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Abstract 
Selection of differentially expressed genes (DEGs) is a vital process to discover the causes of diseases. It has been shown 
that modelling of genomics data by considering relation among genes increases the predictive performance of methods com-
pared to univariate analysis. However, there exist serious differences among most studies analyzing the same dataset for the 
reasons arising from the methods. Therefore, there is a strong need for easily accessible, user-friendly, and interactive tool to 
perform gene selection for RNA-seq data via machine learning algorithms simultaneously not to miss DEGs. We develop an 
open-source and freely available web-based tool for gene selection via machine learning algorithms that can deal with high 
performance computation. This tool includes six machine learning algorithms having different aspects. Moreover, the tool 
involves classical pre-processing steps; filtering, normalization, transformation, and univariate analysis. It also offers well-
arranged graphical approaches; network plot, heatmap, venn diagram, and box-and-whisker plot. Gene ontology analysis is 
provided for both mRNA and miRNA DEGs. The implementation is carried out on Alzheimer RNA-seq data to demonstrate 
the use of this web-based tool. Eleven genes are suggested by at least two out of six methods. One of these genes, hsa-miR-
148a-3p, might be considered as a new biomarker for Alzheimer’s disease diagnosis. Kidney Chromophobe dataset is also 
analyzed to demonstrate the validity of GeneSelectML web tool on a different dataset. GeneSelectML is distinguished in that 
it simultaneously uses different machine learning algorithms for gene selection and can perform pre-processing, graphical 
representation, and gene ontology analyses on the same tool. This tool is freely available at www.​softm​ed.​hacet​tepe.​edu.​tr/​
GeneS​elect​ML.
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1  Introduction

Identification of differentially expressed genes (DEGs) by 
analyzing RNA-seq data is very important for the discovery 
of the mechanisms and pathways underlying the disease. 
Conventional statistical methods to find DEGs often apply 
univariate tests for each gene. Therefore, they do not take 
into account the correlations between genes and concordant 

or discordant effect between gene groups [1]. Also, these 
statistical methods generate a large number of false positives 
and false negatives due to the small biases included in the 
distribution estimates to predict DEGs from RNA-seq data 
[2]. In order to prevent these problems, machine learning 
algorithms can be used to find DEGs causing the disease. 
Wenric and Shemirani [1] used the permutation importance 
generated by the Random Forests algorithm to find DEGs 
in 12 datasets containing the samples of various cancers. 
Random Forests algorithm outperformed classical methods 
in most datasets. Wang et al. [3] compared three feature 
selection algorithms (Information Gain, Correlation Feature 
Selection, and ReliefF) using five classification algorithms 
(Logistic Regression, Classification via Regression, Random 
Forest, Logistic Model Trees, Random Subspace) to detect 
significant genes. Kakati et al. [2] proposed a deep neural 
network model called DEGnet in order to identify DEGs. 
Yu et al. [4] studied attaching the biological significance 
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of regulatory information to differential expression analy-
sis. For this purpose, they used Naive Bayes, Random For-
est, and Support Vector Machine with radial basis kernel 
methods. Al-Obeidat et al. [5] proposed discrete filtering 
for RNA-seq gene expression data to carry out feature selec-
tion. They used Binary Artificial Bee Colony Algorithm and 
Support Vector Machine to select the fittest and relevant 
subset of features to classify tumor as malignant and benign 
samples.

As clear from these examples, there are many machine 
learning algorithms used for gene selection. These algo-
rithms can propose quite different genes from each other. 
The proposed number of genes can also vary considerably 
from algorithm to algorithm. Therefore, in this paper, a web 
tool called GeneSelectML is developed by using shiny pack-
age [6]. GeneSelectML allows the users to discover DEGs 
using different machine learning algorithms simultaneously. 
This web tool is available at www.​softm​ed.​hacet​tepe.​edu.​
tr/​GeneS​elect​ML and a snapshot of the main page is given 
in Fig. 1.

We have selected the machine learning algorithms 
among the ones that are shown to be successful in the lit-
erature. During the preliminary analysis, we have searched 
and tested many other algorithms as well. However, some 
of them are eliminated either due to unavailability of pre-
dict function or unstable results on a case study or reasons 
such as the discontinuation of the package in CRAN. The 
second criteria for the inclusion is the accessibility of the 
algorithm in R or Bioconductor. Since the web tool we 
developed is a shiny-based application, the algorithms 
should be available in R. There are other shiny-based web 
tools designed for various purposes for RNA-seq gene 
expression data such as pre-processing [7], discovering 
DEGs [8, 9] and conducting gene ontology analysis [10]. 

GeneSelectML is distinguished from other shiny-based 
web tools by the fact that it uses different machine learn-
ing algorithms simultaneously for gene selection and it 
can perform pre-processing, graphical representation and 
gene ontology analyses all on the same tool. There is also a 
software called CAMUR developed for RNA-seq datasets 
and uses machine learning algorithms for selecting signifi-
cant genes [11]. However, this software needs the MySql 
database to run and is not appropriate for online use.

A real life example dataset on Alzheimer’s disease is used 
in this study to illustrate the methods and the web tool. Alz-
heimer’s disease dataset is obtained from the Gene Expres-
sion Omnibus (GEO) Database [12]. It includes miRNAs 
obtained from 48 Alzheimer’s disease patients and 22 con-
trols. miRNAs have important functions at the post-tran-
scriptional level of gene expression in many pathological 
conditions including Alzheimer’s disease (AD) [13]. Previ-
ous studies showed that AD brains have significant miRNA 
alterations compared to healthy controls [14, 15]. Alzhei-
mer’s disease, major cause of dementia, is a progressive 
neurodegenerative disorder which is forecasted to affect 1 
in 85 people globally in 2050 [16]. Moreover, there is no 
curative treatment for AD and the pathological mechanism 
is not fully known. Therefore, there are needs for new bio-
markers and treatment strategies. With the recent advent of 
new “-omics” based technologies, large amount of data is 
being generated. In order to analyze and interpret quickly 
for diagnostic and therapeutic use, there is a need for user-
friendly and fast tools. Following the uploading of data to 
the web tool, pre-processing steps including filtering, nor-
malization, transformation, and univariate analysis are car-
ried out. Different machine learning methods are applied to 
the pre-processed dataset simultaneously and the DEGs are 
discovered. Moreover, network plot, heatmap, venn diagram, 

Fig. 1   GeneSelectML web tool
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and box-and-whisker plot can be obtained, and gene ontol-
ogy analysis can be conducted.

The sections of this paper are organized as follows: Sec-
tion 2 introduces the proposed methodology, including the 
pre-processing procedures, machine learning techniques, 
and development of web tool. Section 3 provides the imple-
mentation of GeneSelectML web-based tool on Alzheimer’s 
disease data, its findings, a case study based on this dataset, 
and the validation of the tool on a different dataset. Finally, 
the paper is concluded with a summary of the main findings 
explored during our study.

2 � Methods

2.1 � Pre‑processing

RNA-seq data must go through some pre-processing steps. 
These steps can be generalized as filtering, normalization, 
transformation, and univariate analysis.

2.1.1 � Filtering

It is recommended to filter low expressed genes before anal-
ysis. Filtering can be done in different ways. The following 
filtering methods are available in the web tool: 

i)	 Genes with all readings lower than a specified threshold 
can be eliminated.

ii)	 Genes with “near-zero variances” can be excluded.

These filtering methods are available in genefilter [17] and 
caret [18] packages, respectively.

2.1.2 � Normalization

Normalization is applied to RNA-seq data to minimize 
bias that may arise from technical processes. The number 
of readings required in RNA-seq data is determined by the 
minimum amount of RNA species of interest. Sequencing 
depth can be increased for the purposes such as identify-
ing genes with low expression levels, identifying very small 
fold changes between different situations and detecting new 
transcripts. However, different sequencing depth values may 
lead to underestimation or overestimation of gene expres-
sion levels [19]. Another source of variation is gene length. 
Longer genes may have higher readings, i.e., expression lev-
els, than genes with shorter sequences due to differences in 
their size [20].

Normalization aims to make the samples comparable by 
reducing the effect of such bias factors. Many methods have 
been developed for the normalization of RNA-seq data. The 

methods are generally based on scaling the data according 
to a calculated normalization factor.

Median ratio normalization  Consider a gene expression 
matrix with samples at rows (i = 1, .., n) and genes as col-
umns (g = 1,… , p) . This matrix contains raw gene read 
counts Xig . For each gene, a reference sample is created by 
taking the geometric mean in all samples. Then, the ratio of 
the sample of interest to the reference sample is calculated 
for each gene. Finally, by taking the median of the rates, the 
normalization factor is calculated for the relevant sample. 
Normalized values are obtained by dividing the read counts 
of the gene by the normalization factor for each sample.

The normalization factor (di) for each sample can be cal-
culated as follows [21]:

This method can be applied to the data using the DESeq2 
package [22] in R Bioconductor.

Trimmed mean of M values normalization (TMM)  Genes with 
very low or high expression levels are removed from the 
dataset based on M values. M values ( Mig ) are trimmed by 
30% as default [23]. Weight values ( wig ) are calculated for 
the remaining genes. Then, normalization factor is calcu-
lated based on these weights. The transformed normalization 
factor is calculated as follows:

where p′ indicates the number of genes after trimming.

TMM with singleton pairing normalization (TMMwsp)  This 
method is a type of TMM which performs better for the data 
containing the zeros with high proportion. In TMM method, 
a sample is chosen as a reference sample. The fold changes 
and absolute expression levels are obtained relative to the 
reference sample. The genes which take the value of zero 
in both corresponding and reference samples are discarded. 
Unlike the TMM method, TMMwsp method makes a correc-
tion by using the total read number of these genes.

Upper quartile normalization  Transcripts with zero value 
are removed from the dataset and normalized over the 75th 
percentile values of the remaining values. Therefore, this 
method is, unfortunately, affected by the genes with high 
expression levels.

(1)di = mediang

Xig

�
∏n

i=1
Xig

�1∕n

(2)log2 (di) =

p�
∑

g=1

wigMig

p�
∑

g=1

wig
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2.1.3 � Transformation

Normalizing data may not be sufficient to apply feature 
selection methods since the expression levels can be dis-
tributed in a wide range in RNA-seq data. The logarithmic 
transformation is also be used in such a situation. With loga-
rithmic transformation, data with a less skewed distribution 
and fewer excessive values are obtained than untransformed 
data. The logarithmic transformation may be undefined as 
the count values for a gene can be zero under some condi-
tions. To avoid this situation, transformation is performed 
after a prior count of 1 is added.

Let the normalized gene be denoted by X′

ig
 . In this case, 

the transformed genes can be represented as follows:

2.1.4 � Filtering with univariate analysis

Univariate analysis can be used to reduce the size of the 
dataset and identify genes that differ significantly between 
groups. Our web tool has two alternatives to carry out the 
univariate analysis for each gene by comparing two groups 
with Student’s t-test using the colttests function or by cal-
culating AUC with the rowpAUCs function in the genefilter 
package [17]. If the Student’s t-test is selected, the genes are 
ordered from the smallest p-value to the highest according 
to the test result. If the AUC method is chosen instead of the 
Student’s t-test, the genes are ordered from the highest AUC 
value to the least. In both methods, the specified number 
of genes at the top of the ranking are selected by the user. 
Together with the p-values obtained as a result of Student’s 
t-test, adjusted p-values are also calculated according to the 
Benjamini-Hochberg (FDR) [24] or Benjamini-Yekutieli 
[25] correction methods. The default is set to Benjamini-
Hochberg method.

2.2 � Machine learning algorithms

Six different machine learning methods have been used in 
our web tool. These methods will be explained in the next 
four sub-titles.

2.2.1 � Biosigner algorithm

Rinaudo et  al. [26] proposed a four-step algorithm for 
selecting the important genes and provided the algorithm 
in biosigner R package. These steps involve constructing a 
model by using bootstrap sub-samples, ranking the genes by 
their importance, eliminating the non-significant ones, and 

(3)Yig = log2

(

X
�

ig
+ 1

)

deciding on the final model. The models are based on the 
Partial Least Squares-Discriminant Analysis, Random For-
est, and Support Vector Machines. Our web tool provides the 
list of genes selected by any of these three models.

2.2.2 � GMDH‑type neural network algorithm

GMDH-type neural network algorithm is a heuristic self 
organizing system to learn complex relation between explor-
atory variables and dependent variable. In its architecture, 
some neurons performing better compared to the rest of the 
neurons in each layer, called living cells, continue their ways 
until the decrease in performance across layers. At last neu-
ron, one neuron is selected to obtain predicted output. The 
features contributing model performance are selected at the 
end. The algorithm is available in GMDH2 package [27].

2.2.3 � Determan’s optimal gene selection algorithm

Our web tool uses the Support Vector Machines, Random 
Forest, and Elastic Net Generalized Linear Models within 
the Determan’s algorithm [28] for gene selection. This algo-
rithm uses bootstrap for measuring feature selection stabil-
ity and uses cross-validation or leave-one-out procedures 
to avoid the overfitting problem. The average of cross-val-
idation results is used to calculate performance measures 
(such as accuracy, sensitivity, etc.) and these measures are 
then used to obtain the list of best genes. The algorithms are 
available in omicsMarkeR package [28].

2.2.4 � Data mining algorithm for RNA‑Seq data

Chiesa et al. [29] developed a data mining algorithm for 
RNA-seq data and implemented it in DaMiRseq package. It 
is possible to normalize, select genes, and classify via this 
algorithm. We use the gene selection procedures, specifically 
DaMiR.Fsort and DaMiR.FBest functions, of this algorithm 
in our web tool.

Genes are first ranked based on RReliefF [30] or stand-
ardized RReliefF scores in DaMiR.Fsort function. RReli-
efF is a filtering algorithm that can also take the correlation 
between genes into account. These ranked genes are then 
used to pick the best subset via DaMiR.FBest function. The 
user can either provide the number of selected genes, or 
algorithm can automatically pick the best subset by using 
a threshold on the scaled importance scores. Our web tool 
uses the later approach.

2.3 � Evaluation of model performances

The performances of models are obtained through a confu-
sion matrix between the predicted and actual class labels. In 
our case, Table 1 presents 2-by-2 classification table where 
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the predicted and actual class labels are provided in the rows 
and columns, respectively. Various performance measures 
can be obtained using a confusion matrix. We assess the 
model performance with accuracy, kappa, Matthews cor-
relation coefficient (MCC), sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
balanced accuracy, Youden index, detection rate, detection 
prevalence, and F1 measure. Calculation of these measures 
is presented in Table 2. It is recommended to use fivefold 
or tenfold cross-validation to avoid overfitting in machine 
learning algorithms [31, 32]. In this study, we use fivefold 
cross-validation to prevent overfitting and improve model 
performances. We obtain the performance measures based 
on test set for each fold. Then, we report the mean of the 
performance measures obtained in five folds.

2.4 � Web tool development

The tool is developed using R software. This tool is 
designed into seven parts; data upload, pre-processing, 
methods, selected genes, pathway analysis, visualization, 
and gene ontology analysis. In Data upload part, research-
ers can upload raw count gene expressions in .txt format. 
The raw data must be a n ×(1+p) dimensional data matrix, 

where n refers to the total number of samples, p refers to 
the total number of genes. The first column must be the 
output variable. The data must include a header indicating 
gene names. In Pre-processing part, caret [18] and gen-
efilter [17] packages are used for filtering. DESeq2 [22] 
and edgeR [33] packages are utilized for normalization. 
The number of genes is reduced using univariate analy-
ses, Student’s t-test or calculating AUC with genefilter 
package [17]. In Methods part, biosigner [26], GMDH2 
[27], omicsMarkeR [28], and DaMiRseq [29] packages 
are used for the selection of DEGs. In this process, five-
fold cross-validation is carried out to validate the models. 
The process is paralleled with doParallel package [34] to 
overcome high-volume computational load. The tool can 
recognize whether the data type is miRNA or mRNA with 
miRNAmeConverter package [35]. ReactomePA package 
[36] is used to obtain the pathway analysis of the genes 
suggested by the models. multiMiR package [37] is used to 
identify target genes for miRNA datasets prior to pathway 
analysis. ComplexHeatmap [38], igraph [39], venn [40], 
and graphics [41] packages are utilized for the visualiza-
tion of the genes suggested by models in Visualize part. 
For gene ontology analysis, topGO [42], mirnatab [43], 
and miRNAtap.db [44] packages are used. Annotation of 
genes is provided by using org.Hs.eg.db package [45]. All 
analysis steps of GeneSelectML web tool are presented 
in Fig. 2.

There are two example datasets available in the web 
tool, Alzheimer’s disease data (miRNA) and Kidney chro-
mophobe data (mRNA), to help users learn the usage of 
the tool. Also, there is a toy data available in .txt format 
just to learn how to upload the data. There exist two pan-
els of the interface: sidebar and main panels. Researchers 
can specify the arguments of the methods in the sidebar 
panel. The parameters not decided by user are set to the 
defaults of the original algorithms. The results of the 
specified models are provided in the main panel. After the 
process is completed in pre-processing and methods parts, 
summary of the process is provided in summary under 
methods tab. Selected genes are listed based on genes and 
methods in two sub-tabs of selected genes tab. In this tab, 
there are two options to continue to pathway analysis, 
graphical approaches, and gene ontology analysis. Users 
can choose the genes suggested by at least one method or 
at least two methods. After this choice, the results of the 
pathway analysis can be downloaded via the download link 
from this tab. There exist various graphical approaches 
in visualize tab including a number of options for editing 
plots. A gene ontology analysis is conducted in GO tab. 
All results including tables and plots can be downloaded 
in different file formats. A detailed manual of the tool is 
available in the web page of the tool.

Table 1   Confusion matrix

TP: True positive, FP: False positive, FN: False negative,
TN: True negative, n: Sample size

True Class

Predicted Class Positive Negative Total

Positive TP FP TP+FP
Negative FN TN FN+TN
Total TP+FN FP+TN n

Table 2   Performance measures

Measure Formula

Accuracy (TP + TN)∕n

Kappa Accuracy−
(TP+FP)(TP+FN)+(FN+TN)(FP+TN)

n2

1−
(TP+FP)(TP+FN)+(FN+TN)(FP+TN)

n2

MCC TP×TN−FP×FN
√

(TP+FP)×(FN+TN)×(TP+FN)×(FP+TN)

Sensitivity TP∕(TP + FN)

Specificity TN∕(TN + FP)

PPV TP∕(TP + FP)

NPV TN∕(TN + FN)

B. accuracy (Sensitivity + Specificity)∕2

Youden index Sensitivity + Specificity − 1

Detection rate TP/n
Detection prev. (TP + FP)∕n

F1 2∕(1∕Sensitivity + 1∕PPV)
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3 � Results

3.1 � Implementation of the tool

In this section, we analyze Alzheimer RNA-seq data to 
demonstrate the use of this web-based tool. The dataset 
is uploaded via Data upload tab (Fig. 3). After uploading 
the data, the dataset is pre-processed in Pre-processing tab 
with four steps: filtering with conventional ways, normali-
zation, transformation, and filtering with univariate analy-
sis. In Methods tab, we construct six models presented in 
Section 2.2. Selected genes are provided in Selected genes 
tab. Users can specify the genes selected by at least one or 
two method(s) to continue Visualize and GO tabs. There 
exist four graphical approaches; network plot, heatmap, 
venn diagram, and box-and-whisker plot in Visualize tab. 
Finally, we perform gene ontology analysis of DEGs in 
GO tab.

3.2 � Dataset

We analyze Alzheimer RNA-seq dataset [13] for this illus-
tration. This dataset includes a cohort of 70 samples — 48 
Alzheimer’s disease patients and 22 controls — and 503 
features (i.e., miRNAs). The data can be found at GEO 
with accession number GSE46579 [46]. We load the data-
set to the tool using Data upload tab (Fig. 3) before start-
ing analysis.

3.3 � Pre‑processing

Dimension reduction is the essential step to improve the 
performance of methods for diagnosing DEGs. In this part, 
we use near-zero variances filtering. Then, the data are 
normalized using median ratio normalization. After nor-
malizing the data, logarithmic transformation is applied. 
The number of genes is reduced to 200 using univariate 
analysis (i.e., Student’s t-test).

3.4 � Gene selection and classification performance

We construct six machine learning algorithms after pre-
processing stage is completed. We report the selected 
genes in two ways. One is providing the genes based 
on methods. The other one is reporting the list of genes 
(Table 4). In Table 4, there exist a list of genes, the fre-
quency and percent of methods suggesting the correspond-
ing gene, the regulation status and the names of methods 

suggesting the corresponding gene. Twenty-four genes, of 
which 11 genes are selected by at least two methods, are 
suggested by at least one method.

The classification performances of the methods are pre-
sented in Table 3. The results show that SVM performs 
better than the other methods with respect to the most of 
performance measures. It is important to point out that 
DaMirseq performs best for the classification of Alzheimer 
patients when the sensitivity is assessed. The algorithm 
classifies 100% of the persons having Alzheimer’s disease. 
For SVM, sensitivity is obtained as 0.950. The method 
classifies 95% of the persons having Alzheimer’s disease. 
GLMNET outperforms other algorithms in terms of MCC, 
is one of the best in terms of detection rate and is competi-
tive with others in most of the measures.

In Selected genes tab, users can specify the genes selected 
by at least one or two method(s). We select the genes sug-
gested by at least two methods for further analysis.

3.5 � Visualization

This web-based tool offers well-arranged graphical 
approaches; network plot (Fig. 4a), heatmap (Fig. 4b), venn 
diagram (Fig. 4c), and box-and-whisker plot (Fig. 4d). The 
network plot shows whether the correlation exists between 
selected genes in a way that the correlation is positive or 
negative. The tool offers the users to color positive and 
negative correlations. In our case, we color blue for posi-
tive correlation and color red for negative correlation if the 
magnitude of correlation is larger than 0.6. Researchers can 
draw the heatmap of selected genes with class labels. The 
tool also provides venn diagram which shows the number 
of genes selected by methods and their intersections. Users 
can draw box-and-whisker plot to compare the groups with 
respect to each of the selected genes.

3.6 � Findings on Alzheimer RNA‑seq data

In the Alzheimer study, we analyze 503 genes of 48 AD and 
22 healthy controls. The number of genes is reduced to 200 
after pre-processing. Out of these 200 genes, 11 of them are 
found to be differentially expressed by two or more algo-
rithms in our GeneSelectML web tool, and an additional of 
13 genes are detected as DEGs by one algorithm (Table 4). 
Out of 11 DEGs, only three of them are upregulated. The 
results highlight the strength of using a tool which incorpo-
rates many methods. For instance, using only the DaMirseq 
would detect 11 genes as significant instead of 24 DEGs. 
Similarly, using only OmicsMarkeR-GLMNET would miss 
15 genes found by other methods. Our web tool is able to list 
a combination of genes detected by many algorithms in a rea-
sonable time. The computational time for the process, includ-
ing data upload, filtering, normalization, transformation, 

Fig. 2   Analysis steps of GeneSelectML web tool◂
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univariate analysis, and applying six different machine learn-
ing algorithms, is approximately 300 seconds.

By gene ontology analysis, we analyze the biological 
process of 11 miRNAs which are proposed via at least 
two algorithms. We find that decreased miRNAs affect 
positive regulation of phosphorylation, cell cycle, setting 
macromolecules, regulation of locomotion, and increased 
miRNAs affect positive regulation of nucleobase, chromo-
some organization processes.

The miRNA proposed by four different machine learn-
ing algorithms is has-miR-628-3p. It has been shown that 
hsa-miR-628-3p is related to many cancers and it promotes 
apoptosis in lung cancer cell cultures [47]. Similar to current 
study results, a previous study, which analyzed more than 
1200 miRNAs in AD temporal cortex, showed that expres-
sion levels of hsa-miR-628-3p, has-miR-1234, hsa-miR-144, 
and hsa-miR-148b were decreased in AD samples [48].

In the reference study, from which the dataset of the 
current study is obtained, they selected 12 differentially 
expressed miRNA [46]. Four of these 12 miRNAs, specifi-
cally, miR-151a-3p, brain-miR-112, let-7f-5p, and hsa-miR-
1285-5p, are found as differentially expressed miRNAs in 
the long list of our current study. Moreover, Satoh et al. 
[49] also analyzed the same miRNA dataset using omiRas 
web tool. They identified 27 differentially expressed miR-
NAs [49]. Seven of 11 miRNAs proposed by at least two 
algorithms in our study were also identified as differentially 
expressed miRNAs in the Satoh’s study. These common 
genes include has-let-7a-5p, has-let-7g-5p, has-miR-144-5p, 
has-miR-151a-3p, hsa-let-7f-5p, has-miR-148a-3p, and has-
miR-148b-5p. In fact, all of the differentially expressed miR-
NAs, except one, in our short list, were also found significant 
by at least one of the references [46, 48–51]. The only excep-
tion is that our tool also detects hsa-miR-148a-3p.

Fig. 3   Uploading GSE46579 dataset to the tool

Table 3   Cross-validation 
classification performances

OmicsMarkeR

Biosigner GMDH RF SVM GLMNET DaMirseq

Accuracy 0.786 0.786 0.843 0.929 0.900 0.914
Kappa 0.504 0.477 0.599 0.829 0.706 0.817
MCC 0.508 0.515 0.628 0.849 0.894 0.834
Sensitivity 0.868 0.862 0.935 0.950 0.950 1.000
Specificity 0.627 0.603 0.633 0.860 0.750 0.803
PPV 0.828 0.819 0.855 0.947 0.925 0.867
NPV 0.697 0.784 0.850 0.950 0.938 1.000
B. accuracy 0.747 0.733 0.784 0.905 0.850 0.901
Youden index 0.494 0.466 0.568 0.810 0.700 0.803
Detection rate 0.600 0.600 0.643 0.657 0.657 0.600
Detection prev. 0.729 0.729 0.757 0.700 0.729 0.686
F1 0.844 0.835 0.889 0.943 0.929 0.926
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3.7 � A case study based on Alzheimer’s disease 
dataset

A case study is conducted to reveal the capacity of the web 
tool for suggesting DEGs. For this purpose, a dataset is simu-
lated based on Alzheimer’s disease dataset from the nega-
tive binomial distribution using the ssizeRNA package [52] 
in R. The number of genes is taken as 503 and the number of 
observations is 70. Two hundred genes remain after near-zero 

variance filtering and Student’s t-test results. A response vari-
able including treatments and controls is generated to obtain 
a binary outcome. The rate of the treatments is taken as 0.686 
(48/70). As the distribution parameters, a mean vector and 
a dispersion vector are specified based on the Alzheimer’s 
disease dataset. That is, the mean vector is obtained as the 
arithmetic mean for each gene, taking into account the control 
group in the Alzheimer’s disease data. The dispersion param-
eter is taken 0.1 for each gene. Ten of the genes are simulated 

Fig. 4   Graphical approaches in GeneSelectML web tool. (a) indicates 
the correlation between selected genes with a magnitude greater than 
0.60. Blue color states positive correlation while red color states neg-
ative correlation. (b) represents standardized values based on rows. 
Genes are given in the rows, samples are given in the columns. (c) 

demonstrates the number of genes selected by algorithms and their 
intersections. (d) shows the distribution of the expression values by 
groups for the gene of interest. If Student’s t-test is selected as uni-
variate analysis, p-values are added to the bottom of the plot
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statistically significant between the groups. Our tool proposes 
17 genes in long list, of which 10 of them are placed in short 
list. All genes in short list are the genes that are simulated to 
be statistically significant between two groups. That means all 
of the significant 10 genes are suggested by at least two meth-
ods. Thus, the tool suggests 100% of the DEGs with at least 
two methods and also 7 additional genes with a single method.

3.8 � Implementation on KICH dataset

Kidney Chromophobe (KICH) dataset is used to demonstrate 
the validity of GeneSelectML web tool on a different dataset. 
This dataset is obtained via TCGAbiolinks R/Bioconductor 
package [53] and includes mRNAs from 66 tumor samples 
and 25 matched-normal samples. The number of genes is 
19,947. Near-zero variance filtering, median ratio normaliza-
tion and logarithmic transformation are applied to the data, 
respectively. Student’s t-test is performed as univariate analy-
sis. The number of genes decreased to 200 after pre-process-
ing. Of the remaining 200 genes, 10 genes are found to be 
differentially expressed by two or more algorithms in our 

GeneSelectML web tool and all of them are downregulated. 
Additionally, 14 genes are selected as DEGs by one method. 
Zhang et al. [54] analyzed the same dataset in their study and 
displayed the top 100 DEGs. Eight of 10 genes proposed by 
at least two algorithms in our study were also identified as 
DEGs in Zhang’s study. These common genes are RALYL, 
IRX1, UGT2A3, UGT3A1, UPK1B, DACH2, SLC9A3, and 
UNCX. One of the remaining two genes, UMOD gene, was 
found significant in the references [55–57]. MYH8 gene is 
the only exception our tool proposed in the short list.

4 � Conclusion

Diagnosing DEGs is the crucial step to explore the reasons 
of diseases. Rather than univariate analysis, modelling the 
data considering the relationship among genes improves the 
prediction performance. However, there exist critical dis-
tinctions among studies analyzing the same dataset for the 
causes arising from a variety of methods.

Table 4   Suggested genes by web tool

* Number of methods that proposed corresponding gene
** Percent of methods that proposed corresponding gene

Gene Frequency* Percent** Regulation Methods

hsa-miR-628-3p 4 66.7 Down Biosigner GMDH OmicsMarkeR-SVM DaMirseq
hsa-let-7a-5p 3 50 Down Biosigner GMDH OmicsMarkeR-GLMNET
hsa-let-7g-5p 3 50 Down Biosigner GMDH OmicsMarkeR-GLMNET
hsa-miR-1234 3 50 Down Biosigner OmicsMarkeR-SVM DaMirseq
hsa-miR-144-5p 3 50 Down Biosigner OmicsMarkeR-GLMNET DaMirseq
hsa-miR-151a-3p 3 50 Up Biosigner OmicsMarkeR-GLMNET DaMirseq
brain-mir-112 2 33.3 Up Biosigner OmicsMarkeR-GLMNET
hsa-let-7f-5p 2 33.3 Down Biosigner OmicsMarkeR-GLMNET
hsa-miR-148a-3p 2 33.3 Down GMDH OmicsMarkeR-GLMNET
hsa-miR-148b-5p 2 33.3 Up Biosigner OmicMarkeR-SVM
hsa-miR-199b-3p 2 33.3 Down Biosigner GMDH 

hsa-miR-1285-5p 1 16.7 Up Biosigner
hsa-miR-15a-5p 1 16.7 Down OmicsMarkeR-GLMNET
hsa-miR-186-5p 1 16.7 Up GMDH
hsa-miR-2110 1 16.7 Up Biosigner
hsa-miR-29c-3p 1 16.7 Down Biosigner
hsa-miR-30a-5p 1 16.7 Up DaMirseq
hsa-miR-30d-5p 1 16.7 Up DaMirseq
hsa-miR-3158-3p 1 16.7 Up DaMirseq
hsa-miR-33b-5p 1 16.7 Down DaMirseq
hsa-miR-425-5p 1 16.7 Up DaMirseq
hsa-miR-589-5p 1 16.7 Up DaMirseq
hsa-miR-98 1 16.7 Down OmicsMarkeR-GLMNET
hsa-miR-99b-5p 1 16.7 Up DaMirseq
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In this study, the objective is to minimize these risks 
arising from the methods. GeneSelectML is a web-based 
platform which brings various gene selection algorithms 
together for RNA-seq data. All steps can be conducted using 
separate R packages, but the process might be distractive 
and time consuming for the inexperienced researchers in R 
programming language.

GeneSelectML is a user-friendly, comprehensive, and 
freely available tool for gene selection through machine 
learning algorithms that can deal with high performance 
computation. Currently, GeneSelectML tool involves six 
machine learning algorithms for gene selection. These 
are Biosigner, GMDH, OmicsMarkeR-GLMNET, Omics-
MarkeR-SVM, OmicsMarkeR-RF, and DaMirseq algo-
rithms. The tool also offers the users easy-to-use pre-
processing steps; filtering, normalization, transformation, 
and  univariate analysis. Moreover, there exists a user-
friendly interface for graphical approaches; network plot, 
heatmap, venn diagram, and box-and-whisker plot. Also, 
gene ontology analysis is provided for the selected genes.

In this study, we construct aforementioned machine learn-
ing algorithms on GSE46579 dataset to explore the features 
for Alzheimer’s disease as well as to show the implementa-
tion of the tool. Eleven features are found to be differentially 
expressed by at least two methods. One of these features, 
hsa-miR-148a-3p, might be considered as a new biomarker 
for Alzheimer’s disease diagnosis. Of course, this finding 
needs clinical assessment and verification. Also, KICH data-
set is used to demonstrate the validity of GeneSelectML web 
tool on a different dataset.

GeneSelectML will be periodically updated as the R 
packages are updated and the novel approaches are devel-
oped. This tool is freely available at www.​softm​ed.​hacet​tepe.​
edu.​tr/​GeneS​elect​ML.
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