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Abstract
Lung cancer is one of the most critical diseases due to its significant death rate compared to all other types of cancer. The early 
diagnosis of lung cancer that improves the patient’s chance of surviving is mostly done in two phases: screening through CT 
scan imaging modality and, more importantly the medical expert’s reading of the scan, which is a time-consuming task and is 
vulnerable to errors. It is difficult to differentiate between malignant and benign nodules and biopsies are highly invasive, and 
patients with benign nodules may undergo unnecessary procedures. In this study, we propose a CNN-based computer-aided 
diagnosis system to automatically classify pulmonary nodules into benign or malignant. The proposed network architecture 
is based on AlexNet architecture that experiments with several types of layer ordering, hyperparameters, and functions for the 
various sides of the network. To build a well-trained model, several pre-processing steps are applied to the entire dataset, for 
instance segmentation, normalization, and zero centering. Finally, the proposed system obtained results with 98.7% accuracy, 
98.6% sensitivity, and 98.9% specificity. The proposed model achieved superior performance compared to the AlexNet. The 
modifications in the original AlexNet is done to get a reasonable structure that has high nodule analysis sensitivity.

Keywords Lung nodule classification · Computer-aided diagnosis · Convolutional neural network · Deep learning

1 Introduction

Lung cancer is one of the riskiest diseases that modern human-
ity can develop. It is listed as the second most common type of 
cancer in both genders combined. In females, breast cancer is 
more common, while in males, prostate cancer is more com-
mon. The mortality rate of colon, breast, and prostate cancers 
combined is by far less than the death rate of lung cancer, mak-
ing lung cancer the major cause of cancer death among both 
males and females [1]. Diagnosing lung cancer in its early 
stages enhances the treatment time and the chance of the patient 
being cured, with a 10-year survival rate of about 90% [2, 3].

Early-stage diagnosis is mostly done through screening a 
patient’s lungs. A CT scan is one of the most-used modalities 

for that purpose and helps radiologists to identify lung cancer in 
the beginning phases. The use of CT imaging devices decreases 
the death rate of the high-risk group by up to 20%, because CTs 
have been shown to be a beneficial source of information for 
radiologists [4].

It’s easy to overlook a malignant nodule due to the lungs’ 
vascular structure. The radiologist must have specific character-
istics and skills to make the procedure effective, such as experi-
ence, degree of skill, and concentration. One possible solution to 
reduce errors is to use more than one reader, where each reader 
examines the scan independently and the results are combined. 
However, this is a costly solution and puts more workload on 
the scan readers. A cheaper and much more reliable approach 
would be designing a computer system that can be used as a 
second opinion against a radiologist’s opinion in diagnosing lung 
nodules [5]. Such systems can be extremely useful to medical 
professionals because they can obtain more accurate results than 
human expertise and in a shorter time. For that, the use of a 
computerized detection and classification system has become 
increasingly necessary for medical laboratories [6].

However, developing a dependable automatic lung nodule 
analysis system requires an algorithm that can deal with the 
complex structure of the lungs and different behaviors of 
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lung nodules, such as texture diversity, shape, and identical 
features of cancerous and non-cancerous nodules. Recently, 
deep learning algorithms have achieved great success in the 
medical imaging domain, as they supply a hands-free feature 
extraction and classification architecture that offers better 
results than a hand-based feature extraction system. Convo-
lutional neural networks (CNNs) have shown state-of-the-art 
results in image classification tasks, and many investigators 
have tried to employ CNNs in designing lung nodule analysis 
tools [7]. We proposed a fully automatic CNN-based CADx 
system to classify lung nodules as benign or malignant in 
CT scan images. However, in medical imaging, especially 
when predicting cancer, it is very important for the system 
to achieve the lowest error rate for both false positives (FP) 
and false negatives (FN), since that would pose a threat to 
the patient’s life. Therefore, this study focuses on reducing 
both the FP and FN rates to make the system more realistic.

2  Related work

In recent years, several researchers have worked on build-
ing systems for automatic medical image analysis utilizing a 
diverse number of methods, starting with low-level pixel pro-
cessing, passing by traditional machine learning algorithms 
that work on hand-craft features. The next step is applying 
techniques that automatically learn low- to high-level fea-
tures from the data and done the diagnosing procedure on the 
learned features; these techniques are known as deep learning 
(DL) techniques. The most successful DL algorithm when it 
comes to image classification is CNN [8]. Since that, most 
published works use different CNN architectures and con-
cepts to design systems for lung cancer analysis.

De Pinho Pinheiro et al. [6] investigated training a convo-
lutional neural network by using swarm intelligence instead 
of traditional training techniques like gradient descent and 
back-propagation to check the effectiveness of this strategy 
and their experiments showed that the top swarm trained net-
work operated 25% faster than the model that trained based 
on back-propagation. Furthermore, the work benefited from 
LIDC-IDRI dataset to train their designed model that could 
obtain up to 93.71% accuracy, 93.53% precision, 92.96% 
sensitivity, and 98.52% specificity.

Da Silva et al. [3] proposed a convolutional neural net-
work based on particle swarm optimization methodology to 
decrease false positives in lung nodule detection that uses 
CT scan images in the LIDC-IDRI database. However, the 
experiments showed that their methodology could achieve 
97.62% accuracy, 92.20% sensitivity, 98.64% specificity, and 
a ROC curve of 0.955.

Naqi et al. [9] suggested a method for detecting and clas-
sifying pulmonary nodules in CT scans that consists of four 
main stages. The initial one is applying optimal gray-level 

thresholding to extract lung regions that are calculated by 
using fractional-order Darwinian particle swarm optimi-
zation, then proposing a state-of-the-art nodule detection 
model that performed based upon geometric fit in paramet-
ric shape including the geometrical characteristics of the 
nodules, the following step was designing a hybrid texture 
characteristic descriptor for representing candidate nodules 
that combine the 2D and 3D nodule information, and the 
last step was developing a deep learning classification model 
that builds upon stacked autoencoder and softmax which is 
applied for false-positive reduction. Moreover, the study uti-
lizes a large public dataset which is LIDC/IDRI, and finally, 
their approach could decrease the rate of false positives into 
2.8 per scan and a sensitivity of 95.6%.

G.S. et al. [10] work on a deep convolutional neural net-
work model for classifying pulmonary nodule on CT scan 
images. They apply the focal loss to the training procedure 
in order to boost the accuracy of the classifier. The model 
trained on LUNA16 grand challenge dataset, and the experi-
ments show the ability of focal loss that could achieve 97.2% 
accuracy, 96.0% sensitivity, and 97.3% specificity.

The suggested study by Xie et al. [11] is an attempt to 
design a model that can be trained on both labeled and unla-
beled data to classify lung nodules into malignant-benign 
named a semi-supervised adversarial classification (SSAC). 
The model consists of three parts which are an adversarial 
autoencoder-based unsupervised reconstruction network R, 
supervised classifier C, and transition layers that learn to 
allow the adaption of the image representation capability 
learned by R to C. However, they aimed to use three SSACs 
to describe the overall look of the nodules, heterogeneity in 
shape, and texture, all that through expanding their model to 
the multi-view knowledge-based collaborative learning. The 
model was evaluated on the LIDC-IDRI dataset and could 
obtain 92.53% accuracy and 95.81% AUC.

3  Data preparation

The original model that was specially designed for this work 
was trained using a combination of two separate datasets, 
namely Data Science Bowl 2017 (DSB) [12] and the Lungx 
challenge dataset. The DSB dataset consists of 1595 low-
dose CT scans provided by the National Cancer Institute 
(NCI). Each scan contains a set of 2D slices of the chest 
cavity that vary based on the patient and the modality. The 
images were in the DICOM file format and had a differ-
ent slice thickness (Bowl 2017 Kaggle,” n.d.). The Lungx, 
or SPIE-AAPM-NCI Lung CT, challenge was conducted 
in 2015 and covered lung nodule classification into benign 
and malignant tasks. The challenge provided the participants 
with 70 thoracic CT scans, with a 1.0-mm slice thickness.
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The scans contained 83 nodules (13 scans each consisting 
of 2 nodules and the remaining scans consisting of only one 
nodule) with 42 benign and 41 malignant [13].

To prepare the DSB dataset, 250 scans with 124 benign 
and 126 malignant nodules were chosen. Next, the annota-
tions for these scans were separated and stored in a new CSV 
file, and then the preparation procedure continued using two 
operations.

The initial operation reads the annotations. Each scan was 
read according to its ID. Afterward, all scans went through 
two pre-processing steps, which were converting the pixel 
values to the Hounsfield unit (HU) and resampling, by apply-
ing a linear transformation of the normal units found in CT 
data (a typical dataset ranges from 0 to 4000), which multi-
plying each pixel value with the slope value and then add-
ing result to intercept value. The Rescale Slope and Rescale 
Intercept are stored in DICOM header and getting a fixed 
value of 1 and − 1024, respectively. Then, segmentation and 
normalizing are applied to image data. Normalization is a 
procedure of reforming the scope of pixel values intensity. 
Thus, the pixel values are approximately between − 1000 
and 1000, every pixel value over 400 are different intensity 
bones, so the images are regularized among − 1000 to 400 
as it is a frequent used threshold for this type of images; 
afterward, the images normalized to values between 0 and 1.

Again the data has been normalized by applying zero cen-
tering which is subtracting each image pixel values from a 
mean (average) value. To find the mean value, it requires 
to average the pixel value of all images in the entire dataset 

that is a tricky work, but interestingly there is a commonly 
used value for a mean around 0.25, so all pixel values of 
every image are subtracted from this value. Figure 1 shows 
segmented slice, normalization, and zero centering.

Subsequently, since the lung CT scan was taken from 
the neck to the abdomen and most likely the lung nodule 
did not appear in a few of the first and last slices, to avoid 
these slices, the first and last 40 slices were excluded. Out 
of the remaining slices, 80 slices were randomly selected 
from each scan.

The segmentation algorithm applied to this study is a 
“marker-based watershed” method, and the major advantage 
of this technique is the internal and external markers that 
preserve the candidate nodules that fall at the corners; the 
method has been applied in two separate fractions.

The first fraction is generating an internal marker that 
identifies the lung tissue and an external marker that dif-
ferentiates outside of the lung region. To do so, the internal 
marker has been picked out by thresholding the image with 
value − 400 HU and deleting other remaining parts, and the 
external marker is defined by morphological dilation of the 
other extracted marker along with two iterations and after 
that generating the final result, lastly, the watershed marker 
is made up by composing the two extracted markers that 
have dissimilar grayscale level, as shown in Fig. 2.

In the second fraction, after discovering the lung bound-
aries accurately by performing a watershed marker at the 
previous fraction, now the Sobel filter is needed and com-
puted, so as to keep corner nodules and to guaranty that 

Fig. 1  Segmented slice after normalization and zero centering
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these regions and other neighboring areas are included, a 
“Black Top Hat” filter has been applied. The CT scan origi-
nal size is well-kept by set − 2000 HU to the filtered loca-
tions, as shown in Fig. 3.

The later operation went through the slices that were chosen 
from every scan. Each of the slices was segmented, normal-
ized, and zero centered. Later, to remove the useless black 
background as much as possible, each slice was scaled to 
350 × 350. Subsequently, to enlarge the dataset, each slice was 
augmented using random noise, flip up-down, flip up-down 
with noise, flip left–right, and flip left–right with noise. The 
samples prepared from this dataset are 83 (scans) × 5(slices) × 6 
(times augmentation) = 2490, as shown in Fig. 4.

4  Network architecture

To build our architecture, we reviewed one of the most 
impressive CNNs, AlexNet [14] to be the baseline for 
designing the approach of this study. AlexNet is a novel 
CNN architecture that could win the top 5 test error rate 
in ILSVRC-2012 challenge. AlexNet consists of 5 convo-
lutional layers, 3 max-pooling, 2 fully connected layers, 
and the total parameters are more than 60 million. The 
major issue in AlexNet is the rapid down sampling of the 
intermediate representations through stride convolutions 
and max-pooling layers, causing overfitting issues. Medi-
cal datasets are commonly stored as scalar fields, with 

Fig. 2  A sample of the internal 
and external markers

Fig. 3  Segmented image using watershed algorithm
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rapid down sampling data implying an inevitable loss of 
information that provokes the loss of fine details and the 
modification of the original image; this is not suitable for 
medical datasets, especially down sampling color data. In 
the proposed model, to preserve the data and obtain the 
result more precisely and accurately, we focused on an effi-
cient deep neural network architecture with more simple 
down sampling.

The proposed network architecture is a built-from-scratch 
CNN (with the benefits of AlexNet) that experiments with 
several types of layer ordering, hyperparameters, and func-
tions for the various sides of the network. The final result-
ing model is made up of seven convolutional layers, three 
pooling layers of the type max-pooling, and only one dense 
layer. The network is divided into three blocks of layers, as 
shown in Fig. 5.

To begin with, the first and second blocks consist of three 
convolutions with one max pool. This is followed by the 
third block, which consists of one convolution with one 
max pool, respectively. A batch normalization and activa-
tion function layer of type ReLU follow up each of the seven 
convolution layers. Afterward, to reduce overfitting in the 
fully connected layers, there is a dropout layer that comes 
directly after the last pooling layer. The output of the drop-
out layer is fed into an FC (dense) layer. In this proposed 
architecture, only one fully connected layer is used to induce 
better representation learning in the convolutional layers and 
to create an efficient end-to-end learning algorithm.

The FC layer is followed by an activation function of soft-
max. Finally, the output layer predicts the output value. The 
convolution layers are constructed from a stride of 2 and 
padding of type SAME. The max pooling layer has a kernel 
size of 2 × 2, a stride of 2, and padding of type SAME, which 
are the numbers of learnable parameters for the proposed 
architecture. The total number of parameters is 2,396,674 
as shown in Table 1.

5  Hyperparameter tuning and selection

To design an effective architecture that can produce the best 
outcomes, different hyperparameters and methods were 
experimented with according to the various aspects of the 
designed model, such as playing with several dropout rates, 
for example 0.6, 0.7, and 0.8; trying a variety of learning 
rates, for instance 0.0001, 0.0003, and 0.0005; and practic-
ing diverse range of filter sizes, like 3 × 3, 5 × 5, and 7 × 7. 
Moreover, three of the well-known activation functions were 
also examined: ReLU and a few of its variants, including 
ELU and Leaky ReLU. Extraparameters were also experi-
mented with, including applying a number of optimization 
methods, namely Adam, AdaGrad, and Adadelta.

To initialize the weights, a numerous initializer was 
tested, namely truncated normal and random normal, with 
different values for standard deviation such as 0.01, 0.03, 
0.001, and 0.1. Glorot normal was also examined. Relatedly, 

Fig. 4  An example of malignant nodule with augmentations
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the bias was initialized as a constant value, and again mul-
tiple values were tested, like 0, 0.1, and 1.

Other than the above-named changes, more and more 
modifications were made to the model to get to a better struc-
ture that can be relied on involving a number of dense layers 
and the number of nodes for the dense layers. Likewise, two 
mini-batch sizes of 30 and 44 were tested. Additionally, the 
network was trained to adopt 10, 12, and 15 epochs. Also, 
we employed the L2 regularization technique to penalize the 
weights to reduce over-fitting and the loss rate.

Eventually, the best-resulting model used a filter size of 
7 × 7 for every convolution except the 1 × 1 convolution lay-
ers; a learning rate of 0.0001 with a dropout ratio of 0.6; and 
the weights were initialized utilizing truncated normal with 
the value 0.01 for standard deviation. To eliminate biases, a 
constant value of 0 was used. The main nonlinearity func-
tion was ReLU along with Adam as a primary optimization 
function. The dense layers, based on the outcomes, decided 
to be only one dense layer together with 256 nodes and a 
mini-batch size of 30 and 12 epochs of training.

6  Training procedure

As the function of the last (i.e., last dense layer) layer is 
to turn the coming inputs from the previous layer into out-
puts, we used the softmax activation function in this layer 
to interpret the inputs as output probabilities. Similarly, the 
loss rate was measured using a cross-entropy function, as it 
is the preferred technique for classification and working on 
the probabilities produced by softmax in the output layer.

To monitor the network performance, each epoch’s train-
ing accuracy and loss rate were printed to the screen. Subse-
quently, after every epoch of training, the network was vali-
dated using a specific validation set. Validation accuracy and 
loss rate were also determined. Finally, the model was tested 
utilizing the test set. The testing confusion matrix, accuracy, 

Fig. 5  The overall architecture of the proposed network

Table 1  The learnable parameters of the proposed CNN architecture

Layer name Tensor size Weights Biases Parameters

Input 350 × 350 0 0 0
Conv-1 175 × 175 784 16 800
Conv-2 88 × 88 25,088 32 25,120
MaxPool-1 44 × 44 0 0 0
Conv-3 22 × 22 100,352 64 100,416
Conv-4 11 × 11 401,408 128 401,536
MaxPool-1 6 × 6 0 0 0
Conv-5 3 × 3 1,605,632 256 1,605,888
MaxPool-1 2 × 2 0 0 0
FC-1 256 × 1 262,144 256 262,400
Output 2 × 1 512 2 514
Total 2.395,920 754 2,396,674
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sensitivity, specificity, precision, and area under the curve 
(AUC) were measured for all different hyperparameters and 
methods that were experimented with.

All different experiments were executed on a laptop com-
puter with an Intel core i7 CPU, 16 GB of memory, NVIDIA 
GeForce GTX 960 M -4 GB VRAM GPU, and Windows 
10 operating system. The algorithm was performed using a 
GPU version of the Keras deep learning library. Each experi-
ment took around 1 h to complete.

7  Discussion and results

To test the capability of the model directly after the training 
and before the program execution terminated, a particular por-
tion of the dataset specifically separated for testing purposes 
was fed to the network. This set consisted of 2200 samples 
(1106 malignant and 1094 benign) from the entire dataset. 
The testing confusion matrix was computed and from that, 
the four components of binary classification confusion matrix 
were generated, which are TN, FP, FN, and TP. Consequently, 
accuracy, sensitivity, specificity, and precision were calcu-
lated. Table 2 presents a detailed description of a variety of our 
experimented results (including all metrics which are accuracy, 
sensitivity, specificity, precision, and AUC) that were achieved 
using a wide range of hyperparameters. The highest result is 
shown in bold and the lowest shown in italics. The best set 
of hyperparameters was able to obtain an accuracy of 98.7%, 
sensitivity of 98.6%, and specificity of 98.9%. The too-high 
value of accuracy, sensitivity, and specificity demonstrates the 
effectiveness of our model. Note that this result was chosen to 
be the top outcome of our CNN model because it could gain 
the highest score in all used metrics, except for the sensitivity 
in the one with similar hyperparameters, but a dropout of 0.7 
could have a better false negative by 0.5%.

In addition to that, among every employed parameter 
noticed that the filter size has more impact on the results, 
and the larger one could be more powerful by achieving 
higher scores. While the other parameters and hyperparam-
eters each had its own influence on the consequence, they 
were not as noteworthy as the filter size. Figure 6(a) and (b) 
visualize a ROC curve of the highest and lowest accuracy 
result. From that, we can realize remarkably how the curve 
rose and how efficient the tuning we added to the architec-
ture of the model was. The last thing to clarify is that the two 
1 × 1 filter convolution layers were added to the architecture 
as the final configuration that we made on the CNN method, 
which could increase the scores significantly. So, this con-
figuration was chosen as our final architecture.

The evaluation is the process of measuring the ability of 
the model after saving and loading it again. To do so, we 
split 100 samples from the Lungx dataset, 50 benign and 50 
malignant. Likewise, 390 samples were separated from the 
DSB dataset evenly for the two classes. In total, 490 samples 
were ready to be applied for the evaluation procedure.

Additionally, to do this operation, a saved model was loaded, 
and each sample of the evaluation data was fed to the model. 
The model predicts every sample to be benign or malignant. 
Based on the actual labels of every single image, we computed 
the percentage of recognized samples that will be the final result 
of the evaluation process. However, in a total of 490 supplied 
samples, the model can identify 484 images with only 6 mis-
classified ones. This means the model can recognize 98.77% of 
the fed data samples exactly as the achieved accuracy by the test 
set. In turn, this shows the great success of our CNN method.

So as to show the capability of the model, the architecture 
has been experimented with 30 different parameters; for each 
parameter, the architecture was trained 3 times, totalling 90 
train pieces, the results of every train piece have been stored 
with all the used metrics, and then the average (mean) and 

Table 2  Experimental results using a wide range of hyperparameters

Experimental result using a wide range of hyperparameters, the effects of filters, dropout rate and learning rate on accuracy are presented in bold

# Filter Dropout rate Learning rate Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) AUC (%)

1 3 × 3 0.6 0.0001 92.9 97.3 88.4 89.5 92.9
2 3 × 3 0.7 0.0001 94.0 94.4 93.7 93.8 94.0
3 3 × 3 0.8 0.0001 93.5 93.4 93.5 93.6 93.5
4 5 × 5 0.7 0.0001 97.9 98.1 97.7 97.7 97.9
5 5 × 5 0.6 0.0001 96.7 97.5 95.9 96.0 96.7
6 5 × 5 0.8 0.0001 96.8 98.0 95.6 95.7 96.8
7 7 × 7 0.6 0.0001 97.9 98.1 97.7 97.8 97.9
8 7 × 7 0.7 0.0001 98.4 99.1 97.7 97.7 98.4
9 7 × 7 0.7 0.0001 98.2 98.1 98.4 98.4 98.2
10 7 × 7 0.6 0.0003 97.7 96.8 98.7 98.7 97.7
11 7 × 7 0.7 0.0005 98.0 98.6 97.5 97.5 98.0
12 7 × 7 0.8 0.0001 96.9 95.4 98.4 98.4 96.9

1983Medical & Biological Engineering & Computing (2022) 60:1977–1986



1 3

the standard deviation (std dev) of each 3 trains that were 
experimented with the same parameters have been computed 
and shown as a final obtained results.

However, the comparison of the results found in this work 
with those obtained in related works and published in high-
ranking journals is summarized in Table 3. Nevertheless, the 
comparison uses three of each work’s most recommended 
metrics. Frankly speaking, it is difficult to compare with 
the works that have been trained on identical datasets, since 
the studies either employed a DSB or Lungx dataset, and 
moreover, the Lungx dataset has only been used to train 
traditional machine learning models that could not achieve 
a good enough result to compare. To this end, we decided 
to make a differentiation within the mentioned works, as 
the whole idea is to be able to construct an architecture 
that precisely distinguishes benign nodules from malignant 
ones. Our method has the highest accuracy, sensitivity, and 
specificity among all the presented results, which indicates 

the huge success of the proposed classifier in determining 
cancer/no-cancer nodules in CT scan images.

The typical CADx system should demonstrate a well-
balanced rate between the three dependable metrics: accu-
racy, sensitivity, and specificity. Therefore, a well-designed 
model must show its capability in recognizing both benign 
and malignant nodules with approximately equal ratios. Fig-
ure 7 shows changes in accuracy and loss rate per step of the 
highest and lowest result.

Finally, to make a comparison between the proposed 
model and the original AlexNet architecture, the prepared 
data were fed into the architecture to check its capability 
within our data; however, along with several training times, 
it could not achieve more than 50% of the accuracy, as shown 
in Table 4. In addition to that, in one training time, it could 
recognize 100% TN with 0% TN, while in another time the 
obtained result was completely the opposite of that, which 
is a dangerous case in medical diagnosis. Nonetheless, this 

Fig. 6  The ROC curve: (a) 
highest accuracy result, (b) low-
est accuracy result

Table 3  A summary of the results found in this work and those obtained in related works

Work Dataset Method Accuracy (%) Sensitivity (%) Specificity (%)

Proposed work DSB and Lungx 2D-CNN 98.77 98.64 98.90
G.S. et al. (2019) LUNA16 2D-CNN 97.2 96.0 97.3
de Pinho Pinheiro et al. (2019) LIDC-IDRI Swarm and CNN 93.71 92.96 98.52
Xie et al. (2019) LIDC-IDRI MK-SSAC 92.53 84.94 96.28
Lakshmanaprabu et al. (2018) ODNN and LDA VIA/I-ELCAP 94.56 96.2 94.2

Fig. 7  Changes in accuracy and loss rate per step of the highest and lowest result
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comparison shows a major improvement over the AlexNet 
for the task. After training and validation are completed, in 
order to measure the obtained results on a test set, a confu-
sion matrix is generated, shown in Fig. 8. From the matrix, 
the concept of true negative (TN, the situation that is actu-
ally negative and predicted as negative), false positive (FP, 
the situation that is incorrectly classified as positive), false 
negative (FN, the situation that is incorrectly classified as 
negative), and true positive (TP, the situation that is actu-
ally positive and predicted as positive) can be calculated 
respectively.

8  Conclusion

Lung cancer is one of the most dangerous diseases in today’s 
human life; it is recorded as the deadliest type of cancer in 
both men and women together, so, detecting and diagnosing 
lung cancer in its early stage is considered the key that opens 
the door of treatment and survival time enhancement. One 
of the most effective and advanced approaches is to use a 
computer system for detecting and analyzing a lung nodule 
as it is more accurate than human and requires much less 
time. In this study, we proposed a system for diagnosing 
lung nodules into benign or malignant by using the most 
effective classification algorithm, which is CNN. The sys-
tem was built on top of AlexNet, one of the most cited and 
successful CNNs. The modification in the original AlexNet 
architecture is done in order to get a reasonable structure that 

has high nodule analysis sensitivity. The changes include 
two different sides of the original architecture. The initial 
change was modifying the layered architecture, for instance, 
removing one of the dense layers and adding two 1 × 1 con-
volution layers. The later change was altering the param-
eters and hyperparameters of the architecture; this causes 
reduced training time from several days to several hours. 
The dataset utilized to train our model was a mixture of 2490 
samples from the Lungx dataset and 20,000 samples from 
the DSB dataset. The first dataset is a small well-annotated 
dataset that was used to improve the quality of the data, 
while the second one was large and used to enlarge the data 
size. Additionally, the dataset required many preprocessing 
and preparation stages which makes the data samples more 
adequate to train a CNN. Also, the distinct elements of the 
base network were worked on, for instance, layer ordering, 
filter size, dropout rate, weight and bias initialization meth-
ods and values, learning rate, and optimization methods to 
build an appropriate architecture for the task and toward a 
novel outcome. Among the whole set of the modified ele-
ments, the filter size has the biggest impact on the obtained 
consequences.

Furthermore, the developed CADx for this study is 
capable of gaining top scores, with an accuracy of 98.7%, 
sensitivity of 98.6%, and specificity of 98.9%, which are, 
according to our knowledge and search for scores from other 
developed methods in the same domain, the best state-of-
the-art result.
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