 2  Sample patient medical 
record Sample Medical Record: Name

Clinic:
Patient Information
Problems Review of Systems
Medications Vital Signs
Directives Physical Exam
Allergies and Adverse Reactions (! = critical) Plan
Service Due Medications:
OFFICE VISIT Treatment:
History of Present Illness Orders:
Reason for visit: Routine to follow up Education/Counseling (time):
Chief Complaint: No complaints Coordination of Care (time):

Follow-up/Return Visit:
History Disposition:
Symptoms Tests:
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2.1.4  Pre‑operative decision‑making models

Predicting complications after primary THA can help in pre-
operative decision-making. Mortality rate prediction is found 
to be possible by deploying artificial neural network (ANN) 
and logistic regression (LR) models. One of the models con-
siders elderly patients with THA implants after hip fractures 
as their study subject [25]. This model gives insights into 
clinical outcomes and the likelihood of mortality, suggest-
ing a pre-operative decision-making approach for doctors, 
patients, and even their families. A pre-operative ML model 
developed by Karhade et al. predicted opioid use after THA 
[26]. While American Joint Replacement Registry (AJRR) 
risk calculator model shows poor performance or discrimi-
nation for 90-day mortality samples [27], other studies from 
the same team show improved accuracy in predicting 30-day 
mortality and cardiac outcomes using LASSO regression 
models in Veterans Health Administration patients [28] and 
American College of Surgeons-National Surgical Quality 
Improvement Program (ACS-NSQIP) [29] data.

However, an early risk stratification study using the ACS-
NSQIP universal risk calculator by Edelstein et al. facili-
tates an online post-surgery complication prediction model 
[30]. Also, in [31], Shah et al. discussed the possibility of 
developing an ML-based prognostic model to determine the 
peri-operative risks, which can help identify and address 
potential risk factors leading to various complications. 
Implementing ML models in predicting patients’ ambula-
tory same-day discharge after THA seems interesting due 

to continuing financial and regulatory pressures [32]. This 
study also confirmed the patient candidacy based on clinical 
variables, demographics, and other comorbidities (Table 2).

2.1.5  Clinical and patient‑reported outcomes models

The K-means clustering ML method based on gait or sensor 
data and electronic data records on peri-operative setup is 
useful in predicting clinical or patient-reported outcomes 
measures (PROM) of TJA surgeries [33]. It also helps cluster 
patients parallel to the predicted PROMs with an opportu-
nity for both qualitative and quantitative features in model 
development (Fig. 4). Another PROM-based ML model used 
the logistic LASSO model and HOOS scores to determine 
the minimally clinically significant difference (MCID) and 
facilitate presurgical patient education and decision-making 
[34].

Risk assessment of patients with THA is typically per-
formed subjectively using questionnaires or gait analysis. 
Here, supervised classifier models such as support vector 
machine (SVM) and linear discriminant analysis (LDA) on 
sensor-derived metrics (for the gait analysis) show improved 
prediction accuracy after their primary THA [35]. An 
administrative big data analysis model based on the naïve 
Bayesian ML algorithm with demographics and comorbidi-
ties dataset supports the prediction of length of stay and 
payment before primary THR surgery [36]. Altogether, mod-
els categorized in this group focus on either the clinical or 
reported outcomes after replacement surgery.

Fig. 4  Treatment outcome 
including patient reported and 
clinical-reported outcomes
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2.1.6  Structural monitoring models

Most of the studies described so far are focused on patient 
experiences after the THR surgery and monitoring is purely 
based on radiographs, image-based analysis, or electronic 
databases. Attention to structural monitoring and quan-
titative analysis is lacking here, which can determine the 
presence of local tissue reactions, tribocorrosion, and other-
related failures. Even though Borjali et al. reported an ML 
model that can predict polyethylene wear rate in pin-on-disk 
of hip implants, a lack of continuous assessment is evident 
from its learning data [37]. Based on the prediction error of 
ML algorithms, k-nearest neighbor (KNN) was identified as 
the best predictive model for the selected dataset, which is 
purely based on the previous literature dataset. In order to 
generate a wear rate dataset, manual intervention is neces-
sary as it lacks continuous monitoring of implants. From 
the alloys selected for this study, even though Ti alloy is 
an acceptable clinical alloy, it has inferior wear resistance 
compared to CoCrMo alloy. On the other hand, CoCrMo is 
more toxic than Ti alloy [38, 39]. Figure 5 is an example of 
the wear rate observed during a tribocorrosion experiment 
for hip damage assessment of Ti6Al4V and CoCrMo alloys 
[40].

2.1.7  Simulation models

The advantages of simulation models mainly reside in devel-
oping a digital prototype. It enables creating and analyzing 
complex problems along with safety, efficiency, repeatabil-
ity, and cost-effectiveness moderately. It can be a predictive 
model to validate the results when processes or external 
factors change. Simulation studies often function based on 

the finite element method (FEM), a numerical technique to 
replicate any physical phenomena [41].

A list of simulation studies is reported in this literature, 
discussing studies from an ML aspect. Al-Dirini et al. per-
formed a feasibility study to check the implant stability of 
cemented femoral stem. This study includes a combination 
of finite element (FE) models and surrogate Gaussian mod-
els for implant micromotion assessment and confirms its 
applicability to determine possible implant position vari-
ations and assist in the early THA implant design cycle 
[42]. In order to understand the quality of life in osteoar-
thritis patients, Kreif et al. used a simulation model with 
relative bias, efficiency, and confidence interval coverage 
of the selected methods, incorporating machine learning 
and misspecified parametric models [43]. Custom-made 
hip prosthesis method discussed in [44] details HIP pros-
theses manufacturing innovative COMputing (HIPCOM) 
tool and the HIPCOM design environment (HIDE) that can 
support enhanced effective prosthetic design for the patient 
to improve the reconstructive surgery. Using FE analysis, 
ML classification, and regression models, Ricciardi C. et al. 
developed prosthetic decision-making and long-term sur-
gery-outcome model [45]. The applicability of deep learn-
ing-based CNN models for constructing 3D anatomy from 
2D x-ray images discussed by Almeida et al. can help in 
surgery planning and diagnosis [46]. Another ML technique 
presented in [47] explored the possibility of FE analysis and 
ML algorithms to evaluate further optimization of the short-
stem hip prosthesis to reduce the stress shielding effect and 
to deliver better performance, where stress shielding, oth-
erwise termed as stress protection, refers to the reduction in 
bone density causing (mechanical) bone loss. Figure 6 is a 
representative simulation model for the acoustic emission 
(AE) monitoring study using the COMSOL Multiphysics 
simulation tool [48]. This model is developed to predict 
the impact of soft-tissue layers on stress wave or AE signal 
propagation initiated due to implant failures or defects.

Fig. 5  Ti6Al4V exhibits higher total material loss due to wear and 
corrosion  (KWC) in micrograms (μg) than CoCrMo

Fig. 6  Example of COMSOL simulation model representing stress 
wave simulation due to loading activities experienced by THR
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2.2  Discussion: Intelligent models for total hip 
arthroplasty monitoring

Many AI–ML studies use radiographs and electronic data 
documents as their learning source for identification and 
prediction. The ultimate use of ML models in radiology 
research as well as other biomedical applications might be 
due to ML algorithm’s capability to recognize complex pat-
terns in the images or data to make intelligent decisions. 
Based on the training data, ML models can identify precise 
patterns and deliver accurate outcomes. Most importantly, 
when an ML model is being developed, it is a good practice 
to incorporate almost every possible characteristic or feature 
the model needs to be trained on. Also, training data should 
be preprocessed to avoid any misleading dataset during its 
learning phase. An ML model developed in this manner 
will be able to handle most of the scenarios and complex 
patterns, thereby being able to generalize the knowledge 
(like human intelligence) to deliver an accurate outcome for 
an unknown dataset [49, 50]. Even with the highest accu-
racy outcomes, our perspective is that these studies lack a 
continuous implant monitoring possibility. Since there are 
many reasons for implant failures that can eventually lead 
to revision surgery [51], a technique that can identify and 
predict the onset of failure would be advantageous for early 
diagnosis and adopting preventive measures.

Table 3 illustrates the existing AI/ML studies related to 
THR, learning models, and the dataset adopted for each 
study. When looking at this table from a routine post-sur-
gery monitoring perspective, some questions may arise (1) 
Is it possible to feed the model with radiographs on a rou-
tine basis? (2) Are we updating the electronic database or 
patient records on a regular basis once the surgery is over 
and the patient is discharged? Otherwise, the chances of 
updating these databases will happen only when the patient 
comes back with some complaints or for any wellness visit, 
which is counted as one of the major limitations of exist-
ing procedures. Also, most datasets discussed so far have 
limitations, such as operator dependency, radiation and cost 
burden, inability to predict local tissue reactions, corrosion, 
soft-tissue destruction, etc. [9].

The comparison chart reveals a lack of ML models focus-
ing on routine post-surgery monitoring to facilitate preven-
tive care and avoid high-risk revision surgery. One of the 
common implant failure reasons that come into the pic-
ture is tribocorrosion which is an irreversible alteration of 
implant material, especially at the interfaces. Since implant 
tribocorrosion can eventually lead to many health-related 
issues, including toxicity, crack, and fracture, it is necessary 
to highlight the relevance of a scheme that can detect and 
predict tribocorrosion failures and function as a non-invasive 
routine post-surgery monitoring scheme. This highlights the 
relevance of research [40, 52], reporting AE’s effectiveness 

in predicting bio-tribocorrosion in dental and orthopedic 
implants facilitating continuous monitoring opportunities. 
Because AE is exclusively focused on active defects, any 
tribocorrosion event on the implant interface can initiate AE 
signals. These tribocorrosion events can eventually cause 
structural damage and permanent failure of the installed 
implant. Previous study results proved that tribocorrosion 
assessment is possible with AE technique. The comparison 
between selected features also indicates that higher abso-
lute energy, higher friction coefficient, and lower corrosion 
potential are indications of increased corrosion [40]. A com-
putational model study reveals the impact of tissue thickness 
in AE signal transmission and its detectability at the skin 
surface or AE receiver sensor [53].

Based on the findings in [40, 52, 53] and the AI/ML 
model’s capability to handle a large volume of data, further 
investigations on the development of THR structural moni-
toring tools are in progress. Once a model is developed with 
a large volume and high-quality learning data, it can provide 
accurate interpretations with minimal or no errors and mini-
mal human intervention in decision-making. A recent study 
[54] shows the possibility of post-market medical device 
surveillance using electronic health records (EHR) data. 
However, we believe that surveillance of prostheses once 
implanted might not be complete with EHR data unless a 
continuous routine monitoring system along with EHR is in 
place to report any medical anomalies after surgery.

Nich et al. [55] discussed the applicability of AI and ML 
for hip and knee surgery but its applicability in clinical prac-
tice is still overdue. Even though AI/ML studies reported 
in the literature are capable of predicting implant loosen-
ing [16], hip fracture [17], angular position assessment [20, 
21], these studies solely relied on radiographs extending an 
expert dependency. Likewise, most ML models reported in 
the literature use radiographs, CT scans, X-rays, and elec-
tronic data records as inputs or main learning data sources. 
Other studies relevant to this context include predicting 
polyethylene wear rate using the data collected from the 
literature [37] and corrosion severity estimation from stem 
taper images [19]. It is evident that a continuous implant 
monitoring feasibility study is relevant. We also believe that 
the factors that lead to implant failure include mechanical 
loosening, periprosthetic fracture, implant fracture, infec-
tion, and wear/corrosion/osteolysis/tribocorrosion, as shown 
in Fig. 7 [5]. Identifying and predicting tribocorrosion dam-
age in an implant is significant to take preventive measures 
and avoid failures, ultimately leading to a complication or a 
revision surgery [40, 53].

Reviewing existing ML models in hip implant diagnosis, 
its benefits, and limitations gives an insight into the state-
of-the-art and knowledge gap in this field. As part of a com-
parative study, we did deep dive into a variety of ML studies 
in THR diagnosis and could see that image-based models 
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stand out. Utilizing image-based models might not always 
be viable for routine monitoring because there is an operator 
dependency for data (image scan) collection and validation. 
To guarantee preventive care in this digital era, an automated 
implant monitoring tool that can aid in clinical diagnosis 
should be in place. For this to be effective, the model should 
be trained with a dataset that can be taken regularly during 
the patient’s daily activities. Data options can be acoustic 
emission or gait datasets which can reveal precise tribocor-
rosion modes to draw accurate conclusions on THA implant 
failure predictions.

3  An in vitro case study: Hip implant 
tribocorrosion prediction through ML 
models

The term bioacoustics in general represents the sounds 
produced by living organisms, whereas bioacoustic signals 
(BAS) imply the family of signals produced by the human 
body [56]. In medical diagnostics, BAS corresponds to the 
audible outcome; however, there are inaudible acoustic sig-
nals that can contribute to the early diagnosis of any failures 
of human implants. Acoustic emission (AE) signal is one 
of those signals that originated as stress waves due to any 
mechanical loading event acting on a body [7, 40].

In our previous studies [40, 52], we have reported the 
effectiveness of using AE to predict bio-tribocorrosion in 
dental and orthopedic implants. Considering the fact that AE 
is exclusively focused on any active defects, any tribocorro-
sion event on the implant interface can lead to the initiation 
of AE signals. These tribocorrosion events can lead to struc-
tural damage and permanent failure of the installed implant. 
Previous study results proved that tribocorrosion assessment Ta

bl
e 
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is possible with AE technique. The comparison between 
selected features indicates that higher absolute energy, 
higher friction coefficient, and lower corrosion potential are 
indications of increased corrosion [40]. Another computa-
tional model study confirmed the impact of tissue thickness 
in AE signal transmission and its detectability at the skin 
surface or AE receiver sensor [53].

This work is aimed to advance the previous results in [40] 
to confirm the efficacy of a machine learning (ML) algo-
rithm to categorize the implant risk levels at the head-cup 
interface and accurately predict any tribocorrosion event. 
The significance of this work includes early detection of 
implant failure, which can help in determining preven-
tive measures to avoid the chances of secondary total hip 
replacement (THR) revision surgery. This model is designed 
to predict the damage risk at the pin in the pin-on-ball setup, 
as shown in Fig. 8.

3.1  Methods

3.1.1  Acoustic emission (AE)

Effectiveness of AE in the implant (hip, dental) tribocor-
rosion assessment is reported in our previous research [40, 
52] and is the motive behind the thought of an automated 
structural monitoring tool. AE is a stress wave that is gener-
ated in the material due to any deformation or defects. When 
compared to ultrasound signals, AE exclusively listens for 
active defects or deformations and is sensitive to its subse-
quent defect activity [57]. An added advantage of AE signals 
is their non-invasive and non-intrusive nature, offering data 
capturing through an AE sensor placed on the skin/surface. 
It also opens up the possibility of deploying in vivo models 

where the AE data includes different tribocorrosion elements 
such as wear, friction, and corrosion. AE signal feature anal-
ysis considering amplitude, frequency, energy, and count 
also reveals its usefulness in tribocorrosion assessment [7, 
40, 52].

3.1.2  Experimental approach

The experimental model includes a hip simulator under 
physiological conditions with a pin-on-ball setup to mimic 
the head-cup interface (Fig. 8). This model takes tribocor-
rosion and AE data from CoCrMo and Ti6Al4V pin (work-
ing electrode) versus saturated calomel electrode (reference 
electrode) for each experiment as input. Material selection 
for the working electrode was based on its use in THR with 
the hip simulator capable of maintaining physiological con-
ditions closer to in vivo settings. Experimental data gathered 
include (a) tribocorrosion data: corrosion potential and fric-
tion coefficient, collected through the Gamry Echem Analyst 
tool and (b) acoustic emission data from the AE sensors and 
associated data acquisition system by the MISTRAS group, 
which facilitates easy handling of AE data. Our previous 
evaluation [40] considered corrosion potential, friction coef-
ficient, weight loss, and AE absolute energy features as input 
to the preliminary ML model.

3.1.3  Machine learning approach

Since the accuracy and performance of an ML model resides 
solely on the input data, proper attention should be given to 
its selection and processing. Tribocorrosion and AE analy-
ses consider selected features such as corrosion potential, 
friction coefficient, weight loss, AE absolute energy in 

Fig. 8  Schematic diagram of the 
in vitro experimental setup, the 
tribocorrosion apparatus simu-
lating pin-on-ball or head-cup 
interface model, which includes 
systems for mechanical, electro-
chemical, and acoustic emission 
data acquisition
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determining the tribocorrosion failure. The collected data 
is preprocessed and given to the ML algorithm as an ini-
tial step. Selected features were then evaluated against the 
intensity of tribocorrosion occurrence (knowledge-based 
approach) and generated labels such as low, medium, and 
high for each occurrence. However, AE absolute energy 
data obtained are time-domain, which is further processed 
to identify the cumulative energy values sufficient to display 
the intensity of tribocorrosion. Once the data set is ready, 
it is sent to the scaling module that helps to normalize the 
independent feature sets.

As a result, 276 data points were prepared for each fea-
ture considering 92 data points per low, medium, and high 
corrosion groups. Following the general ML development 
approach, 80% were treated as training data, and the remain-
ing 20% for testing purposes. Since implant tribocorrosion 
prediction using the ML approach is novel, identifying the 
efficacy of ML models that can function well with this data-
set has great significance. Standardized ML algorithms such 
as LR, LDA, k-NN, DT, SVC, and RF models were selected 
for this study, and its accuracy in predicting tribocorrosion 
risk levels in the selected samples was confirmed. Other 
ML models, such as reinforcement learning or neural net-
work algorithms, are still under consideration. ML section 
in this study contains 3 modules: (a) determining suitable 
ML algorithm, (b) feature importance study, (c) categoriza-
tion or prediction of tribocorrosion occurrence. Based on 
the selected tasks, the results can be algorithm accuracy 
measured in percentage, feature importance measure, and 
prediction of implant failure level, respectively.

RF model, an ensemble of DTs, learns from ran-
dom subsets of data, and each subtree delivers separate 

predictions or outcomes. The final decision from an RF 
model resides on the majority or average of the outcome 
from the subtrees (Fig. 9). That is, an RF model is an 
ensemble of a family of classifier DTs such as ℎ(x|Θ1), 
ℎ(x|Θ2), … ℎ(x|ΘK) centered on classification and regres-
sion trees with parameters Θk randomly chosen from the 
random model vector Θ. Here, ℎk (x) represents a single 
decision tree. The final classification (x) is centered on 
the outcome of each tree where the class with the major-
ity succeeds. The RF model is taken into account in the 
following modules of this study, considering its advan-
tages over other selected algorithms, including the ability 
to handle multiple features without overfitting, decisions 
based on the majority outcome of multiple decision trees, 
the ability to deal with categorical and multiclass data, and 
supports for automatic feature interaction with minimal or 
no real-time execution [58–62].

3.2  Results

3.2.1  Determining the suitability of ML algorithms

This step evaluates the accuracy of selected ML models 
on tribocorrosion prediction based on the four selected 
features. This module functions on a subset of data points 
from all the feature groups. Out of the algorithms that 
we screened, random forest (RF), decision tree (DT), and 
nearest-neighbor (k-NN) show promising results, as shown 
in Fig. 10. This step helped us to determine the RF model 
as the most suitable algorithm (from the selected ones) for 
predicting tribocorrosion occurrence.

Fig. 9  A random forest model 
for 3 groups indicating x – low, 
y – medium, z – high corrosion 
class labels
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3.2.2  Tribocorrosion feature importance study

Identifying contributing features for ML models is highly 
recommended, especially when dealing with multiple large 
sorts of features. The previous module confirms that the RF 
model is suitable for tribocorrosion prediction, while this 
section highlights the relevance of each feature in determin-
ing the tribocorrosion risk level for the ML model. In other 
words, utilizing the RF model’s feature importance matrix, 
this module determines which features contribute more and 
help decide the tribocorrosion class label. Figure 11 shows 
that AE absolute energy has almost similar relevance to 
other features in categorizing tribocorrosion risk levels for 
hip implant materials. This corroborates our previous study’s 

finding that depicts AE’s usability in tribocorrosion predic-
tion [40].

3.2.3  RF model: Determining the tribocorrosion risk level

Every ML model starts its learning through the training 
phase with pre-processed data. The learning phase starts 
with learning features and feature combinations for each 
class label or category. Likewise, the RF model is trained 
with a random choice of 80% of data from the entire dataset 
and learns from its training knowledge. Finally, the model 
performs classification and prediction of implant risk levels 
for the remaining 20% test dataset. Figure 12 is the circular 
grid representation of predictions over the actual corrosion 
labels. Actual corrosion labels indicate the class labels of 
the original test dataset, while prediction indicates the class 
labels predicted by the model for the test data. Here we can 
see that most of the predicted results in blue overlay the 
actual red color labels, which proves that most of the pre-
dicted tribocorrosion occurrences are accurately grouped 
under the desired category or class label.

Another way to interpret the ML model’s performance is 
through the confusion matrix (Fig. 13). Here the main diago-
nal cells (light-colored regions) indicate accurate classifica-
tions, while other cells show the incorrectly classified occur-
rences. Accuracy in percentage (%) is another important 
performance measure, and an accuracy of 94.81% indicates 
the developed ML model can derive accurate and effective 
decisions based on its training knowledge (Table 4).

RF model’s performance measures reveal the possibility 
of deploying ML models to determine implant tribocorro-
sion risk levels. Since it is a lab-scale in vitro study, the 
dataset is minimal in size from an ML model perspective. 

Fig. 10  Comparing classification accuracy for various ML algorithms 
for the tribocorrosion and AE data sets

Fig. 11  Feature importance measure calculated using RF algorithm

Fig. 12  Representative plot showing the RF prediction results of cor-
rosion labels. Here three occurrences of low corrosion classes are 
incorrectly classified under the medium corrosion group
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Even with this limitation, results guarantee the efficacy of 
ML models in tribocorrosion prediction.

4  Discussion

As bio-tribocorrosion is a major clinical concern in bio-
medical implants, so its monitoring in in vivo or clinical 
environments is highly significant. With the lack of a rou-
tine post-surgery implant monitoring facility, the lifetime of 
THA implants is ambiguous. A continuous monitoring tech-
nique should be adopted to efficiently interpret data during 
patients’ daily activities to deter such situations and facili-
tate the preventive maintenance feasibility of THA implants. 
Our previous studies [2–5] validated the efficacy of the AE 
method for tribocorrosion monitoring in an in vitro experi-
mental setup and backed the necessity for such a continu-
ous monitoring scheme. However, the present study goes 
beyond previous work by setting a higher bar by develop-
ing an AE-based continuous structural monitoring tool for 
THA implants utilizing the applicability of ML models. The 
novelty of the current work is the ML model itself, which 
accepts tribocorrosion features as input and predicts failure 
levels of THA implants.

Feature importance study confirms that AE features are 
best suited to determine tribocorrosion events in the head-
cup interface. However, continuous time-domain data, like 
the data collected during daily patient activities, should also 
be considered for training the model. This dataset can be AE 
signals indicating tribocorrosion behavior and gait analysis 
representing kinetics and kinematics of locomotion in bio-
medical implants. A similar study discussed by Dey et al. 
used biomechanical data for predicting the dynamics and 
ankle kinematics during level walking with SVR models 
[63].

The proposed study supports the practicability of predic-
tive models in tribocorrosion monitoring with a limited data 
set from an ML perspective. To establish this as a predictive 
modeling tool for bio-tribocorrosion detection and improve 
its accuracy, more research should be conducted to identify 
the efficacy of other continuous AE features and the best ML 
algorithm. As part of the prospect research, we are consider-
ing ideas around time-domain AE, biomechanical dataset, 
and tribocorrosion event localization. In the future, this, in 
turn, can contribute to developing an intelligent predictive 
modeling tool that can forecast and detect active damage 
mechanisms, especially due to tribocorrosion, the onset of 
failures, and the event or source location in THA implants.

With this ML model, we validated the relevance of AE 
features and tribocorrosion features, in predicting the tri-
bocorrosion behavior of CoCrMo or Ti6Al4V samples. RF 
algorithm came out to be best suited for tribocorrosion data-
sets from the ML models selected for testing, where catego-
rization and prediction of tribocorrosion damage levels have 
an accuracy greater than 90% [64].

Our recent simulation study confirmed the impact of tis-
sue thickness on AE signal transmission and the feasibility 
of detecting AE signals at the skin surface [53]. Practical 
challenges such as AE signal transmission from the implant 
to the skin in patient trials; handling of large data set to fea-
ture the AE signal; the need for collaborative efforts between 
bioengineers, material scientists, computational experts, cli-
nicians; and finally, the clinical trial of AE with patients with 
implant history could be constraints for prospect in-service 
application deployment. The key notion behind this study is 
to develop an automated home-based diagnosis tool (Fig. 14) 
that supports continuous hip implant monitoring in a point-
of-care home-based setting, enabling data capture during 
daily patient activities and integrating data into an on-prem 
or cloud data store.

5  Conclusions

State-of-the-art AI-based ML (AI/ML) models can revolu-
tionize digital orthopedics, especially with in vivo monitor-
ing of implants.

Fig. 13  Confusion matrix or error matrix representing performance 
of the model

Table 4  Model performance

Measure Value

Mean absolute error 0.05
Mean squared error 0.02
Root mean squared error 0.14
Accuracy 94.81%
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• Proposed AE feature-based ML model is an innovative 
method to continuously monitor active damage mecha-
nisms associated with THA implants.

• Selection of appropriate AE signal features is key to 
this model’s effectiveness, which guarantees an AI-
based, non-invasive monitoring technique in real clini-
cal applications.

• Understanding the practical challenges and effectively 
working around the constraints is crucial for develop-
ing and deploying continuous hip implant monitoring 
in a point-of-care home-based application.

• The model needs to be trained with a larger dataset 
of real-world patient data (acoustic emission and gait 
analysis) to facilitate higher efficiency and accurate 
outcomes.

• By considering appropriate algorithms and datasets, 
AI/ML models can revolutionize digital orthopedics, 
especially in in vivo monitoring of implants.

Abbreviations AI: Artificial intelligence; AE: Acoustic emission; 
ACS—NSQIP: American College of Surgeons– National Surgical 
Quality Improvement Program; AJRR:  American Joint Replace-
ment Registry; AP: Anteroposterior; ANN: Artificial neural network; 
BAS: Bioacoustic signals; CT: Computed tomography; CNN: Convo-
lutional neural network; ENPLR: Elastic net penalized logistic regres-
sion; EHR: Electronic health records; HOOS: Hip disability and oste-
oarthritis outcome score; KNN: K-nearest neighbors; LASSO: Least 
Absolute Shrinkage Selection Operator; LDA: Linear discriminant 
analysis; LR: Logistic regression; ML: Machine learning; MRI: Mag-
netic resonance imaging; MCID: Minimally clinically important dif-
ference; NN: Neural network; PROM: Patient-reported outcome meas-
ures; PMCT: Post-mortem computed tomography; RF: Random forest; 
SGB: Stochastic gradient boosting; SVM: Support vector machine; 
THA: Total hip arthroplasty; THR: Total hip replacement; TJA: Total 
joint replacement surgery—arthroplasty; TKA: Total knee arthroplasty; 
US: Ultrasound
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