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Abstract
Electroencephalogram (EEG) signals are often corrupted by undesirable sources like electrooculogram (EOG) artifacts, which 
have a substantial impact on the performance of EEG-based systems. This study proposes a new singular spectrum analysis 
(SSA)–non-negative matrix factorization (NMF)-based ocular artifact removal (SNOAR) method to suppress ocular artifacts 
from multi-channel EEG signals. First, SSA was used to estimate EOG artifacts using a small subset of frontal electrodes. 
Then, NMF was applied to decompose the estimated EOG artifacts into vertical EOG (VEOG) and horizontal EOG (HEOG) 
signals. Finally, a simple linear regression with estimated VEOG and HEOG signals was used to remove artifacts from multi-
channel EEG signals. EEG recordings from two EEG datasets (Klados dataset and KARA ONE) were used to evaluate the 
efficiency of the proposed method. From the simulation results, it was observed that the proposed method achieved betters 
results in terms of low root-mean-square error (RMSE), low delta band energy ratio, and less power spectral density (PSD) 
difference between the original clean EEG signal and its filtered version of contaminated EEG signal compared to selected 
EOG artifact removal methods (independent component analysis (ICA), wavelet-enhanced ICA (wICA), improved wICA, 
and multivariate empirical mode decomposition (MEMD)).

Keywords  Electroencephalogram (EEG) · Electrooculogram (EOG) signals · Singular spectrum analysis (SSA) · Non-
negative matrix factorization (NMF)

1  Introduction

EEG is an electrophysiological monitoring technique for 
recording brain electrical activity. It is commonly utilized 
in neuroscience, clinical research, cognitive science, neuro-
linguistics, and psychophysiological studies. EEG signals 
provide valuable information, and features generated using 
this help diagnose the presence or absence of neurological 
disorders. Similarly, EEG signals are also used extensively 

in brain–computer interface (BCI) applications to predict 
certain movements/activities the user performs. To assure 
the correctness of modern BCI systems, EEG signals that 
are not compromised of anything other than desired cer-
ebral activity are desired. In practice, EEG signals are 
contaminated significantly by undesirable sources such as 
electrooculogram (EOG) artifact, electromyogram (EMG) 
artifact, electrocardiogram (ECG) artifact, and power line 
noise [1]. Thus, removing these distortions is an essential 
step in pre-processing EEG signals. Among different arti-
facts, EOG produced by eye movement is the most common 
artifact and is the primary consideration in this work. EOG 
artifacts are undesirable high-amplitude, low-frequency pat-
terns in EEG signals caused by eye blinking and movement, 
while the EEG is being recorded. Many research works 
have been proposed and implemented to remove EOG arti-
facts from single- and multi-channel EEG signals, such as 
regression, blind source separation (BSS), singular spectrum 
analysis (SSA), and hybrid methods. Independent compo-
nent analysis (ICA) and its variants, like wavelet-enhanced 
ICA (wICA), are the most widely used BSS approach [1–3]. 
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The main drawback of using ICA is that it does not ensure 
that artifact-related independent components (ICs) will only 
contain noise and no neuronal activity, especially in the pres-
ence of channel noise where the numbers of source signals 
are essentially doubled while the number of sensors remains 
the same. Since ICA can only detect sources equal to or 
less than sensors, ICA components will contain a mixture 
of noise and brain activity. This issue is minimized by incor-
porating wavelet transform with ICA in methods like wICA. 
However, the performance of wICA greatly depends on the 
chosen wavelet basis function. For this reason, ICA-based 
approaches cannot be used in a real-time BCI system. The 
traditional method for EOG artifact rejection is the regres-
sion method in which separate vertical EOG (VEOG) and 
horizontal EOG (HEOG) channels are required to record 
VEOG and HEOG signals, respectively. In general, two 
electrodes positioned above and below the eye are used to 
calculate the VEOG component, whereas two electrodes 
placed outside the outer canthus of each eye are used to cal-
culate the HEOG component [3]. The recorded VEOG and 
HEOG are regressed with contaminated EEG to obtain clean 
EEG. Regression methods require four extra electrodes/sen-
sors and suffer from bidirectional interference. In addition, 
a higher level of knowledge is required to attach these four 
extra electrodes properly, and any electrode pop or manufac-
turing fault in the reference channel might introduce noise 
into the data of other EEG channels. In [4], the authors have 
suggested that virtual/simulated reference channels (FP1 and 
FP2 channels from the prefrontal region) can be an option if 
adopting an actual reference channel is not viable. As these 
channels (FP1 and FP2) also contain EEG activities, using 
them directly as reference channels can introduce additional 
noise. Therefore, this paper proposes a singular spectrum 
analysis (SSA)–non-negative matrix factorization (NMF)-
based ocular artifact removal (SNOAR) method, by com-
bining SSA and NMF for VEOG and HEOG calculation. 
To the best of the authors’ knowledge, the combination of 
SSA and NMF is first time adopted to estimate VEOG and 
HEOG components using frontal EEG electrodes. The main 
contributions of this paper are as follows:

1)	 SSA was used to estimate EOG artifacts from the 
selected channels from the frontal region (FP1, FP2, 
F7, and F8).

2)	 NMF-based decomposition of the estimated EOG arti-
facts into VEOG and HEOG components.

3)	 With the help of estimated VEOG and HEOG compo-
nents, the artifact-free EEG was obtained using the time 
domain regression approach.

The performance of the proposed method was evaluated 
and compared with selected EOG artifact removal meth-
ods using EEG records/signals from Klados dataset [5] and 

KARA ONE dataset [6]. The simulation results indicate that 
the proposed method outperforms the selected EOG arti-
fact removal methods in terms of root-mean-square error 
(RMSE) and delta band energy ratio. In addition, less power 
spectral density (PSD) difference was observed between the 
clean EEG and filtered version of the contaminated EEG 
segment obtained after the proposed method.

The organization of this paper is as follows: Sect. 2 pre-
sents the review of some of the significant research works 
on EOG artifact removal. The fundamentals of the proposed 
EOG artifact removal method and its mathematical back-
grounds are reported in Sect. 3. Simulation results and dis-
cussion are presented in Sect. 4. The conclusion and future 
works are discussed in Sect. 5.

2 � Previous works

Many research works have been proposed and implemented 
to remove EOG artifacts from single- and multi-channel 
EEG signals. This section reports some of the significant 
research works available in the literature. It is divided 
into two subsections: multi-channel and single-channel 
approaches. As most multi-channel approaches cannot work 
for applications where only a single electrode is present, a 
separate subsection for a single-channel scenario is added.

2.1 � Multi‑channel ocular artifact removal

Various methods such as regression, blind source separation, 
variational mode decomposition (VMD), empirical mode 
decomposition (EMD), SSA and their hybrid approaches, 
and wavelet transform are available for multi-channel ocular 
artifact removal.

2.1.1 � Regression methods

Regression method is a traditional method for ocular arti-
fact removal. This method requires two additional reference 
channels, VEOG and HEOG. The artifact-free EEG data 
were obtained from contaminated EEG signals by removing 
artifacts calculated using VEOG, HEOG data, and simple 
linear regression [3, 7].

2.1.2 � Filtering methods

Ocular artifacts can also be removed using filtering methods 
such as adaptive filtering/recursive least square (RLS) filtering 
and Weiner filtering. Adaptive filtering is based on the assump-
tion that signal and artifact are uncorrelated [8]. In this method, 
an artifact-correlated signal was first generated with the help of 
a filter and reference channel and then subtracted from the EEG 
channel. Weights were produced iteratively during adaptive 
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filtering to capture the effect of artifact on the EEG signal at 
each time instant. Adaptive filtering computes varied weights 
at separate time incidents instead of a constant weight assigned 
to artifact for each electrode in a linear regression-based tech-
nique. Weiner filtering eliminates the requirement for a reference 
signal. It is based on a statistical method that generates a linear 
time-invariant filter that reduces the mean square error between 
the intended signal and its estimate [9]. The minimization is 
done using an estimation of the PSD's of the signal and artifact; 
hence, it does not need a reference waveform.

2.1.3 � BSS methods

Some popular BSS-based artifact removal methods are prin-
cipal component analysis (PCA), ICA, and canonical cor-
relation analysis (CCA). PCA used variance to determine 
eye blink- and eye moment-related components to obtain 
artifact-free signals [1]. In order to utilize PCA to eliminate 
artifacts, the artifact and EEG must be uncorrelated, but this 
requirement is difficult to achieve in a real-world context. 
The ICA approach assumes that the EEG output at each elec-
trode point is a mix of artifact and pure EEG signals. In ICA 
approach, EEG signals were decomposed into independent 
components, and then parameters such as kurtosis, dipole 
energy, and entropy were calculated to estimate ICs, which 
have artifacts. To achieve artifact-free EEG readings, these 
ICs were eliminated, and other ICs were recombined [1]. 
It has recently become more common to combine ICA and 
wavelet-based processing, such as wavelet-enhanced ICA 
(wICA) [10]. In wICA-based method, ICA was performed 
on EEG data, and then obtained ICs were passed through 
wavelet de-noising to achieve artifact-free data. Another 
method, called wavelet-ICA (WICA), first partitioned 
EEG data into sub-bands using wavelet transform and then 
applied ICA on the selected artifact-related wavelet compo-
nents. Obtained ICs linked to the artifacts were selected and 
cancelled [11]. Finally, clean artifact-free EEG signals were 
attained after performing inverse ICA and wavelet recon-
struction. The main limitation of these techniques is their 
dependency on the selected wavelet basis functions. CCA is 
another method for removing artifacts that calculates com-
ponents from uncorrelated sources. This approach is less 
time-consuming than the ICA-based approach.

2.1.4 � EMD‑based methods

Bivariate empirical mode decomposition (BEMD) and mul-
tivariate empirical mode decomposition (MEMD) are widely 
used for ocular artifact removal [12, 13]. The BEMD-based 
approach had two stages. The first stage filtered electrical 
and environmental noise from the EOG channel by apply-
ing BEMD on fractional Gaussian noise and EOG signal. 
This filtered EOG signal was used as a reference in second 

stage BEMD with each EEG channel separately to achieve 
artifact-free EEG signals. In the MEMD-based artifact 
removal, the data from EEG channels, a reference channel 
(fractional Gaussian noise), and EOG channel were decom-
posed using MEMD. After that, a threshold intrinsic mode 
function (IMF) was chosen based on the energy and time 
period criteria related to the reference channel. All the IMFs, 
having higher order than threshold IMF, were considered 
EOG artifacts and removed from the recorded EEG signals.

2.1.5 � NMF‑based methods

Damon et al. [14] used a combination of NMF and Wie-
ner filtering for ocular artifact removal. In this method, the 
short-time Fourier transform (STFT) matrix related to the 
EEG channels was decomposed into weight and base matrix 
using NMF decomposition. The base matrix entries were 
initialized with the help of the reference EOG channel. Once 
this NMF model was established, the artifact and decontami-
nated EEG signals were easily reconstructed through Wiener 
filtering. Another method [15] combined ensemble EMD 
(EEMD) with NMF. In this method, NMF was used to divide 
the normalized EEG data into components. By using fractal 
dimension, the components with ocular artifacts were auto-
matically selected. Following that, EMD adaptively divided 
these components’ temporal activity into a few intrinsic 
mode functions (IMFs). Ocular artifact-related IMFs were 
eliminated, and the de-noised EEG data were finally rebuilt.

2.2 � Single‑channel artifact removal

Source decomposition methods such as SSA, EMD, PCA, 
wavelet transform, VMD, NMF, and hybrid approaches such 
as EEMD-PCA, EEMD-CCA, and SSA-ICA are popular 
among researchers for single-channel artifact removal.

2.2.1 � Wavelet transform‑based methods

In discrete wavelet transform (DWT)–adaptive noise cancel-
ler (ANC) approach, reference EOG artifact was determined 
using DWT. This reference EOG was applied to ANC to 
filter the contaminated EEG.

2.2.2 � SSA‑based methods

SSA is a subspace-based technique that gathers multidimen-
sional information from single-channel EEG data. Some 
artifact removal methods using SSA are SSA-ANC, SSA-
ICA with wavelet thresholding, SSA-K mean, and overlap 
segmented adaptive SSA (OvASSA) with ANC. In SSA-
ANC [16] approach, a reference signal was calculated using 
SSA with the help of local mobility of Eigenvectors. Then 
this reference signal and EEG channel data were applied to 
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ANC to extract artifact signal. Finally, artifact-free EEG sig-
nal was obtained by subtracting the estimated artifact signal 
from the corrupted signal.

In the OvASSA-ANC approach [17], the overlap SSA 
process was first applied to EEG data. Then, depending 
on amplitude, one or two reconstructed components were 
adaptively grouped and considered as reference EOG for 
ANC. As ICA is unsuitable for single-channel EOG artifact 
removal, in [18], a hybrid approach based on SSA and ICA 
was proposed. In this work, SSA decomposes single-channel 
data into multidimensional signals. Then ICA was applied to 
this multidimensional data. ICs that contained artifacts were 
then corrected using wavelet thresholding.

In the SSA-K means-based method [19], EEG signal was 
first converted into multivariate data using embedding. Then 
time domain features and clustering were used to distinguish 
these multivariate signals into different clusters. Source sig-
nals created using signals of different clusters were divided 
into the artifact and the EEG signal. The artifact’s position in 
the signal was interpreted using the binary template created 
by this artifact data. Then SSA-based analysis was applied 
only at those positions to remove the artifact component.

2.2.3 � EMD‑based methods

Another popular method of single-channel artifact removal is 
EMD and its variant. In EEMD-PCA [20]-based approach, 
firstly, portions of EEG signals that contain eye blink were 
captured using windowing and time domain parameters such 
as variance, and skewness, and subsequently, EEMD was 
applied to only those portions. Next, PCA was performed on 
IMFs, and principal components that contain the artifact were 
selected and removed. Another approach, named EEMD-ICA 
[21], used EEMD decomposition to convert single-channel data 
into multidimensional data. Then, ICA was applied, and ICs 
corresponding to the artifacts were removed. In EEMD-CCA 
[22] approach, after applying EEMD decomposition, IMFs that 
contain artifact were selected, and then CCA was applied to 
those IMFs. Source signal, which corresponds to artifact, was 
set to zero.

2.2.4 � Other methods

In VMD [23]-based ocular artifact removal method, firstly, 
the epoch corresponding to artifact was calculated using mul-
tiscale modified sample entropy (mMSE). After that, VMD 
was applied, and band-limited IMFs (BIMF) were obtained 
using a predefined parameter that helps BIMF capture ocular 
artifacts. Finally, a regression-based approach was used to cap-
ture a clear EEG signal. Another recent approach called Fou-
rier Bessel series expansion-based empirical wavelet transform 
(FBSE-EWT) [24] used FBSE-EWT for obtaining δ, θ, α, β, 
and γ rhythms. After that, enhanced local polynomial (LP) 

approximation-based total variation (TV) filter was applied to δ 
rhythm data to calculate LP and TV components. These com-
ponents were subtracted from δ rhythm, and then this filtered 
δ rhythm was added to all other rhythms data to construct an 
artifact-free EEG data.

From the previous works on EOG artifact removal from 
multi-channel EEG signals, it can be observed that BSS-
related approaches were unable to distinguish the artifact 
perfectly, and therefore, a large amount of useful information 
was removed. It has also disadvantages, such as a relatively 
high computational complexity and requires proper identi-
fication of blinking components. Wavelet transform-based 
EOG artifacts rely on the choice of mother wavelet, decom-
position level, and threshold. EMD-based methods are sus-
ceptible to noise and thus face the issue of mode mixing. The 
performance of the regression-based methods was affected 
by cross-contamination between EEG and EOG. In single-
channel-based works, it is observed that SSA and its variant 
provide satisfactory performance in ocular artifact removal.

3 � Materials and method

3.1 � Description of dataset

The proposed technique was evaluated using the EEG signals 
from the semi-simulated Klados dataset and the real KARA 
ONE dataset. Klados dataset consists of EEG recordings of 27 
subjects (males and females) recorded using the standard 19 
channels/electrodes (FP1, FP2, FP3, F4, C3, C4, P3, P4, O1, 
O2, F7, F8, T3, T4, T5, T6, FZ, CZ, PZ). In this dataset, odd 
index electrodes were referenced to the left mastoid, even index 
electrodes to the right mastoid, and center electrodes to the right 
and left mastoid average. EEG signals were recorded with a 
sampling frequency of 200 Hz, and VEOG and HEOG com-
ponents were also recorded separately during each recording 
session. KARA ONE dataset includes the real EEG signals of 
12 participants recorded using a 64-channel Neuroscan headset 
with a sampling frequency of 1 kHz. Only EEG signals recorded 
during imagination of phonemes /uw/, /tiy/, /pat/, and /n/ were 
used in this work. All signals were down-sampled to 250 Hz and 
band-pass filtered between 0.1 and 45 Hz. A common average 
reference was also used.

3.2 � Proposed method

This study proposes a new method, SNOAR, for removing EOG 
artifacts from multi-channel EEG signals. The proposed method 
does not require extra electrodes/sensors to record EOG signals 
and uses information of frontal channels (FP1, FP2, F7, and 
F8) for artifact removal. SSA is a prominent source decomposi-
tion method that can separate sources even if they overlap in 
temporal frequency space. The previous works on SSA and its 
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variations for single-channel artifact removal reveal that it is 
effective in separating artifacts from cerebral activity. Estimating 
EOG artifacts using SSA from each channel is time-consuming; 
hence, only four channels close to the left and right eyes were 
selected in this work. Subsequently, NMF was employed to sep-
arate VEOG and HEOG components from the estimated EOG 
artifacts using SSA. Finally, the estimated VEOG and HEOG 
components were used as a reference, and the time domain 
regression method was used to obtain clean artifact-free EEG 
signals. For estimation of regression coefficients, least square 
estimation method was used. The proposed method's overall 
flowchart and its subsections are depicted in Figs. 1, 2, and 3.

Pseudocode:
Input:  Contaminated EEG time ser ies data 

(EEGcontaminated)

Output: Artifact-free EEG data (EEGtrue)

1. Select 4 electrodes nearest to the eyes.
2. Calculate Artifact present in these electrodes using 
SSA.
3. Arrange these artifacts in one matrix (Q).

4. Calculate the highest negative number (m) present in 
this matrix and add that number to the complete matrix 
to make it positive.
5. Perform NMF decomposition of positive Artifact 
Matrix into W (4 × 2) and H (2 × N) matrix.
6. Construct a matrix P (4 × N) whose all values are m.
7. Calculate matrix H2 = [Pseudo inverse (W) × P].
8. Calculate 2 EOG components using W, H and H2 
matrix.
9. Calculate artifacts present in other channels using EOG 
components and linear regression.
10. Subtract artifact present in each EEG channel to get 
artefact-free cerebral activity.

3.2.1 � Estimation of EOG artifact using SSA

SSA is a subspace-based technique that incorporates elements of 
multivariate statistics, multivariate geometry, signal processing, 
and classical time series analysis. Four channels having dominant 
VEOG and HEOG characteristics were selected for estimating arti-
fact. SSA comprises 5 main stages: embedding, decomposition, 
grouping, diagonal averaging, and reconstruction [16, 25].

In the embedding step, a multidimensional matrix (Y) was 
created using J number of L length, lagged vector of single 
dimension data. If X is a contaminated single-channel EEG 
data of N length, then the embedding matrix is

where J = N – L + 1 and L is a window length. The value of 
L is determined by the following criteria:

where f is the lowest frequency of interest (minimum fre-
quency which needs to be taken into consideration) and fs is 
the sampling frequency.

After embedding, decomposition of trajectory matrix (Y) 
into L weighted orthogonal matrices is performed using sin-
gle value decomposition (SVD). According to SVD

where ui and vi are left and right singular vector matrices and 
� i is singular values corresponding to U, V, and ∑ matrix.

The next step in SSA decomposition is grouping. In this 
step, Xi matrices were grouped using some predefined crite-
ria. In this work, local mobility of the Eigen vector (ui) was 

⎡⎢⎢⎢⎣

X(1) X(2)

X(2) X(3)

⋮ ⋮

X(L) X(L + 1)

⋯ X(J)

⋯ X(J + 1)

⋮ ⋮

⋯ X(N)

⎤⎥⎥⎥⎦

L ≥
fs

f

(1)X = U.Σ.VT =

R∑
i=1

XiwithXi = �i.ui.v
T
i

Start

EEG channel data

Selection of 4 channels 

(nearest to left and right eye) 

for SSA based ocular artifact 

calculation

Artifact related component 

extraction for selected EEG 

channels using SSA

VEOG, HEOG component 

calculation using NMF

Other channel’s artifact 

calculation using linear 

regression and HEOG, VEOG 

component

Stop

Fig. 1   Flowchart of proposed method
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used as a criterion for grouping [16]. Local mobility mf of ui 
matrix is computed using Eq. 2:

After calculating mf for each vector, if its value is larger 
than 0.1, then the corresponding Xi matrices are considered 
in the group artifact. Matrices of artifact group are added, 
and in the final step, this multidimensional matrix represent-
ing artifact is converted back into single dimension using 
diagonal averaging [16].

3.2.2 � Estimation of HEOG and VEOG components using 
NMF

After estimating EOG artifacts from four selected channels 
using SSA, a matrix Q of (p × N) dimension is created using 
this data, where p represents the number of channels used for 
artifact calculation and N represents the number of samples. 
In the next step, NMF is used for separating HEOG and 
VEOG components.

(2)mf =

�∑L−1

j=1
z2(j)

L−1�∑L−1

j=1
ui(j)

L−1

wherez(i) = ui(j) − ui(j − 1)

NMF is a commonly used algorithm in the field of mul-
tivariate analysis which can decompose data of any positive 
matrix A into the product of two lower dimension weight (W) 
and base (H) matrices by optimizing function. Multiplica-
tive, gradient descent, and alternating least squares (ALS) 
are fundamental algorithms to solve this optimization prob-
lem. In this paper, the ALS algorithm was used in NMF 
decomposition, and its pseudocode is given below:

The primary constraint of NMF decomposition is the non-
negativity of the input data matrix, and the matrix Q created 
using artifacts had positive and negative values. The nega-
tive values were transformed to non-negative by adding a 
constant value m (largest negative number of matrices), and 
a positive matrix A was obtained. Then ALS-based NMF 
method [26] was used with hundred iterations to decom-
pose this A (4 × N dimension) matrix into W (4 × 2 dimen-
sion) and H (2 × N dimension) matrices. Hundred iterations 
were chosen because the ALS algorithm converges in less 
iteration. As W and H were calculated from the non-negative 
matrix (Q + m), the H matrix rows were amplitude-shifted 
versions of the original base matrix, which can evidently be 
seen in Fig. 4.

BASIC ALS ALGORITHM FOR NMF

W= rand (1,n ); % initialize W as random dense matrix

For i=1: max iteration

(LS) Solve for H in matrix equation WTWH= WTA.

(NONNEG) Set all negative elements in H to 0.

(LS) Solve for W in matrix equation HHTWT= HAT

(NONNEG) Set all negative elements in W to 0.

End

In proposed method, max iteration is 100, A is a 4×N, W is a 4×2 and H is a 2×N dimension matrix 

with N representing number of samples.

Fig. 2   SSA-based artifact 
calculation EEG channel data Embedding Decomposition

Grouping using local 

mobility of Ui matrix
Diagonal AveragingReconstruction
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In order to eliminate the effect of amplitude shifting, 
VEOG and HEOG components were calculated using Eqs. 3 
and 4:

(3)EOG1 = W(1, 1) × (H(1, ∶) − H2(1, ∶))

(4)EOG2 = W(1, 2) × (H(2, ∶) − H2(2, ∶))

where H2 = [Pseudo inverse (W) × P] and P is a 4 × N 
dimension, whose all entries are m. One of the compo-
nents from EOG1 and EOG2 represents VEOG and other 
HEOG. The EOG1 and EOG2 components computed from 
Eqs. 3 and 4 are illustrated in Fig. 4. The figure shows 
that EOG1  and EOG2  have the same shape as original 
HEOG and VEOG components, respectively.

Fig. 3   VEOG and HEOG com-
ponent calculation using NMF Matrix Q constructed using selected 

frontal channel’s artifact

Construction of non-negative matrix 

(A= Q + m), where m= most 

negative number in Q

NMF Decomposition of non-

negative matrix 

W×H

Calculation of EOG components

EOG1= W(1, 1) × (H(1, :)-H2(1, :))
EOG2= W(1, 2) × (H(2, :)-H2(2, :))

Calculation of H2 matrix

H2= [Pseudo inverse (W)× P]

Fig. 4   Reference VEOG and HEOG components as well as VEOG and HEOG components calculated through constant addition with and with-
out eliminating amplitude shifting using H2 matrix
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3.2.3 � Regression

It is a traditional method that assumes that each channel 
is the cumulative sum of pure EEG data and a propor-
tion of artifact. This work estimates VEOG and HEOG 
components using a combination of SSA and NMF. 
Afterwards, artifact-free EEG signal was obtained by 
subtracting the contaminated EEG from the estimated 
VEOG and HEOG components using a linear regression 
equation given in Eq. 5 [2]:

where Bv and Bh are propagation coefficients for EOG1 and 
EOG2, respectively, and these coefficients were calculated 
using the following equation [25]:

where rcv, rch, and rvh are correlation between EEGcontaminated 
data and EOG1, correlation between EEGcontaminated data and 
EOG2, correlation between EOG1 and EOG2, respectively, 
and sdc, sdv, and sdh are standard deviation of EEGcontaminated, 
EOG1 and EOG2, respectively.

3.3 � Performance measure

To validate the performance of proposed method, the fol-
lowing performance metrics are used.

3.3.1 � RMSE

For simulated data, RMSE between true EEG data and artifact-
free EEG data achieved using the prescribed artifact removal 
method was calculated using the following equation [10]:

where EEG = true EEG, AFEEG = artifact-free EEG data 
calculated using artifact removal method, S = number of 
samples, and g defines channel number.

3.3.2 � Energy ratio of delta rhythms (ERδ)

For real EEG dataset, this parameter was calculated for arti-
fact-removed as well as contaminated EEG signal using the 
following equation:

(5)EEGtrue = EEGcontaminated − Bv × EOG1 − Bh × EOG2

(6)Bv =

(
rcv − rch.rvh

1 − r2
vh

)
×

(
sdc

sdv

)

(7)Bh =

(
rcv − rcv.rvh

1 − r2
vh

)
×

(
sdc

sdh

)

(8)RMSE(g) =

�∑N

i=1
(EEG(g, i) − AFEEG(g, i))2

S

� 1

2

where Eδ is the energy of delta rhythm and ETotal is the total 
energy of EEG signal [24].

4 � Results and discussion

In this section, the effectiveness of the proposed SNOAR 
method for ocular artifact removal was tested on semi-
simulated and real datasets. A comparison of the proposed 
method with existing methods such as ICA, wICA, improved 
wICA, and MEMD was also carried out.

For the implementation of wICA [10], FastICA-based 
decomposition was applied to the EEG data matrix. A mix-
ing matrix and independent components were obtained. 
Each IC was decomposed into 5 levels using “sym4” wave-
let basis function. After performing thresholding on wavelet 
components, inverse wavelet transform was carried out to 
combine independent components consisting of artifact-free 
neural sources. Finally, remixing of ICs provided artifact-
free EEG signals. The implementation of improved wICA 
was done as in [27]. Similar to wICA, EEG signals were 
first decomposed into independent components. An auto-
matic EOG component identification was performed based 
on the correlation of each IC with frontal channels. Next, 
these identified components were searched for segments 
having EOG peaks based on the specified amplitude (peak 
amplitude ≥ 3 × mean amplitude of IC component) and time 
constraint (at least 0.5-s duration between 2 peaks). The 
segments with EOG peaks were decomposed into 5 levels 
using “sym4” basis, and only high-frequency components 
were retained for signal reconstruction. Finally, an inverse 
ICA process was performed to obtain artifact-free signals. 
For rejection ICA-based method [27], ICs consisting of arti-
facts were identified using visual inspection and scalp maps 
with the help of the EEGLAB software, and other ICs were 
remixed to provide artifact-free data.

MEMD-based artifact removal was implemented as 
presented in [12]. MEMD decomposition was firstly 
applied on a matrix consisting of EEG channels data, 
reference EOG (VEOG), and reference signal data (frac-
tional Gaussian noise (fGn) with Hurst index of 0.7, 
mean = 0, standard deviation = 1). With the help of IMF’s 
energy distribution of fGn signal and EOG channel, a 
reference IMF was selected. Next, IMF belonging to the 
EEG channel having the lowest difference in the mean 
time period from reference IMF was considered threshold 
IMF. The artifact-free EEG channel was obtained by add-
ing all IMFs with an index less than the threshold.

(9)ER
�
(%) =

E
�

ETotal

.100
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4.1 � Simulation results using semi‑simulated data

Figure 5 shows the contaminated EEG signals recorded from 
FP1 and F7 channels/electrodes and respective VEOG and 
HEOG signals. It can be seen from Fig. 5 that EEG record-
ings from FP1 and F7 channels are contaminated by VEOG 
and HEOG components/signals. It is due to the impact of 
vertical eye movement on the prefrontal channels (FP1 and 
FP2), which are close to the left and right eyes; similarly, the 
influence of lateral eye movement is visible in the channels 
(F7 and F8), which are close to eyes in the frontal region. 
Hence, these four electrodes/channels were considered refer-
ence channels for estimating EOG artifacts using SSA.

For the Klados dataset, the window length was chosen 
based on the criteria L > fs/fm and was set to 400; fs was set to 
200 Hz, and fm was set to 0.5 Hz (because EOG artifacts are 
present in the 0.5–5 Hz frequency range). Estimated EOG 
artifacts from FP1 and F7 channels of subject 1 (Klados 
dataset) along with actual artifacts are shown in Fig. 6.

The effectiveness of SSA-based estimation of EOG arti-
facts from the contaminated multi-channel EEG signals can 
be seen in Fig. 6. As reported in [12] and from the simulation 
results present in this work, SSA is a suitable candidate for 
removing EOG artifacts. From the estimated EOG artifact 
using SSA, VEOG and HEOG components were separated 
by NMF. The estimated VEOG and HEOG components are 
reported in Fig. 7. The figure shows the satisfactory perfor-
mance of NMF in separating VEOG and HEOG components 
from EOG artifacts.

After separating VEOG and HEOG components, a time 
domain linear regression approach was used to obtain clean 
EEG signals from the contaminated EEG signals. Regres-
sion coefficients were estimated using the least square esti-
mation method.

In this work, the recordings only from the frontal elec-
trodes (FP1, FP2, F7, and F8) of EEG were used to estimate 
EOG artifact because they are most likely to be corrupted 
by EOG artifacts. The performance of the proposed method 
in terms of RMSE for the Klados dataset was tabulated in 
Tables 1 and 2. In the SSA-based EOG artifact removal 
method, RMSE values were calculated using SSA to esti-
mate EOG artifacts individually on all the channels and 
remove them from contaminated EEG. In the proposed 
method, VEOG and HEOG were estimated and subtracted 
from the all-contaminated EEG channels using a linear 
regression approach. The average execution time to remove 
the artifact from all channels using SSA-based method was 
544.7 s, whereas the proposed method takes only 134.71 s. 
From the average execution time, it can be said that the pro-
posed time takes less computational time to estimate EOG 
artifacts and remove them from the contaminated EEG sig-
nal. From Table 1, it can be inferred that the proposed EOG 
artifact removal method performed better in comparison 

with SSA in terms of RMSE for the EEG signals from the 
selected subjects.

The performance comparison of the proposed method 
with selected EOG artifact removal methods (ICA, MEMD, 
wICA, and improved wICA) was reported in Table 2.

The RMSE results of contaminated EEG, wICA, and 
improved wICA were taken from the work published by M. 
F. Issa and Z. Juhasz [27], and MEMD was implemented 
using the work of M. K. I. Molla [13]. The common aver-
age referencing and filtering (1–47 Hz) were performed in 
the improved wICA method before artifact removal. So, 
the result of the proposed method with and without filter-
ing/common average referencing was calculated. It can be 
observed from Table 2 that the proposed SNOAR with com-
mon averaging and filtering yielded lower RMSE compared 
to selected EOG artifact removal methods.

In order to study any change in spectral characteristics 
of the signal after artifact removal, PSD graphs of the EEG 
signals before and after artifact removal were studied and 
reported in Fig. 8.

In simulated data, an original artifact-free clear EEG 
signal is available. Therefore, PSD plots of contaminated, 
original clear EEG signals, and filtered EEG signals of the 
frontal channel FP1 and F3 of dataset 1 were plotted to show 
the similarity of filtered signals with the original clear EEG 
signal. Among all methods, the proposed SNOAR method 
has shown the highest similarity with the original clear EEG 
signal, proving that the proposed SNOAR method removes 
artifact efficiently and does not affect any other cerebral 
activities.

A high difference can be observed in the delta band PSDs 
of contaminated EEG and filtered EEG signal. Among all 
methods, MEMD shows the highest decrement in delta band 
PSDs. However, these values are even lower than PSD val-
ues calculated using the original clear EEG signal, indicat-
ing that MEMD removes some of the neural activity parts 
of contaminated EEG in the delta band. The difference in 
PSDs for other bands was negligible in contaminated EEG 
and filtered EEG using the proposed method.

4.2 � Simulation results using real dataset

For real EEG data analysis, EEG signals recorded during 
imagination of phonemes /uw/, /tiy/, /pat/, and /n/ from 
KARA ONE dataset are used. KARA ONE dataset was 
recorded using 64-channel Neuroscan headset, and the 
sampling frequency of this dataset was 1 kHz. For pre-
processing, data was down-sampled to 250 Hz, filtering of 
0.1–45 Hz was applied, and a common average reference 
was used. For the KARA ONE dataset, the window length 
was chosen based on the criteria L > fs/fm, and it was set to 
500, fs was set to 250 Hz, and fm was set to 0.5 Hz (because 
EOG artifacts are present in the 0.5–5-Hz frequency range). 
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The estimated HEOG and VEOG artifacts using SSA + NMF 
of subject 9 for phoneme /n/ (KARAONE dataset) along 
with actual artifacts are shown in Figs. 9 and 10. By observ-
ing Figs. 9 and 10, it can be concluded that the proposed 
SNOAR method effectively estimates the VEOG and HEOG 
components.

Figure 11 shows contaminated EEG data and artifact-free 
signals estimated using the SNOAR, MEMD, and wICA-
based method for the /n/ phoneme. The figure clearly shows 
that the proposed method effectively removes high-voltage 
EOG activity, while the cerebral activity in the EEG sig-
nal was preserved. As a result, it can be concluded that the 
proposed method is capable of removing ocular artifacts 
from EEG signals without compromising brain activity. 
When comparing the performance of the three approaches 
for removing artifacts, it can be seen from Fig. 11 that the 
loss of cerebral activities present in the contaminated EEG 

signals is minimal after artifact removal using the proposed 
method compared to other selected artifact removal methods.

Artifact-free EEG data is not available for the real-time 
dataset. As a result, RMSE values for performance meas-
ures cannot be calculated; instead, a non-reference quality 
measure such as delta rhythm shift in energy ratio was uti-
lized. As most of the ocular activity is present in the delta 
band, removing the ocular artifact will decrease the delta 
band energy ratio. Table 3 shows the energy ratio for the 
delta rhythm of contaminated EEG signals as well as arti-
fact-removed EEG signals for various phonemes of subject 
9. After using the proposed SNOAR method, the energy 
ratio of delta rhythm became significantly lower for EEG 
recordings of selected phonemes compared to ICA, wICA, 
contaminated EEG, and improved wICA except for MEMD. 
The reason for obtaining a lower delta band energy ratio is 
the significant loss of cerebral activities in the delta band 

Fig. 5   a FP1 channel contami-
nated from Klados dataset 1. b 
F7 channel contaminated from 
Klados dataset 1. c HEOG data. 
d VEOG data

Fig. 6   Comparison of real 
artifact present in FP1, F7 
channel of Klados dataset1, and 
artifact calculated through SSA 
(a). Real artifact presents in FP1 
channels (b). Calculated artifact 
using SSA in FP1 channel (c). 
Artifact present in F7 channel 
(d). Calculated artifact using 
SSA in F7 channel
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Fig. 7   a Actual VEOG from Klados dataset. b VEOG component calculated through SNOAR. c Actual HEOG from Klados dataset. d HEOG 
component calculated through SNOAR

Table 1   Values of RMSE for 
SSA and SNOAR method using 
Klados dataset

Channels Recording 1 Recording 2 Recording 9 Recording 12

SNOAR SSA SNOAR SSA SNOAR SSA SNOAR SSA

FP1 7.5 8.7 8.8 9.4 7.4 7.7 7.1 7.2
FP2 7.6 7.8 8.9 8.6 6.9 7.4 7.3 10.9
F3 3.3 6.8 3.9 6.7 3.5 4.9 4.9 4.7
F4 5.5 7.7 3.8 5.6 3.2 4.3 5.1 10.7
C3 1.8 5.6 1.9 6.9 1.7 3.6 1.9 3.2
C4 1.4 3.8 2.0 5.0 1.8 4.0 3.6 10.1
P3 1.9 3.8 1.3 4.8 0.9 4.0 1.0 2.4
P4 1.3 4.4 1.4 5.0 1.5 3.9 2.3 9.2
O1 1.3 3.4 0.6 3.4 0.6 3.9 0.5 2.6
O2 0.7 4.1 0.7 3.7 1.2 3.5 1.9 9.1
F7 4.5 5.0 4.7 5.5 4.8 6.4 7.4 5.9
F8 4.7 5.8 4.8 4.8 4.6 6.4 6.5 10.0
T3 1.5 3.1 1.6 3.5 1.6 2.7 2.7 2.8
T4 1.6 3.7 1.9 2.7 1.5 3.0 4.4 9.8
T5 1.1 2.4 0.9 1.9 0.8 2.8 1.1 1.8
T6 0.9 3.1 1.0 3.4 1.1 3.3 2.0 8.3
FZ 2.8 6.2 3.5 7.2 2.9 5.0 3.8 7.9
CZ 1.5 3.7 2.0 6.5 1.5 4.0 2.3 6.1
PZ 2.1 3.4 1.3 6.3 0.9 4.2 1.4 4.4
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Table 2   Values of RMSE for contaminated data, rejection ICA, wICA, MEMD, improved wICA, and SNOAR method using Klados dataset

Recordings Contaminated 
EEG[9]

Clear EEG

ICA[9] MEMD wICA[9] SNOAR Improved 
wICA[9]

SNOAR
Filtering + common 
Avg. reference

Recording1,Fp1 34.9 16.3 8.0 12.6 7.4 7.9 4.0
Recording1. F8 13.7 9.4 7.3 3.9 4.4 3.2 1.7
Recording2,Fp1 37.8 14.6 10.7 8.7 8.8 4.6 3.1
Recording 2,F8 15.9 8.4 2.5 5.4 4.9 1.5 1.7
Recording9,Fp1 30.8 18.9 8.7 9.2 7.4 3.2 2.5
Recording 9,F8 15.5 12.7 3.9 6.4 6.0 2.6 1.7
Recording12,Fp1 38.4 14.9 12.9 9.8 7.1 7.2 2.9
Recording 12, F8 18.8 11.3 6.4 7.2 6.5 3.5 1.7
Average 25.7 13.3 7.6 7.9 6.6 2.4

Fig. 8   PSD graph of con-
taminated EEG and artifact-
free EEG obtained after the 
proposed methods and selected 
methods for a F3 and b FP1 
channel
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after artifact removal using MEMD, as shown in PSD plots 
in Fig. 12, which results in a low delta band energy ratio.

4.3 � Discussion

Removing any insignificant activity in EEG signals 
such as ocular artifact is an essential pre-processing 
step before analyzing EEG information for applications 
such as BCI. A combination of SSA-NMF with linear 
regression was proposed in this work. The performance 
and effectiveness of the proposed method were evaluated 
against existing methods such as ICA in terms of RMSE, 
delta band energy ratio, and PSD graphs using a semi-
simulated EEG dataset and a real EEG dataset. The pres-
ence of original clear EEG signals in a semi-simulated 

dataset provides additional advantages while measuring 
the effectiveness of artifact rejection methods. Real EEG 
datasets provide details about the proposed method’s 
performance in practical cases. Therefore, both datasets 
were considered and used for evaluating the proposed 
method. In addition, the Klados dataset has only 19 elec-
trodes, and the KARA ONE dataset consists of 64-chan-
nel EEG recordings. Therefore, analyzing these datasets 
guarantees the artifact removal method’s effectiveness in 
low and higher EEG channel scenarios.

In the Result section, Figs.  7 and 9 show VEOG/
HEOG signals recorded using EOG electrodes and cal-
culated using SSA-NMF which expounds the capabil-
ity of SSA-NMF approach’s in calculating HEOG and 
VEOG signals.

Fig. 9   a HEOG reference pre-
sent in /n/ phoneme recording 
of S9 subject of KARA ONE 
dataset. b HEOG component 
calculated using SNOAR

Fig. 10   a VEOG reference pre-
sent in /n/ phoneme recording 
of S9 subject of KARA ONE 
dataset. b VEOG component 
calculated using SNOAR
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Fig. 11   Artifact-contaminated signal and artifact-removed signal of /n/ phoneme using SNOAR, MEMD, and wICA

Table 3   ERδ for KARA ONE 
dataset

Subject and phonemes Contaminated 
EEG

Rej. ICA wICA Improved wICA MEMD SNOAR

S9.uw(6) FP1 66.1 36.0 23.5 65.1 1.4 9.2
S9.uw(6).F1 73.4 49.5 20.1 47.0 2.1 23.2
S9. n(5).FP1 85.5 50.2 29.2 70.1 2.2 5.1
S9.n(5).F1 73.6 54.1 33.1 28.2 2.3 23.2
S9.tiy(5).FP1 90.8 74.3 53.2 88.3 1.1 11.1
S9.tiy(5).F1 66.9 39.2 31.3 67.1 1.0 14.4
S9.pat(5).FP1 61.1 53.1 20.1 61.8 0.5 19.2
S9.pat(5).F1 89.2 65.2 54.2 88.4 1.0 25.1
S9. n(1).FP1 89.6 48.3 38.5 70.3 1.3 7.2
S9.n(1).F1 74.2 48.9 39.1 70.2 1.4 34.1
Average 77.0 53.8 34.2 65.6 1.4 17.2
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For the semi-simulated Klados dataset, the proposed 
method provides the lowest RMSE values compared to 
other methods. The PSD graphs of Fig. 8 also demonstrate 
the close similarity of the artifact-removed signal using the 
proposed method with the original clear EEG signal. Both 
results confirm the effectiveness of the proposed method in 
removing artifacts without affecting desired cerebral activity.

Figure 11 shows contaminated EEG signals and artifact-free 
EEG signals obtained using SNOAR, MEMD, and wICA meth-
ods for the real dataset. It can be understood that the proposed 
method effectively removes artifacts. PSD graphs of Fig. 12 
also strengthen this claim as except delta band (where most of 
the ocular artifacts are present), artifact-free signals using the 

proposed method are almost similar to contaminated signals. 
This paper proposes a new method for eliminating ocular artifact 
from contaminated multi-channel EEG recording. This method 
can remove ocular artifact without causing higher distortion in 
desired cerebral activities and works effectively for higher as well 
as low numbers of electrodes.

For both datasets, four electrodes are required from the brain’s 
frontal region for SSA-based estimation of ocular artifacts. In the 
absence of frontal electrodes, the performance of the proposed 
method is not tested. In addition, if the number of electrodes in 
EEG data is less than 5, the only first step of the proposed method 
(SSA-based artifact calculation) is sufficient instead of using the 
complete method. The proposed method requires more time for 

Fig. 12   PSD graph of con-
taminated EEG and artifact-
free EEG obtained after the 
proposed method and selected 
methods for a F3 and b FP1 
channel
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artifact removal than traditional regression due to the calculation 
of VEOG and HEOG channels but removes the requirement of 
additional EOG channels.

5 � Conclusions and future scope

This work proposes a combination of SSA, NMF, and a lin-
ear regression approach to remove ocular artifacts from multi-
channel EEG recordings. The proposed method does not require 
additional channels to record VEOG and HEOG components. It 
estimates VEOG and HEOG components, which can be excellent 
reference channels/signals during regression-based ocular artifact 
removal. Researchers are currently using EEG systems with a 
smaller number of channels since these are cheaper and can be 
more easily setup and maintained compared to high-density sys-
tems. Due to a smaller number of electrodes and the absence of 
EOG channels, removing ocular artifact has become a challeng-
ing task. Therefore, the proposed method was evaluated using 
datasets with both small and large channels. It can be concluded 
that the proposed method could effectively eliminate the EOG 
artifacts in semi-simulated EEG signals and real EEG signals 
while preserving useful cerebral activities to a reasonable extent. 
The proposed method outperformed the selected EOG artifact 
removal methods (ICA, wICA, MEMD, and improved wICA) 
in terms of various performance measures (RMSE and delta 
band energy ratio) and differences in PSDs. In the future, the 
performance of the proposed combination of SSA and NMF for 
estimation of VEOG and HEOG components and their suppres-
sion can be further investigated using variants of SSA and NMF.
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