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Abstract
This study presents an efficient solution for the integrated recovery room planning and scheduling problem (IRRPSP). The
complexity of the IRRPSP is caused by several sources. The problem combines the assignment of patients to recovery rooms
and the scheduling of caregivers over a short-term planning horizon. Moreover, a solution of the IRRPSP should respect a set
of hard and soft constraints while solving the main problem such as the maximum capacity of recovery rooms, the maximum
daily load of caregivers, the treatment deadlines, etc. Thus, the need for an automated tool to support the decision-makers in
handling the planning and scheduling tasks arises. In this paper, we present an exhaustive description of the epidemiological
situation within the Kingdom of Saudi Arabia, especially in Jeddah Governorate. We will highlight the importance of
implementing a formal and systematic approach in dealing with the scheduling of recovery rooms during extreme emergency
periods like the COVID-19 era. To do so, we developed a mathematical programming model to present the IRRPSP in
a formal way which will help in analyzing the problem and lately use its solution for comparison and evaluation of our
proposed approach. Due to the NP-hard nature of the IRRPSP, we propose a hybrid three-level approach. This study uses
real data instances received from the Department of Respiratory and Chest Diseases of the King Abdulaziz Hospital. The
computational results show that our solution significantly outperforms the results obtained by CPLEX software with more
than 1.33% of satisfied patients on B1 benchmark in much lesser computation time (36.27 to 1546.79 s). Moreover, our
proposed approach can properly balance the available nurses and the patient perspectives.

Keywords Patient assignment · COVID-19 pandemic · Combinatorial optimization problem · Decision support system ·
Healthcare management

1 Introduction

The COVID-19 pandemic is an extremely dangerous
ongoing global pandemic that was first identified in Wuhan,
China, in December 2019 [18]. On 17 April 2021, more
than 140 million cases of coronavirus have been reported in
more than 200 countries and territories around the world,
resulting in more than 3 million deaths [19]. This global
health crisis can be considered the greatest challenge that
humanity has faced from the Second World War which
results in an unprecedented socio-economic crisis. It has the
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potential to cause devastating economic, social, education,
and political disruptions that eventually affect negatively the
countries it touches. It has led to the closing of schools,
colleges, and universities in more than 200 countries
affecting approximately 98.5% of the students around the
world. In this paper, we emphasize on the situation in the
Kingdom of Saudi Arabia (KSA) which is one of the most
affected countries by the COVID-19 pandemic, especially
in the high number of daily infections. As of 14 April 2021,
the kingdom has more than 400,000 confirmed cases, the
highest among the Arabian Gulf States with more than 6800
deaths [19]. This huge number of confirmed cases pushes
KSA to follow a set of painful precautions such as declaring
a comprehensive quarantine for a long period, starting from
September 2020.

To handle extreme emergency cases during crisis periods
like the COVID-19 pandemic, healthcare institutions must
be equipped with all necessary tools and resources to
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expedite the healing and recovery of different types
of patients. COVID-19 patients show mainly respiratory
symptoms that need urgent treatments in specialized rooms
by highly skilled caregivers. Such resources namely special
rooms and skilled personnel may not be available at peak
periods and may be also overwhelmed by the flow of
patients. To solve such a puzzle of planning and scheduling
recovery rooms under inherently complex operational
constraints, an efficient approach is needed.

In this paper, we present and develop an IRRPSP
solving strategy based on the decomposition of the problem
into three levels. Our main challenge is to find the
best assignment of patients to rooms and scheduling of
caregivers to those patients needing intensive care. Such
solution should be obtained considering a low availability of
healthcare givers, the lack of resources (number of medial
beds, number of respirators, etc.), a quick overburdening of
hospitals during the COVID-19 crisis since the demand of
care exceeds the capacity of hospitals, and the increase of
infections during an ongoing pandemic which may result in
being highly contagious to both staff and other patients.

Our main contribution is to find a creative solving
approach to the integrated recovery room planning and
scheduling problem which to the best of our knowledge is
not well studied in the literature with its two components
(assignment of patients to recovery rooms and assignment
of nurses to patients). A study that aims to find a creative
solution for building a more resilient, sustainable, and
inclusive scheduling of patients and nurses in a crisis
context, although the new interesting point revealed by
this work is the resulting performance against the CPLEX
results since the computational analysis demonstrated the
capability of the suggested approach to deal efficiently
with the trade-off between the available nurses and patient
perspectives in reasonable computational times.

The IRRPSP can be modeled as a well-known combi-
natorial optimization problem (COP) which is the patient
assignment and scheduling to operatoring rooms (PASOR)
in hospitals that involves optimizing simultaneously differ-
ent objectives such as maximizing the number of assigned
patients to rooms and maximizing the number of satisfied
tasks by caregivers. To model the IRRPSP, we developed
an integer linear mathematical programming model that
aims to maximize the utilization of the COVID-19 depart-
ment while satisfying some constraints.The IRRPSP is an
NP-hard problem that cannot be solved optimally using tra-
ditional solving methods. In order to efficiently solve the
problem, a three-level hybrid algorithm is proposed that will
be tested on a set of real-life data instances. A compara-
tive study will be conducted to demonstrate the performance
of the modeling and solving process in terms of the over-
all quality of the provided solution compared to an exact
solution using a CPLEX solver.

The remainder of this paper is organized as follows.
The background of the tackled problem and the related
literature will be detailed in Section 2. Section 3 will present
a detailed description of the problem and a mathematical
formulation will be provided. Section 4 will be devoted to
detail the solution of the three-level hybrid algorithm. The
performed simulations, experimental results, and validation
tests will be detailed in Section 5. By the end, we present
our conclusions and the future research perspectives.

2 Literature review

The related literature to the IRRPSP will be reviewed in
this section. For each paper, we will discuss the tackled
problem, the modeling approach, the solving approach,
the data instances used to prove the efficiency of the
proposed approach (real-life data instances, simulated data
instances), and the obtained results. The literature on the
patient assignment and scheduling problem is discussed
in Section 2.1. The findings of the PASOR literature and
the main contributions of the paper will be detailed in the
second subsection.

2.1 Literature review of the patient assignment
and scheduling

There exists a large set of scientific researches in the
literature that study the PASOR which is similar to our
studied problem (IRRPSP) [17]. The considered problem
has been widely tackled, and numerous recent related works
are available. Here, we only discuss a set of studies that are
most related to our problem and solution methodology.

In 2020, [7] addressed the shift scheduling problem
of physicians during the COVID-19 pandemic. In their
study, the authors developed a decision support system
(DSS) that helps hospitals in generating balanced shifts for
both regular and COVID-19 workloads. To model the shift
scheduling problem, the authors presented a mixed integer
programming which was subsequently solved using Gurobi
software. According to the authors, the proposed DSS is
able to generate schedules for physicians in a very short
time. The scheduling of the staff is distributed evenly and
the duration of exposure to the virus is reduced. However,
we can remark that the main limitation of this work is to
not solve the problem using a powerful algorithm (heuristic
or a metaheuristic algorithm) since it will not be possible to
optimally solve the problem if the number of patients blow
up and the problem becomes complicated.

In 2016, [9] studied the PASOR by combining the assign-
ment of surgeries to operating rooms and scheduling over
a short-term planning horizon. To model the studied prob-
lem, the authors developed a mathematical programming
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model. To solve the proposed model, the authors developed
a branch-and-price-and-cut algorithm based on a constraint
programming model. In addition, to improve the efficiency
of the constraint programming model, [9] developed a set of
dominance rules and a fast infeasibility-detection solution
using a multidimensional knapsack problem. According to
the authors, the computational results on generated (artifi-
cial) instances indicate that their approach has an average
optimality gap of 2.81% and significantly outperforms a
compact mathematical formulation used in similar research.
However, the author solved the model using only a branch-
and-price-and-cut algorithm which we think is not enough
to prove the efficiency of their approach. Thus, using more
powerful algorithms is needed to validate the obtained
results.

In 2020, [2] dealt with the problem of urgent surgeries
assignment in an existing and in-course operating schedule
by assigning nonelective patients. The aim was the
assignment of the maximal amount of nonelective cases
and global operating block overtime cost-efficiency. The
methodology of the paper was based on dividing patients
into three classes which are emergent, urgent, and work
in case. To prove the efficiency of the proposed approach,
a set of experiments were conducted on 5 generated
data instances and results show an improvement on both
operating rooms capacity filling and supplementary hours
overrun limitation. However, the main concern with their
study is the small volume of operation theater schedules
used to prove the efficiency of the modeling and solving
approach.

In 2020, [1] addressed the allocation of resources in
the operating room department. The main aim was to
maximize the operating room profit using the operating
room department as efficiently as possible. To do so, the
authors suggested to integrating three main components
which are (i) the surgical case planning and scheduling
problem, (ii) the nurse re-rostering decision, and (iii) the
nurse assignment to specific patients. To model the problem,
the authors presented a mathematical formulation that
was solved by a two-phase heuristic that uses the linear
programming solution generated via column generation.
The proposed modeling and solving approaches were tested
on two types of datasets: (i) the real-life data received
from the Sina Iranian Hospital and (ii) the artificial datasets
generated in a controlled and structured manner. On the
other hand, the choice of the column generation-based
diving heuristic solution was not argued by the authors
which may present a concern regarding the validity of the
results.

In 2019, [14] treated a weekly operation scheduling
problem of elective surgery according to the block
scheduling policy. According to the authors, two main
objectives to reach by solving the considered problem which

are balancing the overtime and decreasing the unused time
of each surgeon’s blocks. To model the problem, the authors
choose to decompose it into two sub-problems. The first
sub-problem aims to allocate patients to blocks and achieve
the balance of the blocks to the same surgeon. In the
second sub-problem, three parameters are defined which are
the operating room, the operation date, and the operation
sequence. Both subproblems were modeled using integer
programming models and solved using CPLEX optimizer.
According to [14], their proposed approach can present a
support decision tool to balance surgeons’ workload among
blocks and can improve patient satisfaction. In addition,
the computational experiments are conducted on generated
artificial data instances illustrating their applicability to the
problem in the operating theater.

In 2019, [15] dealt with the surgery assignment problem
to determine the number and type of surgeries to schedule
in a 2-week planning horizon where each operating session
is assigned to a surgical specialty according to a fixed
grid. The main aim is to maximize the expected operating
theaters throughput. To do so, the authors modeled the
considered problem using a stochastic model, which was
solved using a sample average approximation technique that
uses a limited number of scenarios. To prove the efficiency
of the proposed approach, the authors executed a set of tests
on a real case study with real data from a leading European
children’s hospital. The computational study shows that it is
fundamental to consider the stochastic nature of the problem
for both the lengths of stay and the surgery times. However,
the authors developed a comparative study in which they
compared their stochastic with the deterministic model
which can be ambiguous since they are considered two
different models; thus, this comparison will be inconsistent.

In 2015, [16] discussed the problem of scheduling
elective surgery patients in the orthopedic surgery division
of a Tunisian hospital considering two types of resources,
which are the recovery rooms and the operating beds. The
authors aim to optimize the assignment of surgeries to
operating rooms and the planning of the recoveries. To
do so, they divided the modeling and the solving of the
main problem into two phases. In the first stage, they
developed a mixed-integer program to model the problem as
a knapsack problem with the aim of choosing the operations
to be scheduled on the selected day. In a second stage, to
model a discrete event simulation, the authors developed
a bi-objective mixed-integer program to compare the head
surgeon’s actual practice and the new model. According
to the authors, their proposed approach indicates that a
substantial amount of operations could be saved if the
method is implemented.

In 2019, [8] addressed the scheduling problem of inpa-
tient surgeries to improve the impact on the quality
and safety of surgery. The authors aim to improve the
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compatibility level within the surgical teams by incorporat-
ing the decision-making styles of the surgical team mem-
bers (in an operating room scheduling problem). To model
the problem, the authors proposed a comprehensive multi-
objective programming model that aims to ensure three
objectives, which are the minimization of the total cost, the
maximization of the patients’ satisfaction, and the maxi-
mization of the aggregation of compatibilities of the surgical
teams. The authors developed two metaheuristics which are
the NSGA-II and the MOPSO to find Pareto solutions. Fur-
thermore, the PROMETHEE-II method was used to select
the best among the obtained Pareto solutions. According to
the authors, the results generated by MOPSO indicate bet-
ter performance compared to NSGA-II. It is important to
mention here that the resulting schedule is limited since it
is a short-horizon schedule (daily). Thus, it is inconsistent
to validate the proposed approach using a daily schedule.
It requires extending the approach to be able to define
a weekly or semi-monthly schedule that can be used for
evaluating the approach efficiency.

In 2019, [4] dealt with the operating room planning
problem while considering uncertainty in surgery durations
is incorporated in this problem. The main aim of the paper
is to allow sicker patients to have early access to surgery.
To model the studied problem, the authors presented
a stochastic mixed-integer mathematical formulation that
aims to improve the assignment of surgeries and to
minimize the total overtime that exceeds the available time
durations for surgeries. To solve the proposed model, the
authors suggested three solving methods, which are (i) a
Tabu Search metaheuristic (TS), (ii) a fastest ascent local
search, and (iii) the sample average approximation method.
The experimental study shows that the TS metaheuristic
provides effective solutions within reasonable computation
times. This interpretation was not justified by the authors to
detail the main reasons that make the TS suitable to solve
the studied problem than other solving techniques.

2.2 Findings of the literature review
and the contribution of the paper

There exist numerous papers in the literature that treat the
planning and scheduling of patients in the operating rooms
department. The topic has been extensively investigated
which highlights its importance to the patients and hospitals
by realizing both health and cost-efficiency objectives.
In this context, the experiments of each paper show an
improvement on both operating rooms capacity filling and
supplementary hours overruns limitation. Multiple decision
support tools have been developed to assist managers
in taking better and optimal assignment and scheduling
decisions. In addition, multiple works in the literature
show that developing decision tools presented strategies

in developed countries’ hospitals could help them limit
their healthcare budget overruns. On the other hand, the
contribution of this paper is twofold. First, we consider
the patient assignment and scheduling problem during
the COVID-19 pandemic, which is, to the best of our
knowledge, not yet addressed in the literature, and this is
the first attempt to solve it. Second, we present a three-
level hybrid algorithm to solve the integrated recovery
room planning and scheduling problem. By the end, the
experimental study shows that the suggested methodology
realizes (near-)optimal solutions and outperforms the
CPLEX software solution.

3 Problem description and formulation

The planning and scheduling of recovery rooms during the
COVID-19 epidemic is a difficult process. Its real difficulty
came from the huge number of patients needing treatment.
Due to the short period of arrival, the operating room
schedule has to be optimized. Thus, the need for a decision
support system, helping the decision-makers in the hospital
to handle this big flow of patients, is not a choice but an
obligation.

In this section, we go over detailing the main objective to
reach after solving the studied problem by giving a detailed
description. Then, we will present a problem formulation by
developing a mathematical model.

3.1 Problem description

The studied problem aims essentially to optimize two goals
which are (i) the assignment of patients to recovery rooms
and (ii) the scheduling of nurses to patients.

According to the Saudi Ministry of Health, four
categories of COVID-19 confirmed patients are considered.
The first type is the asymptomatic cases which do not
requires any treatment and has to follow instructions
and recommendations published by the Saudi Ministry of
Health. The second category is composed of cases from
middle to moderate state which requires to treat symptoms
and having to follow instructions and recommendations
published by the Saudi Ministry of Health. The third
category consists of severe cases that must be admitted to
the hospital and treated by caregivers in the Intensive Care
Unit. The last category contains the critical case patients
who are also called to be admitted to the hospital with
more intensive care. In the following table, we give more
details about each category. In our context, we will consider
only the third and the fourth categories since they must be
admitted to the hospitals. At a daily meeting of the medical
staff, the state of patients is discussed to decide and many
scenarios are possible. They start by checking if the patient
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Fig. 1 Patient categories based on the state

is new or not. If he is a previous patient, then they check if
there is “any change” from his previous state; if yes, they
will do another check to precise if they have to consider him
as a critical or a severe patient. On the other hand, if the
patient is new, the medical staff will directly do the second
check. The following flowchart (see Fig. 1) summarizes all
possible states.

The problem of the daily patient assignment to recovery
rooms scheduling of the COVID-19 division Jeddah hospital
can be summarized as follows: a set of p patients to be
scheduled in k recovery room given an available rooms’
capacity c. Two types of resources are considered: recovery
beds (RB) and respiratory machines (RM). These types
of resources are used mainly by two types of recovery
room schedules which are considered in the hospitals. The
first type treats the severe patients without considering
the critical cases; thus, rooms contain only recovery beds
and are designed in our work as Recovery Beds Rooms
(RBR). The other one treats the critical cases using special
respiratory machines and this type of room is designed in
our work as Recovery Respiratory Rooms (RRR). After
assigning patients to rooms, the set of caregivers must be
scheduled based on the type of required care. In this respect,
only skilled caregivers may serve patients of RRR, which
are NRRR, and other nurses can satisfy tasks of patients in
RBR, which are NRBR.

3.2 Problem formulation

In this subsection, we will provide a mathematical model for
the assignment and scheduling of patients to the recovery
rooms which is a way for good research modeling since
it simplifies the essential concepts and the relationships
between them. Besides, the provided mathematical model

facilitates and aids for clear thinking and provides an
explicit connection to the existing body of knowledge by
studying the effects of different components, and to make
predictions about its behavior. In the following subsection,
we will detail the set of notations, the set of decision
variables to use, the objective functions to accomplish, and
the list of constraints to respect.

3.2.1 Notations

In the following Table 1, we mainly present the required
notations for developing our mathematical model which
are the sets, the deterministic parameters, and the decision
variables.

3.3 Mathematical model

In this subsection, we propose a mathematical formulation
of the objective function and different constraints of the
considered problem.

3.3.1 Objective function

We recall here that the main aim of solving the integrated
recovery room planning and scheduling problem is to
maximize essentially two factors which are:

– The number of assigned patients to rooms.
– The number of treated patients by nurses.

So to achieve both previous objectives, the model must
contain the following objective function:

Max
∑

i∈S

∑

k∈R

∑

a∈G

xik + yia∀i ∈ S,∀k ∈ R,∀a ∈ G (1)

3.3.2 Constraints

The IRRPSP is considered a highly constrained problem
with a big number of both soft and hard constraints. In the
following listing are of constraints to be respected.

To ensure that a severe state patient is either assigned to
a room with recovery beds or not assigned at all, we have to
add the following constraint to the model:

∑

i∈S

∑

l∈B

xil ≤ 1∀i ∈ S,∀l ∈ B (2)

To ensure that a critical patient is either assigned to a
room with respiratory machines or not assigned at all, we
have to add the following constraint to the model:

∑

j∈C

∑

k∈R

xjk ≤ 1∀j ∈ C,∀k ∈ R (3)

1299Medical & Biological Engineering & Computing (2022) 60:1295–1311



Table 1 Problem notations
Sets Description

S: The set of patients with severe state.

C: The set of patients with critical state.

B: The set of rooms with recovery beds.

R: The set of rooms with respiratory machines.

G: The set of nurses able to treat patients with severe state.

N : The set of qualified nurses to treat patients with critical state.

Deterministic parameters Description

i = 0, 1, 2, ..., n : The index of patients with severe state.

j = 0, 1, 2, ..., m : The index of patients with critical state.

l = 0, 1, 2, ..., p : The index of room with recovery beds.

k = 0, 1, 2, ..., o : The index of room with respiratory machines.

a The index of nurses able to treat patients with severe state.

b The index of qualified nurses to treat patients with critical state.

Cs Capacity of the rooms with recovery beds.

Cc Capacity of the rooms with respiratory machines.

ei The stating time of the treatment of the patient i.

li The ending time of the treatment of the patient i.

Si The service time of the patient i.

ga The stating time of the duty of the nurse a.

ha The ending time of the duty of the nurse a.

Decision variables Description

xik : 1 if the patient i is assigned to the room k

0, otherwise

yia : 1, if the nurse a is assigned to treat the patient i

0, otherwise.

To ensure that a severe state patient cannot be assigned
to a room with respiratory machines, we have to add the
following constraint to the model:
∑

i∈S

∑

k∈R

xik = 0∀i ∈ S,∀k ∈ R (4)

To ensure that a critical state patient cannot be assigned
to a room with recovery beds, we have to add the following
constraint to the model:
∑

j∈C

∑

l∈B

xjl = 0∀j ∈ C,∀l ∈ B (5)

To ensure that a severe state patient cannot be assigned
to a room with recovery beds, we have to add the following
constraint to the model:
∑

j∈C

∑

l∈B

xjl = 0∀j ∈ C,∀l ∈ B (6)

To ensure that severe state patients is either covered by a
nurse able to treat patients with severe state or not handled
at all, we have to add the following constraint to the model:
∑

i∈S

∑

a∈G

yia ≤ 1∀i ∈ S,∀a ∈ G (7)

To ensure that critical state patients is either covered by a
nurse able to treat patients with critical state or not handled
at all, we have to add the following constraint to the model:
∑

j∈C

∑

b∈N

yjb ≤ 1∀j ∈ C,∀b ∈ N (8)

To ensure that severe state patients is not covered by a
nurse allowed to treat only patients with critical state, we
have to add the following constraint to the model:
∑

i∈S

∑

b∈N

yib = 0∀i ∈ S,∀b ∈ N (9)

To ensure that critical state patients is not covered by a
nurse allowed to treat only patients with severe state, we
have to add the following constraint to the model:
∑

j∈C

∑

a∈G

yja = 0∀j ∈ C,∀a ∈ G (10)

To ensure that all patients are treated within their time
window, we have to add the following constraint to the
model:

ei

∑

i∈S

∑

l∈B

xil ≤ Si ≤ li
∑

i∈S

∑

l∈B

xil∀i ∈ S,∀l ∈ B (11)
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To ensure that nurses are only assigned tasks within their
working hours, we have to add the following constraint to
the model:

ga

∑

i∈S

∑

l∈B

xil ≤ Si ≤ hi

∑

i∈S

∑

l∈B

xil∀i ∈ S,∀l ∈ B (12)

To ensure that the number of assigned severe state
patients to a room with recovery beds does not exceed its
capacity, we have to add the following constraint to the
model:
S∑

i=1

xil ≤ Cs∀l ∈ B (13)

To ensure that the number of assigned critical state
patients to a room with respiratory machines does not
exceed its capacity, we have to add the following constraint
to the model:
C∑

j=1

xjk ≤ Cc∀k ∈ R (14)

Now, we can present the final version of our mathemati-
cal model:
∑

i∈S

∑

k∈R

∑

a∈G

xik + yia∀i ∈ S,∀k ∈ R, ∀a ∈ G (15)

∑

i∈S

∑

l∈B

xil ≤ 1∀i ∈ S,∀l ∈ B (16)

∑

j∈C

∑

k∈R

xjk ≤ 1∀j ∈ C,∀k ∈ R (17)

∑

i∈S

∑

k∈R

xik = 0∀i ∈ S,∀k ∈ R (18)

∑

j∈C

∑

l∈B

xjl = 0∀j ∈ C,∀l ∈ B (19)

∑

j∈C

∑

l∈B

xjl = 0∀j ∈ C,∀l ∈ B (20)

∑

i∈S

∑

a∈G

yia ≤ 1∀i ∈ S,∀a ∈ G (21)

∑

j∈C

∑

b∈N

yjb ≤ 1∀j ∈ C,∀b ∈ N (22)

∑

i∈S

∑

b∈N

yib = 0∀i ∈ S,∀b ∈ N (23)

∑

j∈C

∑

a∈G

yja = 0∀j ∈ C,∀a ∈ G (24)

ei

∑

i∈S

∑

l∈B

xil ≤ Si ≤ li
∑

i∈S

∑

l∈B

xil∀i ∈ S,∀l ∈ B (25)

ga

∑

i∈S

∑

l∈B

xil ≤ Si ≤ hi

∑

i∈S

∑

l∈B

xil∀i ∈ S,∀l ∈ B (26)

S∑

i=1

xil ≤ Cs∀l ∈ B (27)

C∑

j=1

xjk ≤ Cc∀k ∈ R (28)

4 Solving approach

The problem of patients’ assignment and scheduling to
recovery rooms addressed in this paper is really difficult
due to its combinatorial nature. In addition, by the analysis
of the number and type of constraints involved, which are
sometimes conflicted, we conclude that the studied problem
is an NP-hard problem. Thus, exact algorithms for solving
large-sized instances of the problem are therefore unlikely.
In this regard, we present in this section a three-level hybrid
algorithm to solve the IRRPSP. Both first and second levels
consist of defining an initial deterministic schedule, then
an adaptation step is invoked to rectify the preschedule and
improve the final solution. Figure 2 provides an overview
of these phases of the solution procedure which will be
described in the next three subsections.

4.1 Assignment of patients to recovery rooms

First, we aim to solve the assignment of patients to rooms
depending on their states which will define the number
of satisfied patients. To do so, we choose to first define
a starting strategy where the initial solution is generated
using the basic sweeping algorithm. The initial deterministic
solution will provide a preschedule of assigned patients to
the available recovery rooms and may improve the quality
of the final solution.

An adaptation procedure is then executed to adapt the
preschedule assignment to reach a feasible and robust

Fig. 2 The three-level hybrid algorithm
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solution with respect to the set of related soft and hard
constraints and to maximize the occupation of the recovery
rooms. This adaptation is done using a local neighborhood
search algorithm which consists of essentially achieving two
goals: (i) first search to regain the feasibility of the initial
solution with respect to a set of constraints and then seeks
to enhance its accuracy while maintaining its feasibility.

This number of satisfied patients (the output of the first
component) will present the input of the Tabu solving
algorithm to assign the required nurses depending on the
type of recovery rooms

4.2 Assignment of nurses to patients

Second, we aim to solve the assignment of nurses to the set
of patients depending on the type of recovery rooms (with
respiratory machines or with recovery beds).

To do this, we start by generating a random initial
solution by randomly combining the set of assignments of
nurses to recovery rooms. Then, an adaptation procedure
is invoked to rectify the preschedule of nurses to patients
with respect to the room type. This adaption is executed
using a Tabu Search metaheuristic which was in charge
of essentially enhancing the actual assignments while
preserving feasibility. TS metaheuristic is an evolved
optimization problem-solving metaheuristic and was first
proposed by Glover in [6]. TS is a metaheuristic that can
guide the search process to ameliorate the neighborhood
generation and evaluation mechanism [12]. The TS starts
by defining an initial solution that can be feasible or
unfeasible and it will be used to apply a set of neighborhood
generation operators to move to another solution in the
search space. In our case, we generate a random initial
solution by randomly combining the set of visits. In order to
explore the search space, the TS implements the concept of
neighborhood generation operators which consists of doing
some transformations on an input solution to create a set of
other solutions named neighborhood.

Once an operator is applied and the neighborhood is
generated, the algorithm will select the best newfound
solution and consider it a new initial solution to continue
exploring the search space. This basic search phase is
continued until a kind of stability criterion is satisfied, more
precisely until the number of iterations without improving
reaches a predefined value. In this case, we use two different
concepts to explore the search space which are:

– The intensification which is an intermediate-term
memory search that consists of extensively searching
around good solutions by using suitable operators and
increasing the Tabu list size.

– The diversification which is an intermediate-term
memory, searches that aim to explore new regions in the

Table 2 Characteristics of the benchmark set B1

ID NCP NSP nRRR nRBR NRM NRB NRRR NRBR

1 177 354 13 25 182 350 10 20

2 204 408 13 25 182 350 10 20

3 229 458 15 29 210 406 10 20

4 240 479 15 29 210 406 10 20

search space where good solutions can be found. It can
be implemented using a dynamic Tabu list and some
neighborhood operators.

In both concepts, we mainly used three operators which are:

– The Swap Operator: that consists of taking two patients
and swaps their position in the current solution.

– The 2-opt Operator: that takes as input two schedules
and two different patients each per schedule. Then, it
breaks the first schedule in its corresponding first point
and completes it with the second part of the second
schedule starting from point 2. The same action is done
to complete the second schedule that will be completed
by the second part of the first schedule.

– Ejection Chains that consists of taking two schedules
defined by a starting and ending visits from the current
solution. The considered chain will be copied from the
current schedule to the next schedule iteratively until
reaching the last schedule. Once an operator is applied
and the neighborhood is generated, the algorithm will
select the best newfound solution and consider it as a
new initial solution to continue exploring the search
space.

4.3 Overall solution improvement

The third step is considered an improvement phase which
aims to minimize the set of unsatisfied tasks by essentially
two ways:

– Using the available overtime: by violating the nurses
time windows using the available overtime feature
while maintaining the reliability of previous steps
schedules. The main idea consists of defining the list
of already assigned patients and then executing some
greedy procedures to assign the available overtime.

Table 3 Characteristics of the benchmark set B2

ID NCP NSP nRRR nRBR NRM NRB NRRR NRBR

5 267 533 19 38 266 532 10 20

6 340 679 22 44 312 622 10 20

7 415 829 26 51 358 716 10 20

8 479 958 30 60 420 839 10 20

1302 Medical & Biological Engineering & Computing (2022) 60:1295–1311



Table 4 Comparison of solution quality between CPLEX and our
approach on benchmark B1

Id NCP NSP CPLEX Our approach Gap %

1 177 354 1054 1054 0 %

2 204 408 1064 1064 0 %

3 229 458 1216 1232 1.32 %

4 240 479 1216 1232 1.32 %

Average 0.66%

– Maximizing the recovery room utilization: by balanc-
ing the workload between nurses in different recov-
ery rooms profiting from the unused under-time in
each recovery room, i.e., a nurse that has unused
time and without more patients to cover can be
assigned to another room with the same required
skills.

Both solutions maximize the set of uncovered patients
which means an improvement of the cost-efficiency.

5 Computational experiments
and evaluation

In this section, the computational performance of the
proposed methodology is reported and evaluated by solving
8 data instances containing more than 2300 patients
with different optimization criteria and skill management
policies. The considered measures are the optimality of
the solution and the computational time needed to reach
it. The main aim of the computational experiments is to
assess the advantages of the proposed modeling and solving
approach by extracting the main features that outperform
similar approaches.

To do that, we first describe in Section 5.1 the
computational environment and the benchmark instances.
Then, Section 5.2 demonstrates the results of every
component of the algorithm. Finally, Section 5.3 analyzes
the quality of the solutions regarding the operating room
management.

Table 6 Comparison of the number of satisfied patients between
CPLEX and our approach on benchmark B1

Id NCP NSP CPLEX Our approach Gap %

1 177 354 527 527 0 %

2 204 408 532 532 0 %

3 229 458 600 616 2.67 %

4 240 479 600 616 2.67%

Average 1.33 %

5.1 Computational environment
and benchmark instances

The technical details of the implementation of the hybrid
algorithm for solving the set of developed data instances
will be depicted in this subsection. In addition, we will
present the set of data instances used to justify the efficiency
of the suggested approach (real-life data instances). To
do that, the next subsection will detail the computational
environment, while the second subsection will be devoted to
presenting the benchmark instances used in the experiments.

5.1.1 Computational environment

We implemented the proposed mathematical model using
the IBM ILOG CPLEX Optimization Studio V12.4 [10]
with default optimization parameters. CPLEX is an
optimization software package that solves linearly linear
programming (LP) and related problems where the objective
to be optimized can be expressed as a linear function. On
the other hand, we coded the three-level hybrid algorithm
in the Python programming language. All tests were carried
out on a Windows PC with Core i3 - 2.50 GHz CPU and 6
GB RAM.

5.1.2 Benchmark instances

To generate realistic instances which will be used to test
our modeling and solving approach, we relied on real
data provided by the Department of Respiratory and Chest
Diseases of the King Abdulaziz Hospital, Jeddah, KSA. The
provided data instances contain all the relevant information

Table 5 Comparison of solution quality between CPLEX, our approach, and the optimal solution on benchmark B1

Id NCP NSP CPLEX Our approach Optimal solution CPLEX gap to optimal solution Our approach gap to optimal solution

1 177 354 1054 1054 1062 0.76 % 0.76 %

2 204 408 1064 1064 1224 15.04 % 15.04 %

3 229 458 1216 1232 1374 12.99 % 11.53 %

4 240 479 1216 1232 1438 18.26 % 16.72 %

Average 11.76 % 11.01 %
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Table 7 Comparison of solution quality between CPLEX and our
approach on benchmark B2

Id NCP NSP CPLEX Our approach Gap %

5 267 533 1399 1596 14.08 %

6 340 679 1534 1868 21.77 %

7 415 829 1674 2148 28.32 %

8 479 958 1859 2459 32.28 %

Average 24.11 %

regarding 2500 patients, 30 nurses, a variable number of
recovery rooms with respiratory machines, and a variable
number of recovery rooms with recovery beds.

From this information, we generated two different
benchmarks each composed of 4 instances. The first
benchmark B1 is composed of critical state patients and
the second benchmark B2 is composed of severe state
patients. The set of instances have a variable number of
rooms with recovery beds (RB) and a variable number of
rooms with respiratory machines (RM). However, all data
instances have the same number of caregivers, N = 30. The
characteristics of the benchmark sets are summarized in
the following Tables 2 and 3 in which the headings are as
follows:

– B1 and B2 refer to the first and second generated
benchmarks.

– ID: the number of data instances.
– NCP: number of critical state patients.
– NSP: number of severe state patients.
– nRRR: number of recovery respiratory rooms.
– nRBR: number of recovery beds rooms.
– NRM: number of respiratory machines.
– NRB: number of recovery beds.
– NRRR: nurse that serves patients of RRR.
– NRBR: nurse that serves patients of RBR.

5.2 Computational results

We develop in this subsection a set of computational
experiments to show the performance of our proposed

Table 9 Comparison of the number of satisfied patients between
CPLEX and our approach on benchmark B2

Id NCP NSP CPLEX Our Approach Gap %

5 267 533 600 798 33 %

6 340 679 600 934 55.67 %

7 415 829 600 1074 79 %

8 479 958 600 1200 100 %

Average 66.92 %

approach. Main conclusions are derived based on the
computational efficiency in terms of two parameters which
are:

– The Optimality Gap: which requires the comparison
of the actual performance with the potential (CPLEX
results) and the desired performance (the optima
solution) [11].

– The CPU Time: The amount of time needed to reach the
solution.

The computational results of both parameters will be
reported in the following two subsections and will be
illustrated by a set of graphical charts to show the
difference between our proposed solution and the CPLEX
solution.

5.2.1 Objective function results

We first analyze the general performance of the suggested
approach methodology (the objective function to optimize).
Tables 4, 5, and 6 report the results of the instances analyzed
in benchmark B1. Firstly, we compare the solution quality
of our proposed approach against the CPLEX solution (see
Table 4). Secondly, the comparison of the solution quality
between our proposed approach, the CPLEX solution, and
the optimal solution (see Table 5) which can be defined
as a feasible solution where the objective function reaches
its maximum value. In our context, the optimal solution
consists of satisfying all patients in the data instance.
Finally, the comparison of the number of satisfied patients
between the CPLEX solution and our approach. The same

Table 8 Comparison of solution quality between CPLEX, our approach, and the optimal solution on benchmark B2

Id NCP NSP CPLEX Our approach Optimal solution CPLEX gap to optimal solution Our approach gap to optimal solution

5 267 533 1054 1399 1596 14.37 % 0.25 %

6 340 679 1064 1534 1868 32.86 % 9.10 %

7 415 829 1216 1674 2148 48.63 % 15.83 %

8 479 958 1216 1859 2459 54.60 % 16.88 %

Average 37.61 % 10.51 %
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Fig. 3 Objective function
comparison between CPLEX
solution, our approach solution,
and the optimal solution on
Benchmark B1

Fig. 4 Comparison of the
number of satisfied patients
between CPLEX solution, our
approach solution, and the
optimal solution on benchmark
B1

Fig. 5 Objective function
comparison between CPLEX
solution, our approach solution,
and the optimal solution on
benchmark B2
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Fig. 6 Comparison of the
number of satisfied patients
between CPLEX solution, our
approach solution, and the
optimal solution on benchmark
B2

sets of comparisons were provided on B2 benchmarks in
respectively Tables 7, 8, and 9.

In Figs. 3 and 4, we will respectively simplify the
reported results in the previous Tables 5 and 6 using two
graphical charts that illustrate the comparison between (i)
the solution quality (Fig. 3) and (ii) the number of satisfied
patients (Fig. 4) between CPLEX solution and our approach
on benchmark B1. On the other hand, the two Figs. 5
and 6 will respectively simplify the reported results in the
previous Tables 8 and 9 to illustrate the same comparison
between CPLEX solution and our approach on benchmark
B2.

5.2.2 CPU time results

In this subsection, we present the CPU time required to
reach the final solution. We have set a time limit of 1 h
of CPU computational time for CPLEX to reach a final
solution (i.e., 3600 s). Tables 10 and 11 report respectively
the computational times in seconds for all data instances in
B1 and B2 benchmarks.

In Figs. 7 and 8, we will simplify the reported results
in the previous Tables 10 and 11 using two graphical
charts that illustrate the computational time comparison
between the CPLEX solution and our solution approach on
Benchmarks B1 and B2.

Table 10 Comparison of CPU computational time between CPLEX
and our approach on benchmark B1

Id NCP NSP CPLEX Our approach (in seconds)

1 177 354 2327.20 33.02

2 204 408 3600 35.84

3 229 458 81.98 37.32

4 240 479 177.97 38.92

Average 1546.79 36.27

5.3 Solution quality evaluation

This section will be devoted to evaluate the overall quality of
our suggested approach using multiple metrics [13]. In our
context, the algorithmic approach will be evaluated using
essentially two measures which are:

1. The quality of the proposed solution (the objective
function value) compared to the CPLEX solution and
the optimal solution,

2. The CPU time required to reach the final solution.

Both previous performance criteria will be presented,
illustrated, and discussed in the next two subsections
by developing some statistical tests for measuring the
performance of the solution. In this context, two different
statistical tests will be conducted to compare our results to
those obtained by the CPLEX optimizer which are (i) the
sign pairwise comparison test that calculates the number of
wins realized by each of the compared solutions, and (ii)
Wilcoxon signed-rank test to prove that the obtained results
are significant.

5.3.1 Statistical analysis of the objective function solution

It is important to compare the values of the objective
function obtained by our hybrid metaheuristic approach

Table 11 Comparison of CPU computational time between CPLEX
and our approach on benchmark B2

Id NCP NSP CPLEX Our approach (in seconds)

5 267 533 3420.11 56.86

6 340 679 3600 67.56

7 415 829 647.52 73.24

8 479 958 3600 73.20

Average 2816.91 67.72
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Fig. 7 Computational time
comparison between the CPLEX
solution and our solution
approach on benchmark B1

and those obtained by the CPLEX software. To do so,
we provide in the following two Tables 12 and 13 some
statistical tests, to compare and analyze the performance of
our proposed approach compared to the CPLEX solution on
both benchmarks B1 and B2.

Then, using previous Tables 12 and 13, we conclude
that there is a significant improvement of the three-level
hybrid algorithm compared to the CPLEX solution. Based
on the objective function feature, our solution outperforms
the CPLEX solution in 2 data instances over 4 data instances
of B1 benchmarks (equal results in the two other data
instances). Also, our results are better than the results
provided by CPLEX software in all 4 data instances of B2.
This means that the efficiency of our hybrid metaheuristic
increases when the size of the problem grows (the number
of patients in B2 is larger than the number of patients in B2),
thus indicating that effective solutions can be found even for
large instances.

In addition, based on the detailed results in Table 4, our
approach results are better than CPLEX results by 0.66% on
average for the four first data instances. This improvement
can be considered low due to the size of the used data

instance. On the other hand, the gap increases when the size
of the data instances increases, i.e., the results provided in
Table 7 indicate that our solution outperforms the CPLEX
results by 24.11% on average. The same interpretations
can be extracted when we conduct our results analysis on
comparing the number of satisfied patients between CPLEX
and our approach on both benchmarks B1 and B2 (see
respectively Tables 6 and 9).

Thus, we can interpret that our obtained results
outperform those obtained by the CPLEX results in 6 over
8 data instances.

5.3.2 Statistical analysis of the CPU computational time

Generally, when solving a combinatorial optimization
problem, we look to find the best trade-off between
the solution quality and the running time expended to
having it. So, decreasing the computational time is an
important evaluation measure to prove the high quality of
the proposed solution. In this subsection, we will present,
evaluate, and compare the computational time needed by
different approaches to reach a near-optimal solution for all

Fig. 8 Computational time
comparison between the CPLEX
solution and our solution
approach on benchmark B2
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Table 12 Sign test for pairwise comparisons of the objective function
on B1 benchmark

CPLEX Our approach

Wins 0 2

Losses 2 0

Equal 2 2

data instances. In this context, [5] defines a near-optimal
solution as “a feasible solution with an objective function
value within a specified range from the (usually unknown)
optimal objective function value.”

To do so, we provide in the following two Tables 14
and 15, two statistical tests to analyze and compare the
CPU time used by our proposed approach compared to the
CPLEX solution on both benchmarks B1 and B2.

According to both Tables 14 and 15, we can remark a
significant improvement of our proposed solution over the
CPLEX solution based on the required CPU time to reach
a final solution since our approach outperforms the results
obtained using CPLEX software in all 8 data instances B1
and B2 benchmarks.

In addition, the detailed results given in Tables 10 and 11
show a huge improvement in the time needed by the CPU
to reach a near-optimal final solution. Our approach only
needed 36.27 s on average for the four first data instances
against 1546.79 s on average for the CPLEX optimizer.
Also, for the second benchmark, our approach needs only
67.72 s to reach a near-optimal solution against 2816.91 s
for the CPLEX approach.

Moreover, both Figs. 7 and 8 show that the CPU time
required by our algorithm to find a near-optimal solution is
optimized compared to the CPLEX approach.

5.3.3 Wilcoxon signed-rank test

In order to judge that our obtained results are significant and
not happened by chance, a nonparametric statistical test is
required to be accomplished. In this context, we choose to
develop Wilcoxon’s rank-sum test which is a nonparametric

Table 13 Sign test for pairwise comparisons of the objective function
on B2 benchmark

CPLEX Our approach

Wins 0 4

Losses 4 0

Equal 0 0

Table 14 Sign test for pairwise comparisons of the computational
running time on the benchmark B1

CPLEX Our approach

Wins 0 4

Losses 4 0

Equal 0 0

statistical to justify that the significant performance is not
happened randomly based on the p-values [3]. In our study,
the test hypothesis are:

Null Hypothesis H0: The number of satisfied patients is
equal to the number of satisfied patients of CPLEX solution.

Alternative Hypothesis H1: The number of satisfied
patients is equal to the number of satisfied patients of
CPLEX solution.

The p-values reached when conducting the Wilcoxon
signed-rank test on the four data instances of B1 and the four
data instances of B2 in addition to the standard deviation
values are illustrated respectively in Tables 16 and 17. Each
table presents the related statistical results obtained by our
approach compared to CPLEX results for each benchmark
independently.

According to results in both previous tables, we have
to reject the null hypothesis (no significant difference
between our results and CPLEX result) and accept the
alternative hypothesis which ensures that our proposed
approach is significantly better than the CPLEX results.
Thus, the Wilcoxon signed-rank test proves that our solution
definitely shows a general improvement over the CPLEX
solution based on the main comparative features, which are
the number of satisfied patients and the needed CPU to
reach a final solution.

5.3.4 Study limitations

Although results show that our proposed modeling and
solving approach significantly outperforms the results
obtained by CPLEX software, it is mandatory to mention
that there are some limitations of our study that must

Table 15 Sign test for pairwise comparisons of computational running
time on the benchmark B2

CPLEX Our approach

Wins 0 4

Losses 4 0

Equal 0 0
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Table 16 The Wilcoxon signed-rank test of the number of satisfied patients

Benchmark Number of instances + Ranks - Ranks Standard p-value Decision

B1 4 2 0 1.061 0.0157 Reject the null hypothesis

B2 4 4 0 2.739 0.0168 Reject the null hypothesis

be mentioned here, from which we cite some in the
following:

– Our approach does not consider the time taken for the
administrative procedure when receiving a new patient.
The reception procedure asks for numerous information
about the patients especially in the case of COVID-19
such as the age, the body mass index (BMI), the used
medications (if exist), and any historical diseases. This
waste of time may result in a delay that could affect the
scheduling process.

– The actual approach considers only the deterministic
variant of the problem. However, our approach cannot
handle the stochastic variant of the problem which
consists of non-deterministic (real-time) data instances.

6 Conclusion

In this paper, we have addressed the hard problem of
planning and scheduling integrated recovery rooms during
the COVID-19 pandemic. To answer this urgent concern
of healthcare providers, the IRRPSP is defined and then
solved by decomposing it into two sub-problems which
are solved in three sequential phases. In the first step, the
method search to assign patients to the recovery rooms
while respecting both types of patients and recovery rooms.
The method, therefore, seeks to assign nurses to patients.
In this second step, we used the overtime resources in
order to maximize nurses’ utilization while minimizing
the number of unsatisfied patients. The hybrid algorithm
developed combines neighborhood search techniques with
the Tabu Search metaheuristic, which is used to optimize
the number of satisfied patients. The proposed approaches
have been explained, justified, and illustrated with synthetic
and pedagogical figures and diagrams. Then, they have been
programmed and tested on a set of real data that have been

constructed. The reported results mainly achieved objective
function levels and the needed computational time shows
the efficiency and the robustness of the solutions produced.

Two main and significant outcomes of this work are to
point out, from our standpoint. The first is the tackling of
such interesting subjects especially there are no sufficient
works that try to develop solutions to COVID-19 pandemic
problems. Moreover, with the increasing challenges faced
by the health sector especially during the COVID-19 virus,
this topic gets more and more important and needs to be
addressed and solved.

The second interesting point revealed by this work is
the result performance against the CPLEX results. The
computational analysis demonstrated the capability of the
suggested approach to deal efficiently with the trade-off
between the available nurses and patient perspectives in
reasonable computational times.

The perspectives we intend to give to this research work
are threefold. In the first direction, we are particularly
interested in computing the strategies developed in this
paper with bigger data instances. The second direction in
which we are interested is to continue our research work
based on these promising results is to implement more
sophisticated heuristical algorithms, relying on the proposed
pattern decomposition. The third perspective consists of
transforming the proposed three-level hybrid algorithm into
a real-life scenario by applying it to a practical case for
one of Jeddah hospitals. The main steps of this scenario
can be captured in Fig. 2, in which the first task consists of
assigning the patients to the recovery rooms then the second
task takes the output of the previous task as an input to
define the nurses’ assignments to patients. A third step of
the scenario consists of improving the obtained solution of
the second step by minimizing the set of unsatisfied tasks.
This can be done by (i) profiting from the available overtime
of the nurses and (ii) by maximizing the recovery room
utilization.

Table 17 The Wilcoxon signed-rank test of the CPU time

Benchmark Number of instances + Ranks - Ranks Standard error p-value Decision

B1 4 4 0 3.921 0.026 Reject the null hypothesis

B2 4 4 0 1.326 0.052 Reject the null hypothesis
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