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Abstract
Spectral analysis of atrial signals has been used to identify regions of interest in atrial fibrillation (AF). However, the rela-
tionship to the atrial substrate is unclear. In this study, we compare regions with dominant frequency (DF), simultaneously 
determined in the left atrium (LA) by a novel noncontact mapping system using unipolar charge density signals, to the zones 
of slow conduction (SZ) during AF.
In 19 AF patients the conduction during AF was assessed by a validated algorithm and SZ compared to the DF and the DF 
ratio between the DF peak and the area under the total spectrum (DFR). The results were compared in five different regions 
of the LA. The reproducibility of SZ location at different time measurements was higher than for DF or DFR. The SZs are 
mainly confined at the anterior and posterior wall of the LA. There was no statistically significant correlation between SZ 
and DF or DFR across the atrium.
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1 Introduction

Spectral analysis of atrial fibrillation (AF) signals has been 
used to identify regions of interest in patients with persistent 
atrial fibrillation after pulmonary vein isolation and areas 
with dominant frequency (DF) were thought to be drivers 
of persistent AF [1]. However, initial studies were done with 
sequential contact mapping, which does not allow simultane-
ous DF mapping in the entire atrium. In addition, the corre-
lation of DF to other physiologic measures of atrial disease, 
such as conduction velocity in AF is unknown.

Noncontact potentials have been recorded by noncontact 
multielectrode catheters (the EnSite™ Array™) for simul-
taneous frequency analysis in the entire atrium [2]. How-
ever, the results have not been reproducible, which might be 

related to the fact that unipolar voltage signals include the 
electrical far field signal [3].

Therefore, in order to decrease the far field component 
during DF analysis with noncontact mapping, we used a 
newly developed noncontact mapping system (AcQMap®, 
Actus Medical, Inc.). This system computes the source of 
the electrical field (potential), which is the charge density 
(CD = Coulomb/cm2) at the heart wall[4–6]. This is the first 
study reporting results of DF analysis from simultaneously 
obtained charge signals of the entire atrium.

First studies have been published reporting patterns of 
AF propagation waves in the entire atrium including auto-
matic detection of areas with repeated focal discharges, rota-
tional activities and local irregular conduction characteris-
tics [7–9]. In addition, recently a new algorithm computing 
conduction velocity has been implemented in the system in 
order to determine the zones of slow conduction (SZ, slow 
zones, [10]). This is the first study to report the localization 
and reproducibility of SZ in the human atrium during AF.

Previous studies suggest that conduction velocity distur-
bances might play a role in arrhythmogenic substrate [11, 
12]. The study from Grossi et al. shows correlation between 
bipolar signals and frequency during sinus rhythm and incre-
mental pacing [13].
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This study was conducted to test the hypothesis that high 
frequency areas might be correlated to zones of SZ. In addi-
tion, the reproducibility of DF and SZ analysis in the human 
atrium was assessed during AF.

2  Methods

2.1  Electrophysiologic study and recording

Signal recordings from 19 patients during AF mapping 
under general anesthesia were used for offline analy-
sis. All patients have given informed written consent 
for the study. Patient characteristics are summarized in 
Table 1. Antiarrhythmic drug treatment was stopped at 

least 2 days before the procedure except for Amiodar-
one. After transseptal access, Heparin was administered 
until ACT was > 350 s. The AcQmap® catheter (Acutus 
Medical, Carlsbad, CA, USA) was deployed for anatomy 
reconstruction and unipolar electrogram recordings. The 
left atrium (LA) surface was meshed with triangular ele-
ments (> 3000 vertices, with a spatial resolution of ≈ 
2 mm). Two baseline AF recordings of 30 s duration, 
which were at least 5 min apart, were used for analysis. 
In the patients with sinus rhythm, AF was induced by 
burst pacing. The unipolar voltage signals were filtered 
between 1 and 100 Hz for further processing.

2.2  Signal processing and data analysis

A) Localization of slow conduction zones
  AF propagation history maps [14] of 10 s were 

computed for two segments at different recording 
times and were computed as previously described 
[15]. Then, propagation data were analyzed by the 
software algorithm for automatic location of slow 
conduction zones (SlowZone™ Locator (SZ), Acu-
tus Medical, Carlsbad, CA, USA) (Fig. 1). Briefly, 
noncontact local activation times (LAT) are deter-
mined from the CD signals of the Acutus mapping 
system (Fig. 1a). At each vertex of the anatomical 
surface, a neighborhood (radius ~  = 5 mm) is defined 
and projected to a 2D surface (Fig. 1b) using the two 
first principal components (u,v) determined using a 
singular value decomposition. The conduction veloc-
ity is estimated using a 3rd order polynomial sur-

Table 1  Clinical characteristics of patients

Paroxysmal AF 
(n = 4)

Persistent AF 
(n = 12)

Long-
standing AF 
(n = 3)

Male, % 2 (50) 8 (66.6) 3 (100)
Age 68 ± 9 67 ± 10 59 ± 3
EF 58 ± 9 58 ± 5 59 ± 3
LA mm 43 ± 7 44 ± 7 46 ± 4
Previous PVI, % 4 (100) 7 (58) 0
S. heart disease 2 8 2
Hypertonie 1 7 0
Diabetus 1 1 0
Amiodarone 0 2 0

Fig. 1  SlowZone Locator 
Map (SZ Map). a Local activa-
tion time computed from CD. b 
3D to 2D projection. For each 
vertex on the surface, define a 
neighborhood and project them 
to the 2 first principal com-
ponents (u and v). c Compute 
conduction velocity with poly-
nomial fit and project back to 
3D anatomy. d SZ Map, regions 
with consistent slow conduction 
(in blue)
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face fit [10, 16] to estimate the gradient of activation 
and inverted to estimate velocity on the mesh vertex 
(Fig. 1c). This estimation approach is similar to those 
implemented previously [10, 17, 18]. Single or multi-
ple velocity maps can be combined to find regions of 
consistent slow conduction velocity (Fig. 1d). Zones 
of slow conduction were defined as having a con-
duction velocity magnitude < 0.3 m/s evaluated on a 
vertex basis, which is consistent with the literature 
[19–21].

B) Frequency analysis
  At each vertex of the meshed surface, the unipolar 

CD signals during baseline AF were computed for the 
entire LA surface a sampling rate of 3125 Hz. The 
ventricular component of the unipolar raw signal was 
subtracted by the Acutus Mapping System, using a 
template-based method [22]. All data were exported 
for further analysis with MATLAB (Mathworks, 
Natick, MA, USA). A band-pass filter between 3 and 
20 Hz was applied and the power spectrum estima-

a

b

c

Unipolar Charge Density Signal Unipolar

DF=4.6 Hz DF=4.9 Hz

Frequency Spectrum Frequency SpectrumFrequency Spectrum

Frequency Hz

AP View

AP View

PA View

PA View

Charge Density Signal

Fig. 2  a Dominant frequency (DF) computed at each vertex. b DF Map (frequency range from 2–6 Hz, blue to red). c DF regions was defined as 
DF >  = 90% of  DFMaxDFMap (in red, binary map), where  DFMaxDFMap was the maximum value of all DF withing the map (while the rest in blue).
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tion was performed using a smoothed periodogram 
(Hamming window) with a frequency resolution of 
0.1 Hz [2]. For each individual vertex, the frequency 
spectrum was computed and the frequency with the 
highest power was taken as the dominant frequency 
(DF). Then, the DF values of each vertex were dis-
played in a color 3D map (Fig.  2a, b). As higher 
frequencies were  not considered physiologic, the 
algorithm looks for DF below 20 Hz. All maps were 
visually inspected, especially in regions with abrupt 
change in frequencies and if harmonics were found, 
the fundamental frequency was used as   DF. The 
region of high frequency activity was defined by a 

DF larger than 90% of maximum DF in the entire LA 
 (DFMaxDFMap), (Fig. 2c) [23]. 

  In addition, the relationship between the DF and 
the entire frequency spectrum was assessed for each 
vertex. The DF peak value was divided by the inte-
gral of the entire frequency spectrum, resulting DF 
Ratio, which is a measure for the dispersion of the 
frequency spectrum and was visualized by a RF ratio 
Map (DFR), (Fig. 3a) as described previously[24, 
25]. High DFR regions were defined by high-
est DFR, larger than 90% of  DFRMaxDFRMap, where 
 DFRMaxDFRMap was the maximum DFR value of the 
entire map (Fig. 3b).

Fig. 3  Dominant Frequency 
Ratio Map (DFR Map). a Ratio 
between dominant frequency 
(DF) peak and his total area of 
the spectrum (frequency value 
normalized between 0 and 1). 
b Region with DFR > 90% of 
 DFRMaxMap (in red, binary map)

b

a AP View

AP View

PA View

PA View

Fig. 4  Left Atrium Region: 1. 
Anterior Wall, 2 Posterior Wall, 
3. Septum, 4. Roof, 5. Lateral 
Wall. MV = Mitral Valve, 
LAA = Left atrial appendage, 
LSPV = Left pulmonary veins, 
LIPV = Left inferior pulmonary, 
RSPV = Right superior pulmo-
nary vein, RIPV = Right inferior 
pulmonary vein
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C) Distribution of SZ, DF and DFR on the LA surface

Two SZ, DF, and DFR maps of 10 s recording each were con-
structed during baseline AF for each patient. The left atrium was 
arbitrarily divided into five regions (R1 to R5): 1. Anterior Wall, 
2. Posterior Wall, 3. Septum, 4. Roof, 5. Lateral Wall (Fig. 4). 
The presence or absence of SZ, DF, and DFR was reported as a 
binary variable for each anatomical region.

2.3  Statistical analysis

Continuous data are reported as mean ± SD. Cohen’s 
Kappa coefficient was calculated to compare the agree-
ment between the two maps and assess the relation-
ship between the methods SZ and DF as well as SZ and 
DFR. The comparison between baseline recordings was 

computed using Fisher-exact test. Spearman’s Rho Coef-
ficient was used to compare the temporal correlation 
between the two baseline recordings. Statistical analysis 
was performed using R Foundation.

3  Results

In each of the 19 patients, 2 recordings of baseline AF for 
10 s have been used to compute the SZ, DF, and DFR maps, 
leading to a total of 114 maps.

The clinical characteristics of the patients are summa-
rized in Table 1. The findings of the study are visualized in 
one patient as an example (Fig. 5): the SZ is predominant 
at septum and anterior part of the LA, the DF regions are 
located at the anterior, posterior and roof of the LA, while 
DFR are only located at the posterior wall.

AP View AP View PA ViewPA View

SZ Map

DF Map DFR Map

DF Region >90% DFR Region >90%

SZ Map

Frequency Hz

Frequency Hz

Ra�o

Ra�o

a

b c

Fig. 5  Example of SZ, DF and DFR Maps. a SZ Map (in blue are regions with conduction velocity < 0.3 m/s) b DF Map and the region with 
90% > DFMaxDFMap (in red) and c DFR Map and the region with 90% > DFRMaxMap (in red)

Table 2  Comparison between 
baseline 1 and baseline 2 for 
each analysis (slow zone (SZ), 
dominant frequency (DF) 
and dominant frequency ratio 
(DFR). R1 to R5 are the 5 
different regions of the LA. 
Spearman’s Rho coefficient and 
p-value are reported

R1
(Ant. wall)

R2
(Post. wall)

R3
(Septum)

R4
(Roof)

R5
(Lat. wall)

SZ1 vs SZ2 Rho = 0.58
p = 0.01

Rho = 0.47
p = 0.04

Rho = 0.42
p = 0.07

NA Rho =  − 0.06
p = 0.82

DF1 vs DF2 Rho = 0.06
p = 0.82

Rho = 0.26
p = 0.28

Rho = 0.30
p = 0.22

Rho = 0.30
p = 0.22

Rho = 0.01
p = 0.96

DFR1 vs DFR2 Rho =  − 0.015
p = 0.95

Rho = 0.23
p = 0.34

Rho = 0.07
p = 0.77

Rho =  − 0.02
p = 0.95

Rho = 0.32
p = 0.18
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3.1  Temporal reproducibility

The temporal reproducibility between the two recordings 
(Table 2) was better for the location of the SZ (best value 
Rho = 0.58, at the anterior wall) than for the DF analysis 
(Rho = 0.3, at the roof) between the two maps. For the DFR 
analysis, the highest agreement was found on the lateral wall 
(Rho = 0.32).

3.2  Slow conduction zones

The occurrence of SZ for each region is reported in Table 3 
as percentage of the total 38 maps. Zones of slow conduc-
tion < 0.3 m/s were found all but one map, they were more 
frequently in the anterior wall of patients and posterior wall 
in 76.3% of the maps than on the septum or posteriorly. 

Interestingly the roof showed never zones of slow conduc-
tion. DF analysis does not show a clear localization of high 
frequency, while DFR method is mainly located at the poste-
rior wall (60.5%).

3.3  Spectral analysis

In contrast, the DF was distributed all over the atrial 
regions (Table 3), as well as the highest DF ratio. The 
mean DF value of all LA sites did not differ between par-
oxysmal and persistent AF patients (5.2 ± 0.4 Hz versus 
5.5 ± 0.8 Hz, p = 0.34). While a significant mean DF value 
was observed between paroxysmal and long-standing AF 
patients (5.2 ± 0.4 Hz versus 6.1 ± 0.1 Hz, p = 0.0007).

3.4  Agreement between slow conduction 
and frequency analysis

There was no significant agreement between the location 
of SZ and the location of DF or DFR, for both base-
line recordings. Cohen’s Kappa, Κ between − 0.37 and 
0.17 for SZ vs DF and K between − 0.13 and 0.13 for 
SZ vs DFR (Fig. 6a for DF and Fig. 6b for DFR). Using 
a mixed model regression analysis to compare the SZ 
vs DF and SZ vs DFR, not significant correlation was 
obtained (p > 0.21).

Table 3  Prevalence of slow zone (SZ), dominant frequency (DF) and 
dominant frequency ratio (DFR) for each LA region (R1–R5)

R1
(Ant. wall)

R2
(Post. wall)

R3
(Septum)

R4
(Roof)

R5
(Lat. wall)

SZ1 29(76.3%) 21(55.3%) 13(34.2%) 0(0%) 2(5.3%)
DF 19(50.0%) 17(55.3%) 19(50.0%) 19(50.0%) 15(60.5%)
DFR 9(23.7%) 23(60.5%) 10(26.3%) 9(23.7%) 5(13.2%)

AP View PA View

0.17
-0.07

0.13

NA NA

-0.09

0.13
-0.09

AP View PA View

0.09
0.14

0.03

NA NA

-0.08
0.03

-0.08

Baseline  recording 1 Baseline recording  2

AP View PA View

0.02 -0.38

-0.21

NA NA

-0.11
-0.21

-0.11

AP View PA View

-0.13 0.04

0.11

NA NA

-0.11
0.11

-0.11

a

b

Baseline  recording 1 Baseline  recording 2

Fig. 6  Comparison between slow zone (SZ), dominant frequency 
(DF) and dominant frequency ratio (DFR) for each region at baseline 
1 and baseline 2 recordings. Cohen’s Kappa coefficient (Κ) for each 

region is reported. a SZ vs DF for baseline 1 and 2. b SZ vs DFR for 
baseline 1 and 2
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4  Discussion

This is the first study to report frequency analysis of CD 
signals simultaneously recorded in the entire atrium and to 
compare results to SZ during AF in humans.

4.1  Frequency analysis

This study shows that DF and DFR were not reproducible 
over time. For the five regions of the LA analyzed, no corre-
lation has been observed between the first and second record-
ings (p >  > 0.05) (Table 2). This result agrees with previous 
findings [2, 3], where mappings were performed using uni-
polar noncontact voltage and bipolar contact electrograms. 
The DF analysis also shows a quasi-uniform distribution of 
the DF over the entire atrium. Only on the posterior wall that 
a higher occurrence of DF location was observed (Table 2). 
There was no significant difference in the mean DF values of 
all LA sites between paroxysmal and persistent AF patients 
(5.2 ± 0.4 Hz versus 5.5 ± 0.8 Hz, p = 0.34), as observed by 
Jarman et al. [2] and no significant correlation has been found 
between locations of DF and DFR. Frequency analysis has 
been performed widely. For bipolar voltage signals, hopeful 
results have been published initially [1], however the clini-
cal value has been low because of poor reproducibility of 
sequential measurements of bipolar contact signals. Also, 
for noncontact unipolar voltage signals, several studies report 
mixed results, which were obtained by using a definition for 
frequency regions by 20% higher frequency than neighbor-
hood points [2]. However, with that definition, we would only 
obtain the border of high frequency regions but not identify 
the spots with the DF itself.

Frequency analysis has not gained widespread clinical 
application because of inherent limitations of reproducibil-
ity [3, 26, 27] and lack of pathophysiological correlation to 
clinical characterizations to the atrial substrate.

4.2  Location of slow zones

There are no previous studies identifying zones of slow conduc-
tion in the human atrium during AF, because the technology 
was not available in other mapping systems. First, the repro-
ducibility of the methods was tested, which showed that only 
the localization of SZ areas is somewhat reproducible in the 
anterior and posterior wall with moderate but significant cor-
relation values (Rho = 0.58, p = 0.01 and Rho = 0.47, p = 0.04, 
respectively) (Table 2). Previous studies have shown that atrial 
conduction velocity has been correlated to arrhythmogenic sub-
strate [28–31]. In Heida et al. [29], patients with a history of AF 
had slower conduction velocity (CV) at the Bachmann’s bundle 
region compared to a control group, and Zhen et al. study [28] 
shows slow CV at the septum and anterior wall. This study also 

confirmed that SZ region are mainly confined at the anterior 
wall of the LA as reported by Kurato et al. [30]. For each of the 
19 patients, 2 maps of SZ have been computed. Among these 
38 maps, 29 maps were found having SZ at the anterior wall 
(76.3%) and 21 maps with SZ at the posterior wall (55.3%) 
(Table 3). Interestingly, no SZ have been found on the roof, this 
might be due to the small population included in this study.

The analysis of atrial CV is a new tool and might be 
more representative for the atrial substrate, because it 
is more reproducible, has been validated against con-
tact measurements of CV [10] and represents a clinical 
meaningful value of atrial electrical properties. Whether 
the cutoff value of 3 m/s as used in the literature trans-
lates into prognostic information has to be determined by 
future studies. Also, the correlation of CV during various 
rhythms (sinus rhythm, pacing, flutter, fibrillation) has 
to be determined to further characterize the impact of 
functional alterations of the atrial substrate.

4.3  Relationship between frequency analysis, 
slow zones and complex fractionated atrial 
electrograms

This is the first study to compare DF and SZ. Our results 
did not show agreements between location of DF and 
SZ or DFR and SZ. This is not surprising since results 
of DF and DFR were not stable over time. One study 
reports a strong correlation between CV and the bar-
ycenter of the frequency spectrum Grossi et al. [13]. The 
study was performed during incremental pacing, and CV 
was computed along the catheter inserted along the coro-
nary sinus. So, a comparison to our current study would 
not be relevant, since they used different technology and 
spectrum analysis during pacing.

Previous studies have investigated the relationship 
between DF and comoplex fractionated electrograms 
(CAFÉ) using bipolar signals [32, 33] in patient present-
ing for AF ablation. Habel et al. mapped the left atrium 
using a 64-electrode basket catheter while Vermal et al. 
[33] used a circular mapping catheter during persistent 
AF patient. These studies did not show a significant cor-
relation between sites of high frequency and CAFEs, as 
well as their stability over time. From these studies, no 
conclusion to guide RFA could be drawn.

4.4  Methodological discussion

In the current study, the time segment used to compute DF 
and map of SZ was arbitrarily chosen at 10 s. The choice 
was made based on the processing capacity of the software 
to compute larger map duration. The AcQMap® allows to 
compute the SZ in different manners: (a) using Supermap 
recording, which is a specific mode to acquire data by 
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rowing the AcQMap® catheter in the atrium, resulting in a 
single map based on a large set of non-contact electrogram 
recordings, (b) using a combination of several propaga-
tion maps recorded, and (c) using a single map recording. 
Since we had 10 s of recording for each map, we used only 
one map of 10 s to compute the SZ map. During 10 s of 
AF, at each vertex, CVs were computed for each activa-
tion detected. Atrial region with > 75% of the CVs below 
0.3 m/s were displayed as SZ, which are standard settings 
of the AcQMap® algorithm. The size of the SZ was also 
not reported in this study, only their localization. The time 
interval between each map was approximatively 5 min, the 
effect of this parameter on the map was not accessed in 
this study. The current AcQmap® software was not also 
considering the magnitude of the signal to compute the 
zone of slow conduction, which might also play a role.

5  Limitations

The present study includes a small patient group; how-
ever, the amount of data collected are considerable. Two 
baselines AF recordings of 10 s each and data are analyzed 
over 3000 vertices for each anatomy. Novel and mean-
ingful findings of statistical significance were obtained. 
Therefore, it is doubtful that different results would appear 
with larger patient numbers. Another limitation is that the 
size of LA was not computed, and inaccuracy can be intro-
duced if the distance from the center of the noncontact 
catheter to the wall is > 4 cm. However, the mean value 
of left atrial diameter was 4.3 cm and the largest diameter 
5.9 cm. Finally, further follow-up studies are necessary to 
address the clinical impact of our findings.

6  Conclusion

In this study, the locations of SZ and DF do not match 
in AF patients. The SZ are mainly confined at the ante-
rior and posterior wall of the LA. The consistency of the 
results over time is only given for SZ and not for the spec-
tral analysis. These findings suggest that the SZ, but not 
the DF could be used for comparison to measures of the 
atrial substrate.

Glossary AF: Atrial fibrillation; CAFE: Complex fractionated electro-
gram; CD: Charge density (C·cm−2); CV: Conduction velocity (m·s−1); 
SZ: Slow zone; LAT: Local activation time (ms); FFT: Fast Fourrier 
transform; DF: Dominant frequency (Hz); DFR: Dominant frequency 
ratio, the ratio between the DF peak and the area under the total spec-
trum; LA: Left atrium; MV: Mitral valve; LSPV: Left pulmonary vein; 
LIPV: Left inferior pulmonary vein; RSPV: Right superior pulmonary 
vein; RIPV: Right inferior pulmonary vein; LAA: Left atrial appendage
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