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Abstract
The accuracy of the Cobb measurement is essential for the diagnosis and treatment of scoliosis. Manual measurement is 
however influenced by the observer variability hence affecting progression evaluation. In this paper, we propose a fully 
automatic Cobb measurement method to address the accuracy issue of manual measurement. We improve the U-shaped 
network based on the multi-scale feature fusion to segment each vertebra. To enable multi-scale feature extraction, the 
convolution kernel of the U-shaped network is substituted by the Inception Block. To solve the problem of gradient 
disappearance caused by the widening of the network structure from the Inception Block, we propose using Res Block. 
CBAM (Convolutional Block Attention Module) can help the network judges the importance of the feature map to modify 
learning weight. Also, to further enhance the accuracy of feature extraction, we add the CBAM to the U-shaped network 
bottleneck. Finally, based on the segmented vertebrae, the efficient automatic Cobb angle measurement method is proposed 
to estimate the Cobb angle. In the experiments, 75 spinal X-ray images are tested. We compare the proposed U-Shaped 
network with the state-of-the-art methods including DeepLabV3 + , FCN8S, SegNet, U-Net, U-Net +  + , BASNet, and U2Net 
for vertebra segmentation. Our results show that compared to these methods, the Dice coefficient is improved by 32.03%, 
33.58%, 12.42%, 5.65%, 4.55%, 4.42%, and 3.27%, respectively. The CMAE of the calculated Cobb measurement is 2.45°, 
which is lower than the average error of 5–7° of manual measurement. The experimental results indicate that the improved 
U-shaped network improves the accuracy of vertebra segmentation. The proposed efficient automatic Cobb measurement 
method can be used in clinics to reduce observer variability.
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1  Introduction

Adolescent scoliosis (AS) is a deformity of the spine that 
is developed at puberty and before skeletal maturity [1, 
2]. Studies show that 2–4% of adolescents suffer from AS. 
If it is left untreated, progression of the spinal deformity 
may affect lung and heart functions. It can also compress 
the spinal cord resulting in paraplegia [3]. The most cost-
effective imaging modality for diagnosing scoliosis is X-ray. 
The Cobb angle measurement [4] is proposed to assess the 

degree of AS precisely. The Cobb angle measured on the 
posterior-anterior (PA) X-ray image of the spine is the most 
common method for assessing AS.

Figure  1 illustrates the manual measurement of the 
Cobb angle. The accuracy and repeatability of manual 
measurements however largely depend on the operator’s 
experience and judgment [5]. Evidence shows that the intra-
observer and inter-observer errors are 3 to 5° and 5 to 7°, 
respectively [6]. Such an error margin however is beyond 
the 5° threshold for progression assessment. To reduce 
the manual measurement errors, automatic measurement 
methods [7] have been proposed, which generally fall into 
one of the following categories including segmentation-
based and direct estimation methods.

In the direct estimation methods, the Cobb angle is 
obtained using the relationship between PA spinal X-ray 
images and clinical measurement methods without seg-
mentation results. Finding the landmark corresponding to 
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the vertebra is then used to obtain the deflection angle and 
calculate the Cobb angle. For instance, Wu et al. proposed 
the BoostNet [8] to accurately extract the spinal landmarks 
for Cobb angle measurement. Based on the BoostNet, Wu 
et al. proposed the MVC-Net [9] to associate the PA and the 
lateral spinal X-ray images. This method incorporates the 
global features of the spinal X-ray images to further improve 
measurement accuracy. Based on the MVC-Net, Wang et al. 
proposed the MVE-Net [10], this method learns to directly 
estimate the Cobb angle based on PA and lateral angles. Fur-
thermore, Fu et al. [11] proposed LCE-Net to estimate the 
Cobb angle. Their proposed method is a multitasking net-
work that combines segmentation and landmark information. 
The main issue with the direct estimation methods is their 
low measurement accuracy and their rather high dependency 
on the corresponding clinical measurement.

Alternative to direct estimation methods, segmentation-
based techniques have been shown to address the above 
issues. Compared with direct estimation methods, seg-
mentation-based methods reduce the measurement error 

by extracting the outline of the vertebrae accurately. The 
measurement accuracy of segmentation-based methods is 
higher than the direct estimation methods. For instance, 
Zhang et al. [12, 13] proposed an automatic measurement 
method based on the Hough transform. Also, Sardjono et al. 
[14] proposed a physics-based model to calculate the Cobb 
angle. Anitha et al. [15] further proposed an approach based 
on the custom filter to automatically extract the vertebral 
endplate. Due to the low quality of the spine X-ray image 
and the fuzzy contour of the vertebral body, the segmenta-
tion accuracy of these methods is low, and the measurement 
error of the Cobb angle is large. Therefore, the main disad-
vantages of segmentation-based methods are the existence 
of larger errors and low segmentation accuracy.

The recent development of deep neural networks resulted 
in the significant progress of image segmentation methods. 
For example, Long et al. proposed a fully convolutional 
network (FCN) [16] to obtain highly accurate pixel-level 
segmentation results. However, the FCN does not consider 
helpful global context information. This issue has been 
addressed using the U-Net [17] using the encoding and 
decoding structures. Based on the U-net, Zhou et al. pro-
posed U-Net +  + [18, 19] to redesign skip connections to 
aggregate features of varying semantic scales at the decoder 
sub-networks. Qin et al. proposed BASNet [20] to segment 
the salient object regions. Furthermore, Qin et al. proposed 
U2Net [21] to capture more contextual information from 
different scales thanks to the mixture of receptive fields of 
different sizes in residual U-blocks. However, the number of 
model parameters for these methods is too large.

Deep learning methods have been also applied to spine 
segmentation and Cobb angle estimation. For example, 
Fang et al. [22] proposed an approach based on the FCN 
to segment the computed tomography (CT) images of the 
spine and reconstruct the corresponding three-dimensional 
module. However, the accuracy of the segmentation in their 
proposed method is low. Further, Horng et al. [23] devel-
oped a method that automatically measures the Cobb angle. 
Nevertheless, their proposed segmentation processing needs 
to detect the vertebrae and crop the spine X-ray images into 
individual vertebral images. The Cobb angle measurement 
is then obtained by reconstructing the segmentation results 
of the vertebrae. Tan et al. [24] used U-Net to complete the 
segmentation of spine X-ray images. Also, [25] reviews the 
AASCE2019 challenge (i.e., an accurate automated spinal 
curvature estimation challenge) with spinal anterior–poste-
rior X-Ray images. In this challenge, team XMU segmented 
the boundary of the spine and used a convolutional neural 
network to regress angles. Team Tencent regarded the ver-
tebrae and intervertebral space segmentation as an inter-
mediate state and ensembles multiple networks to produce 
angles. These methods achieved the measurement of the 
Cobb angle. For the automatic measurement of Cobb angle, 

Fig. 1   The manual measurement of the Cobb angle
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the higher accuracy of vertebral segmentation reduces the 
measurement error.

In this paper, we propose a novel U-shaped network for 
spine X-ray image segmentation and develop a novel auto-
matic measurement method of the Cobb angle. Our experi-
mental results confirm that the improved segmentation 
model is efficient and overperforms other improved U-net 
models.

In summary, we make the following two contributions:

•	 We propose a U-shaped segmentation network, which 
is a semantic segmentation neural network that takes 
advantage of the Inception Block, Res Block, and CBAM 
Block to extract multi-scale features, alleviate the gradi-
ent explosion and gradient disappearance, and improve 
segmentation performance.

•	 Based on the minimum enclosing rectangle measure-
ment algorithm, we further develop a novel efficient 
Cobb angle automatic measurement method that finds 
the upper-end vertebrae and the lower-end vertebrae to 
achieve highly accurate Cobb angle automatic measure-
ment for spine X-ray images.

2 � Materials and methods

The traditional method of manually measuring a Cobb 
angle has the characteristics of low efficiency and large 
error. The computer-aided method of measuring the Cobb 
angle has high efficiency and high accuracy. It can be a 
good substitute for the manual method of measuring the 
Cobb angle. There exist some noise and blur in spine X-ray 
images. To remove the noise and blur of the spine X-ray 
image and improve the measurement accuracy of the Cobb 
angle, we adopt an image segmentation method. Tradi-
tional image segmentation methods include threshold-
based segmentation methods, region-based segmentation 
methods, edge-based segmentation methods, etc. These 
methods however have some disadvantages, e.g., low seg-
mentation accuracy and existing segmentation fault. As 

convolutional neural networks used for feature learning 
are insensitive to image noise, blur, contrast, etc. [26], 
they provide excellent segmentation results for medical 
images. At present, image segmentation methods based on 
convolutional neural networks have been widely applied 
in medical image processing.

In this section, firstly, we introduce the framework of 
the segmentation network and its components. Then, we 
introduce an efficient automatic Cobb angle measurement 
method. We then present the implementation details of 
our experiments.

2.1 � Overall architecture

An overview of the proposed automatic Cobb measurement 
is presented in Fig. 2, which illustrates the processing of the 
measurement of Cobb angle based on the segmentation of 
the spine X-ray images. Firstly, the spine X-ray images are 
input to the proposed U-shaped segmentation network for 
training and testing of the segmentation model. The segmen-
tation results are input to the efficient automatic Cobb angle 
measurement method to obtain the Cobb measurement data 
and present a visualization of measurement results.

2.2 � The structure of the proposed segmentation 
method

The structure of our proposed segmentation method is 
shown in Fig. 3. The size of the input image is 256 × 256, 
and there is only one channel of the training images. The 
image passes the Inception Block and the multi-scale feature 
maps are concatenated to a larger feature map. Feature maps 
are fused after every skip connection. They are then restored 
to the original image size by the upsampling layer. The 
Res Block is concatenated to the inception block to reduce 
the gradient explosion or gradient disappearance problems. 
The CBAM Block also improves the performance of the 
network to extract the features.

Fig. 2   The overall architecture

2259Medical & Biological Engineering & Computing (2022) 60:2257–2269



1 3

2.3 � The Inception Block

For a convolutional neural network, the performance of 
the deep networks is often higher than that of the shallow 
networks. Nevertheless, increasing the depth of the network 
may result in issues such as gradient explosion and gradient 
disappearance. The inception network is a method to extract 
richer image features using multi-scale convolution kernels 
and to perform feature fusion. This enables obtaining 
better feature representation [27]. It also provides higher 
performance by merging convolution kernels in parallel 
without increasing the depth of networks. Based on the 
Inception network, 3 × 3, 5 × 5, and 7 × 7 convolution kernels 
are used for feature extraction at different scales. However, 

the 5 × 5 and 7 × 7 convolution kernels are highly complex 
[28]. To reduce the computational complexity and number of 
network parameters, two and three 3 × 3 convolution kernels 
are concatenated to substitute the 5 × 5 and 7 × 7 convolution 
kernels, respectively. We further use the shortcut of the 1 × 1 
convolution kernel to extract the spatial information of the 
image. This module is called the Inception Block.

Figure 3b shows the structure of the Inception Block. 
The parallel connection of 3 × 3 convolution kernels is 
used to replace the 3 × 3, 5 × 5, and 7 × 7 convolution 
kernels. After this module, the feature map enters the 
Relu activation and max-pooling layers. Relu activation 
is proposed to solve the gradient disappearance, while the 
max-pooling layers compress the feature map.

Fig. 3   The structure of the 
proposed method: (a) The 
proposed U-shaped network, (b) 
Inception Block, (c) Res Block, 
and (d) CBAM Block

(a) The proposed U-shaped network

(b) Inception Block                                      (c) ResBlock 

(d) CBAM Block
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2.4 � Res Block

The Inception Block is proposed to enlarge the depth and 
width of the convolutional neural network. Increasing the 
depth and width of the network may result in gradient 
explosion or gradient disappearance problems during the 
training process. In ResNet [29], the 1 × 1 shortcut is used 
to solve the question of gradient explosion or gradient dis-
appearance. With the image passing the inception block, 
the feature maps of the three convolution kernels of dif-
ferent scales are concatenated, and the size of the feature 
map is changed. To enable the feature to be fused with the 
features obtained by upsampling layer, we further added 
Res Block to adjust the size of the feature map and solve 
the gradient explosion and gradient disappearance prob-
lems. The Res Block is illustrated in Fig. 3c, consisting of 
3 × 3 convolution kernels and a 1 × 1 shortcut. The ReLU 
activation layer and batch normalization are also used to 
improve the convergence rate and alleviate the gradient 
disappearance.

2.5 � The CBAM Block

The SENet [30] is the first proposed attention module that 
can automatically learn the importance of channel features 
to increase the weight of significant features. This step also 
decreases the weight of useless features during the learning 
processing of the network. The CBAM Block [31] includes 
spatial attention and channel attention modules. Considering 
the importance of the pixels in different channels and their 
positions in a given channel, we use the CBAM Block to 
integrate the spatial attention module and channel attention 
module to improve the segmentation accuracy. Firstly, con-
sidering the importance of the spatial and channel based on 
the SENet, we use the CBAM Block to extract the features 
from the feature map. Secondly, spatial and channel informa-
tion is multiplied and fused to the feature map. This step can 
help the network to learn spatial and channel information. 
The structure of the CBAM Block is shown in Fig. 3d.

2.6 � The loss function

Our objective here is to extract the vertebra in the spine 
X-ray images. This is a binary segmentation task; hence, 
we use the binary cross-entropy as the loss function. For 
an image p , the ground truth of the image is denoted by 
q , and y is the ground truth segmentation mask. Also, ŷ is 
the predicted value. The binary cross-entropy is defined as

(1)BCE(p, q) = −y ⋅ log ŷ − (1 − y) ⋅ log
(
1 − ŷ

)

The binary cross-entropy is mainly used for binary clas-
sification tasks, and this experiment is mainly to segment 
the spine. The label has only two types of background 
and spine, so the binary cross-entropy is used as the loss 
function.

2.7 � Performance evaluation metric

The dice coefficient, precision, and recall are used as the per-
formance evaluation metrics of the experiments. The dice coef-
ficient is used to compare the similarity of the segmentation 
results and labels and is defined as

where TP, TN, FP, and FN are the set of true positive, true 
negative, false positive, and false negative. These parameters 
are used to evaluate the reliability and degree of accuracy. 
The dice coefficient is used to compare the similarity of the 
segmentation results and labels.

For Cobb angle estimation, we adopt circular MAE 
(CMAE) and symmetric mean absolute error (SMAPE) 
to evaluate the relative error. Given a list of N angles [
�0, �1,… , �N

]
 , the circular mean is defined as

The circular MAE is defined as

The SMAPE metric is defined as

(2)Dice =
2 ∣ A ∩ B ∣

∣ A ∣ + ∣ B ∣

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)x =
1

N

N∑

i=0

cos
(
�i
)

(6)y =
1

N

N∑

i=0

sin
(
�i
)

(7)CMEAN
(
[�0, �1 … �N]

)
= arctan

(
y

x

)

(8)CMAE =
1

N

N∑

i=1

CMEAN
[
|||
Ma

(
Xi;�

)
− Lm

|||

]

(9)SMAPE =
100%

N

N∑

i=1

SUM
|||
Ma

(
Xi;�

)
− Lm

|||

SUM
[
||
|
Ma

(
Xi;�

)||
|
+ ||Lm||

]
∕2
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where Ma is the automatic measurement value of Cobb angle 
and Lm is the manual measurement value of Cobb angle. 
SUM is the element-wise summation of a vector.

The Euclidean distance is defined as in Eq. 10:

where (�i1, �i2, �i3) is the estimated Cobb angles, ( �i1, �i2, �i3) 
is the ground truth, and N is the number of images.

The Manhattan distance is defined as in Eq. 11:

where (�i1, �i2, �i3) is the estimated Cobb angles, (� i1, �i2, �i3) 
is the ground truth, and N is the number of images.

The Chebyshev distance is defined as in Eq. 12:

where (�i1, �i2, �i3) is the estimated Cobb angles, (� i1, �i2, �i3) 
is the ground truth, and N is the number of images.

2.8 � Efficient automatic Cobb angle measurement 
method

The efficient automatic Cobb angle measurement method 
is proposed to calculate the Cobb angle in AS patients. 
It is developed from the “minAreaRect()” function in the 
python OpenCV package. The “minAreaRect()” function 
obtains the rotated rectangle that encloses the smallest 
area of the input 2D point set. Figure  4 is shown the 
processing of the minimum enclosing rectangle algorithm. 
This processing then extracts four vertex coordinates and 
deflection angle to the horizontal plane of the minimum 
enclosing rectangle.

Based on this function, we design an efficient automatic 
Cobb measurement method. The processing of this method 
is illustrated in Fig. 5. Our efficient automatic Cobb angle 
measurement is divided into four following steps:

1.	 Traversing the contour information of each segmented 
vertebrae and recording the contour information.

2.	 Automatic creation of the minimum enclosing rectangle 
and recording the coordinate of the minimum enclosing 
rectangle.

3.	 Extract the deflection corner between the minimum 
enclosing rectangle and the horizontal plane.

4.	 Traversing all of the twisted corners, finding the upper-end 
vertebrae and the lower-end vertebrae.

(10)

ED =
1

N

N∑

i=1

√(
�i1 − �i1

)2
+
(
�i2 − �i2

)2
+
(
�i3 − �i3

)2

(11)MD =
1

N

N∑

i=1

(
|
|�i1 − �i1

|
| + |

|�i2 − �i2
|
| + |

|�i3 − �i3
|
|
)

(12)CD =
1

N

N∑

i=1

max
(||�i1 − �i1

||, ||�i2 − �i2
||, ||�i3 − �i3

||
)

2.9 � Dataset

The dataset contains 185 PA spine X-ray images. The images 
from the dataset included the spine of the normal and the spine 
of idiopathic scoliosis patients. The PA spine X-ray images of 
the dataset are provided by the orthopedic surgeon at the First 
People’s Hospital of Yunnan Province. All images are taken 
using the equipment manufactured by the same manufacturer.

Additional dataset: The testing dataset of AASCE2019 
[25] contains 98 PA spine X-ray images. This testing dataset 
is used to verify the robustness and generalization of our 
proposed method.

2.10 � Image preprocessing

The ground truth of the images is approved by the orthopedic 
surgeon at the First People’s Hospital of Yunnan Province. 
Before the annotation of the dataset, the image is preprocessed 
and resized to 256 × 256 and a bit depth of 8. The label of 
the vertebrae is also transformed into the binarization image.

2.11 � Implementation details

The software package used in the experiment is implemented 
using TensorFlow 1.12 and Keras. An RTX 2080 GPU with 
8 GB of memory is used in the experimental hardware 
configuration. We train the model using Adaptive Moment 
Estimation (Adam) with batch size 11 and a learning rate 
of 0.0001. The dataset is contained 185 images where 110 
images are used as the training set, and the remaining 75 

Fig. 4   The processing of minimum enclosing rectangle algorithm. 
box [1], box [2], box [3], and box [4] are the vertex coordinates of 
the minimum enclosing rectangle. The rotation angle is the deflection 
angle to the horizontal plane
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images are used as the testing set. We have enhanced the 
training data by data enhancement setting in Keras. The data 
of the training set is enhanced by flipping, cropping, and 
zooming the images. The rotation range and the cropping 
range are also 0.2 and 0.05, respectively. The flipping model 
is horizontal. For measuring the performance of the trained 
model, the Dice coefficient is used as the metric.

3 � Results

3.1 � Effectiveness of the CBAM Block

In this section, we examine the effectiveness of the CBAM 
Block. The different training strategies are compared in our 
experiments. SE Block or CBAM Block is added in various 
locations in the network to verify the effectiveness of the 
CBAM Block. The Dice coefficient % is used to evaluate the 
effectiveness of the CBAM Block.

Table  1 shows the compared segmentation results 
using different training strategies. As it is seen in the 
case where the CBAM Block is added to the bottleneck, 
the highest performance is achieved compared with other 
training strategies. The location of the CBAM Block is 
the bottleneck of the network that can reach a value of 
(81.46 ± 0.41)% for Dice coefficient %. Compared with 
the model without the CBAM Block or SE Block, the 
Dice coefficient is improved by 3.39%. Regardless of 
the number of added SE Block to different locations in 
the network, the segmentation remains inferior to add-
ing the CBAM Block. The location of the SE Block is 

the bottleneck of the network that can reach a value of 
78.07% for a Dice coefficient %. As it is seen, compared 
with the model with the added CBAM Block, the Dice 
coefficient is lower. The experimental results confirm that 
the CBAM Block can efficiently supervise the network to 
extract the underlying features of the image.

3.2 � Performance evaluation of the proposed 
method

To confirm the effectiveness of the network, we evaluate the 
performance of different blocks in the network. The results are 
shown in Table 2. Inception block, Res Block, and CBAM Block 

Fig. 5   The processing of 
efficient automatic Cobb angle 
measurement

Table 1   The Dice coefficient of the CBAM Block  with different 
locations in the network

Locations Block Dice coefficient %

The model without CBAM or SE None 78.07 ± 0.76
Before the first pooling layer SE 77.24 ± 0.34

CBAM 78.14 ± 0.53
Before the second pooling layer SE 77.05 ± 0.39

CBAM 80.55 ± 0.78
Before the third pooling layer SE 77.34 ± 0.67

CBAM 80.51 ± 0.78
Before the last pooling layer SE 77.07 ± 0.43

CBAM 81.15 ± 0.24
Neck bottle of the network SE 79.47 ± 0.14

CBAM 81.46 ± 0.41
Before all of the pooling layer SE 78.52 ± 0.51

CBAM 78.61 ± 0.21
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are added to the network, respectively. The Dice coefficient is 
used to evaluate the effectiveness of these blocks. Different 
training parameters are set to confirm the effectiveness of the 
various blocks. The model of experiment 1 is the original U-Net. 
Convolutional kernels are replaced by the Inception Block in 
experiment 2, experiment 3, and experiment 4. The difference 
between experiment 2 and experiment 3 is whether to use 
the CBAM Block. The similarity between experiment 2 and 
experiment 3 is that one layer of the Res Block is added to the 
network. We use the same comparison strategy as in experiment 
2 and experiment 3 between experiment 4 and our proposed 
method. A four-layer Res Block is added to the network. The 
experiments also verify that adding four Res Block and CBAM 
Block is effective. Compared with the original U-Net, the Dice 
coefficient of our method is also improved by 5.65%.

The performance of the segmentation result is shown in 
Fig. 6. The difference between various models is marked on 
the images using red boxes. From Fig. 6, it is seen that the 
segmentation result of the proposed model has less adhe-
sion and lower segmentation error. The segmentation result 
is close to the ground truth of the testing set. It is seen that 
compared with the original network, the segmentation result 
is significantly improved.

3.3 � Comparison with other methods

Here, we apply other methods to our developed dataset 
and compare the results with the proposed method in this 
paper. The dice coefficient results presented in Table 3 
confirm that our proposed method is higher than that of 

Table 2   The Dice coefficient of 
different training scenarios

U-Net Inception block ResBlock CBAM Dice coefficient %

Experiment 1 √ 75.81 ± 0.62
Experiment 2 √ √ 1 layer 78.14 ± 0.47
Experiment 3 √ √ 1 layer √ 79.29 ± 0.85
Experiment 4 √ √ 4 layers 79.48 ± 0.54
Our method √ √ 4 layers √ 81.46 ± 0.41

Fig. 6   The segmentation result of the experiments: (a) the original images from the dataset, (b) the ground truth of the dataset, (c) the segmentation 
result of experiment 1, (d) the segmentation result of experiment 3, and (e) the segmentation result of experiment 4
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the other methods. It is also seen in Table 3 that compared 
with DeepLabV3 + , FCN8s, SegNet, U-Net, U-Net +  + , 
BASNet, and U2Net using the proposed U-Shaped network, 
the Dice coefficient is improved by 32.03%, 33.58%, 12.42%, 
5.65%, 4.55%, 6.22%, and 3.04%, respectively. The number 
of the model parameter is an essential factor affecting 
the cost of that model. Compared with other models, the 
number of parameters of our proposed model is an order of 
magnitude smaller.

The segmentation results using different methods are 
shown in Fig. 7. It is seen that the performance of our model 
is higher than that of the other models.

3.4 � Measuring results of the Cobb angle

To evaluate the Cobb measurement, we compare the Cobb 
measurement performed by the orthopedist and that obtained 
by automatic computer measurement. The segmentation 
results of 75 test images from the test set are used to calculate 
the measurement results. We assess the stability of the Cobb 
angle calculation result by calculating the CMAE between 
the manual and automatic measurements. Two orthopedists 
performed manual Cobb angle measurements on the test set.

As shown in Table 4, our method achieves CMAE of 
2.45° and 2.50° from different orthopedists. We assess the 

Table 3   Comparison of the 
results for the segmentation 
modules

Model Dice coefficient % Precision % Recall % Parameters (Mb)

FCN8s [16] 49.43 ± 0.98 79.85 ± 0.93 33.89 ± 0.94 128.04
DeeplabV3 + [32] 47.88 ± 0.34 82.14 ± 1.64 32.68 ± 0.29 39.16
SegNet [33] 69.04 ± 0.71 93.19 ± 0.21 56.92 ± 1.44 28.09
U-Net [17] 75.81 ± 0.62 92.89 ± 0.49 63.25 ± 0.33 29.66
U-Net +  + [19] 76.91 ± 0.62 93.27 ± 0.33 67.00 ± 1.26 8.64
BASNet (2020) [20] 75.24 ± 0.62 93.46 ± 0.33 71.48 ± 0.85 83.03
U2Net (2020) [21] 78.42 ± 0.62 94.47 ± 0.33 72.49 ± 0.97 41.97
Our method 81.46 ± 0.41 93.34 ± 0.08 74.06 ± 0.05 8.66

Fig. 7   The segmentation result of (a) FCN8, (b) DeepLabV3 + , (c) SegNet, (d) BASNet, (e) U2Net, (f) U-Net, (g) U-Net +  + , and (h) our 
proposed model
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stability of the Cobb angle calculation result by calculating 
the CMAE and SMAPE between the manual and automatic 
measurements. The results in Table 4 indicate that the effi-
cient automatic Cobb angle measurement method is stable.

To verify the effectiveness of the efficient automatic Cobb 
angle measurement method, we compare the CMAE and 
SMAPE between our proposed method and other recently 
proposed methods in Table 5. The Tencent and XMU experi-
ment data is derived from the AASCE2019 challenge [25]. 
They are the top 2 in this challenge. The test set of this 
challenge is used to estimate the Cobb angle. Compared 
with the method from Tencent and XMU, the CMAE of our 
method is reduced, and the SMAPE of our method is lower. 
The experiment results are illustrated that the proposed effi-
cient automatic Cobb angle measurement method avoids the 
effects of noise and blur in spine X-ray images.

4 � Discussion

In this paper, the U-shaped network is proposed to extract 
the outline of the vertebra of the spine PA’s X-ray images. 
After the segmentation, the efficient automatic measurement 
algorithm of the Cobb angle is used to obtain the minimum 
enclosing rectangle and calculate the deflection angle of the 
vertebra.

Figure 8 shows a boxplot of the average metrics values 
for the spine X-ray image compared with the six different 
segmentation algorithms. It illustrates the dispersion of a 
set of data. The green dotted line is the mean value of the 
dice coefficient, and the orange line is the median of the 

dice coefficient in the boxplot. The figure indicates that the 
performance of our model is higher than other models. It 
illustrates that our proposed segmentation network is more 
stable compared with other existing models.

To verify the effectiveness of the Cobb angle measure-
ment using our proposed method, we compare the Cobb 
measurement result based on different segmentation 
methods in Table 6. The measurement results are obtained 
by the proposed efficient automatic Cobb angle measure-
ment method. From Table 6, we can find that the measure-
ment result of our proposed method has a lower CMAE 
and SMPE compared with U-Net and U-Net +  + . From 
Table 3, the Dice coefficient of our proposed method is 
higher than U-Net and U-Net +  + . It illustrates that our 
proposed model can reduce the measurement error of the 
Cobb angle compared to U-Net and U-net +  + . And it 
also illustrates that the measurement error decreases with 
the increase of the segmentation accuracy.

For our proposed efficient automatic Cobb angle meas-
urement method, the segmentation accuracy of vertebrae 
is significant. Figure 9 is the visualization of the effi-
cient automatic Cobb angle measurement method with 

Table 4   The CMAE and SMAPE of intra-observer

Observer CMAE (°) SMAPE (%)

Orthopedists 1 2.45 6.63
Orthopedists 2 2.50 6.96
Interobserver 3.88 10.62

Table 5   The CMAE and SMAPE of different methods

Methods CMAE (°) SMAPE (%) ED (°) MD (°) CD (°)

BoostNet [8] 7.13 20.95 / / /
MVC-Net [9] 6.08 35.85 / / /
MVE-Net [10] 7.81 18.95 / / /
LCE-Net [11] 3.73 27.12 / / /
Our methods 2.45 6.63 / / /
Testing dataset: AASCE2019
Tencent [25] 4.85 21.71 11.17 14.55 10.16
XMU [25] 4.91 22.18 11.23 14.74 10.17
Our methods 3.38 15.35 8.26 11.43 7.84

Fig. 8   The boxplot chart segmentation result of FCN8s, DeeplabV3 + , 
SegNet, U-net, U-net +  + , and our model on Dice coefficient

Table 6   The measurement results with the proposed efficient automatic 
Cobb angle measurement method

Model Observer CMAE (°) SMAPE (%)

U-Net Observer 1 3.64 10.22
Observer 2 4.37 12.3

U-Net +  +  Observer 1 3.39 9.48
Observer 2 3.66 9.30

Our method Observer 1 2.45 6.63
Observer 2 2.50 6.96
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terrible and fine segmentation results. The yellow line is 
parallel to the centerline of the lower-end vertebrae. The 
green line is the parallel of the centerline of the upper-
end vertebrae.

From Fig. 9a, the efficient automatic measurement 
method can extract the minimum enclosing rectangle of 
every vertebra. The wrong segmentation results cause 
errors in the Cobb angle calculation. This mistake affects 
the measurement results due to the large deflection angle 
of the wrong bodies. The good performance of our pro-
posed method is shown in Fig. 9b, which illustrates that 
a good segmentation result is significant for Cobb angle 
measurement. The visualization also confirms high accu-
racy segmentation of vertebrae in our proposed automatic 
measurement method.

5 � Conclusion

Based on vertebra segmentation, an automatic approach 
for the measurement of the Cobb angle is proposed. Our 
model successfully acquires a high precision segmentation 
in the PA X-ray images. Compared with other segmentation 
methods, our model has better performance. Based on the 
segmentation results, the deflection angles of the vertebrae 
are obtained to calculate the Cobb angle. The CMAE of 
measurement results is 2.45°. The results presented in this 
paper confirm that the measurement results of our model 
are highly reliable.

Soon, we will explore applying transformer layers to 
our model and use transfer learning approaches to improve 
segmentation accuracy. Future studies will also explore 
applying our methods to estimate other clinical parameters 
based on spinal curvature. In addition, to further strengthen 
the robustness of the model and reduce measurement errors, 
experimental data from different devices and different 
manufacturers will be added to the training set in the future.
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