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Abstract
The technique of common spatial patterns (CSP) is a widely used method in the field of feature extraction of electroencepha-
logram (EEG) signals. Motivated by the fact that a cosine distance can enlarge the distance between samples of different 
classes, we propose the Euler CSP (e-CSP) for the feature extraction of EEG signals, and it is then used for EEG classifi-
cation. The e-CSP is essentially the conventional CSP with the Euler representation. It includes the following two stages: 
each sample value is first mapped into a complex space by using the Euler representation, and then the conventional CSP is 
performed in the Euler space. Thus, the e-CSP is equivalent to applying the Euler representation as a kernel function to the 
input of the CSP. It is computationally as straightforward as the CSP. However, it extracts more discriminative features from 
the EEG signals. Extensive experimental results illustrate the discrimination ability of the e-CSP.
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1  Introduction

The automatic classification of movement-related EEG 
signals has received increasing attention in the field of 
brain-computer interfaces (BCIs). BCIs are a way to 
establish a direct connection between the human brain 
and external devices [1], and noninvasive EEG-based 
BCIs can be used for the rehabilitation of brain nerves 

[2]. EEG-based BCIs include P300, motor imagery (MI), 
and other types. In most cases, the P300 paradigm requires 
the subject's eyes to always look at the visual stimuli 
appearing on the screen, and at the same time, the EEG 
signal of this process is acquired. The P300 signal gener-
ally appears 300–400 ms after the event and is a positive 
potential signal [3]. The latency and amplitude of the P300 
signal indirectly reflect the emotional and psychological 
changes of the subject when facing a stimulus or reflecting 
a potential intent [4]. The advantage of the P300 signal is 
that the subject can generate it without training because 
it is one of the internal signals in the brain [5]. However, 
when performing the analysis, it is necessary to overlay 
and average the signals many times to observe the changes 
in the EEG signal caused by the stimulation event. Fur-
thermore, during the process of acquiring signals, the sub-
ject’s eyes will be easily fatigued, and the practical effect 
is possibly reduced [6]. Motor imagery refers to a process 
of thinking that uses the brain to imagine the movement 
of its limbs, but there is actually no movement [7]. This 
thinking process is spontaneous by the brain and does not 
require external stimulation [8].

BCIs based on motor imagery have recently received 
increasing attention. To obtain a more effective EEG MI 
BCI, there are generally two optimization strategies: one 
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is to maintain the high separability of the MI EEG features 
during feature extraction, and the other is to optimize the 
classifier based on the specific needs. In contrast, the use of 
the former as an optimization strategy has attracted increas-
ing attention in recent years. In machine learning, many 
methods exist for EEG feature extraction, which can be 
divided into two categories according to the purpose of the 
processing: temporal filtering and spatial filtering. The tem-
poral filter focuses on the temporal aspects of EEG signals, 
and its advantage lies in its low computational complexity 
while retaining an acceptable discrimination performance 
among simple MI tasks [9]. Spatial filtering reduces the 
influence of spatial noise. Typical spatial filters include 
common spatial pattern (CSP) and common average refer-
ence (CAR) filters [10]. These spatial filter methods are 
helpful to solve the problem of MI binary classification. In 
1999, G. Pfurtscheller and F.H. Lopes da Silva [11] con-
firmed that when preparing and performing an exercise with 
one hand, the amplitude of the α band (8–12 Hz) and β band 
(13–30 Hz) in the contralateral sensorimotor cortical EEG 
signals decreased. This phenomenon is called event-related 
desynchronization (ERD), which is the reduced amplitude 
of activated cortical EEG signals. At the same time, the 
amplitude of the α  band (8–12 Hz) and β  band (13–30 Hz) 
in the cerebral cortex signaled on the same side as the exer-
cising hand increased; this signal is called event-related 
synchronization (ERS). This outcome means that the cor-
responding cortex increased in amplitude in the resting state 
[12]. Some studies have also indicated that motor imagery 
tasks are associated with attenuation or increase in localized 
brain rhythm activity called ERD/ERS [13].

One of the most popular and efficient methods to extract 
ERD/ERS-related features is the CSP, which is widely used 
for motor imagery BCI designs [14, 15]. CSP aims to find 
an optimal spatial filter by maximizing the filtered vari-
ance of one class and minimizing the filtered variance of 
the other class simultaneously [16]. Generally, the improve-
ment of CSP can be divided into two categories according 
to the direction: one is to optimize the objective function, 
and the other is to optimize the channel quality of EEG sig-
nals. Some studies adopt the second strategy to improve 
CSP; for instance, Dong et al. [17] established the CSP-CIM 
to improve the robustness of CSP with respect to outliers. 
The correntropy-induced metric (CIM) can saturate when 
two vectors are far apart from each other in the input space, 
and this property makes it appropriate for learning problems 
with outliers in the data and helps to build a robust objective 
function [17]. Of course, there are also studies that adopt 
the first strategy to improve CSP. Y. Park and W. Chung [18, 
19] considered a local CSP generated from individual chan-
nels and their neighbors (termed “local regions” [20]) rather 
than a global CSP generated from all channels. To overcome 
some of the shortcomings of the global CSP approach, a local 

temporal CSP (LTCSP) was developed in [16]. Recently, Z. 
Yu et al. [21] proposed introducing a weight function based 
on the phase-locking value (PLV) [22] into the framework 
of LTCSP. B. Chakraborty et al. [23] also considered using 
the phase information and amplitude information of the EEG 
signal to model the CSP. The novelty of this method is that 
the formula for calculating phase information and amplitude 
information is completed with the help of complex space. A 
sparse CSP algorithm that incorporates the sparse technique 
and iterative search into the CSP was proposed by Fu et al. 
[24]. Geirnaert et al. [25] proposed a new attention decod-
ing method by using the filter-bank common spatial pattern 
filters (FB-CSP). Compared to the traditional auditory atten-
tion decoding (AAD) algorithms, FB-CSP does not require 
access to clean source envelopes. More recently, an integrated 
framework, termed common time–frequency-spatial patterns 
(CTFSP), was proposed to extract sparse CSP features from 
multiple frequency bands in multiple time windows [26].

A new optimization method that can increase the difference 
between different classes of motor imagery tasks is desirable. 
Recent studies have indicated that the use of the Euler repre-
sentation for feature extraction has greatly contributed to the 
improvement of image classification accuracy. By combining 
these studies [27–30], some advantages of the Euler representa-
tion have been confirmed as follows. (a) The Euler representa-
tion obtains a larger margin, which is helpful for image clas-
sification by using Euler representation to measure the distance 
between pixels in each image. (b) Moreover, compared with 
the measurement of images of the same category, the Euler 
representation can obtain a larger margin when measuring the 
distance between images of different categories. In other words, 
it can obtain a better separability between different class images.

Inspired by these previous research results, it is also 
possible to utilize the Euler representation for the extrac-
tion of EEG signal features. Therefore, in our proposed 
method, we apply the Euler representation to discriminate 
the characteristics of EEG data between the different MI 
tasks. In this paper, we present a novel feature extraction 
method for MI classification, which is called e-CSP. The 
method uses the Euler representation as a kernel function 
in the input of the CSP. Each sample value is mapped to a 
complex space by the formula of the Euler representation, 
and then the CSP is performed in Euler space. We use 
linear discriminant analysis (LDA) to observe the clas-
sification performance of our proposed method. Higher 
classification accuracy indicates higher class separability. 
A higher separability can be considered a better motor 
imagery discrimination performance [31]. The rest of the 
paper is organized as follows. Section 2 introduces the 
conventional CSP algorithm and our proposed method. 
The experiment and dataset description is presented in 
Sect. 3. Computational results are analyzed in Sect. 4. 
Finally, the conclusions are drawn in Sect. 5.
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2 � Methods

2.1 � Common spatial pattern

The input EEG signals can be defined as a matrix of [N*C*T], 
where C is the number of EEG channels, N represents the 
number of time samples per trial, and T is the number of tri-
als. It is assumed here that the data matrix of each trial is zero 
mean, i.e., each class of data is the center matrix. The sample 
covariance matrices of the two classes are computed as

where X1 and X2 are sample data from two classes, while R1 
and R2 are each of the respective covariance matrices. The 
final spatial covariance R1 and R2 are computed by averaging 
over the trials under each class. Then, the total covariance 
matrix R can be formed as

Due to the symmetry of the covariance matrix R, the 
eigenvalue decomposition is given by

where D is the diagonal matrix formed by the corresponding 
eigenvalues, and U is the eigenvector matrix of the matrix. 
Since the eigenvalues are arranged in ascending order [32, 
33], descending order is performed first. Then, the whitening 
value matrix of R is computed as

and transforms the mean covariance matrices R1 and R2 as

Note that, by principal component decomposition, S1 
and S2 can be formulated as

where B1 and B2 are the eigenvector matrices of S1 and S2, 
and Λ1 and Λ2 are associated eigenvalue matrices with diago-
nal entries. It can be demonstrated that the eigenvectors of 
the matrix and the eigenvector matrices are equal [32, 34]; 
at the same time, the sum of the diagonal arrays and of the 
two eigenvalue matrices is an identity matrix. That is

Thus, the eigenvector corresponding to the largest eigenvalue 
allows S1 to S2 to have the smallest eigenvalue and vice versa. Finally, 
the projection matrix is the corresponding spatial filter W, which is 
defined as

(1)R1 =
X1X

T
1

tr(X1X
T
1
)
,R2 =

X2X
T
2

tr(X2X
T
2
)
,

(2)R = R1 + R2.

R = UDUT ,

(3)P =
√
D−1UT

S1 = PR1P
T , S2 = PR2P

T .

S1 = B1Λ1B1
T , S2 = B2Λ2B2

T ,

B1 = B2 = B,Λ1 + Λ2 = I.

Using the projection matrix W, the EEG signals X1 and 
X2 are projected as

where F1 and F2 (usually after a log transformation) are used 
for classification.

Combining the aforementioned analysis, we find that the 
spatial filter is obtained by comparing the filtered variance 
of one class to the filtered variance of the other class. Thus, 
the objective function of CSP can be written as

where w is the spatial filter W obtained by the above process. 
R1 and R2 are computed by averaging over the trials under 
each class. When the objective function reaches a maximum, 
the spatial filter W is optimal.

2.2 � Euler representation for CSP

2.2.1 � Motivation

To solve the optimization problem of the spatial filter in the 
CSP objective function, we consider using the kernel trick 
property to capture the nonlinear similarity of features to 
improve the discrimination ability of CSP. Different from 
the commonly used kernel function, which maps data into a 
higher-dimensional hidden space, the Euler representation 
maps data into an explicit space that has the same dimen-
sionality as that of the original data space. In our proposed 
Euler representation for the CSP method, the Euler rep-
resentation is used as a kernel function in the input of the 
algorithm, and it is expected to improve the CSP. To better 
explain the formulation of the Euler representation for CSP, 
we first introduce the definition of the cosine kernel func-
tion, i.e., cosine distance, and then analyze its advantages.

Definition:  Given two arbitrary vectors xj and xp ∈ Rm [35], 
the cosine distance metric between them is.

where xj(c) is the c-th element of xj.
In most feature extraction algorithms, the Euclidean distance 

is generally used as the measurement metric of discrimination 
between data. In fact, the cosine distance can also be used as a 
measurement metric. Two classes of motor imagery data are 
marked as A and B. Tables 1 and 2 list the distance between 
the same class and different classes of data under different 

(4)W = BTP.

F1=W
TX1 and F2=W

TX2,

(5)J(w) =
tr(wTR1w)

tr(wTR2w)
,

(6)d(xj,xp)=

m∑
c=1

{1 − cos(��(xj(c) − xp(c)))},
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measurement metrics. By comparing the ratio of the between-
class distance to the within-class distance, we find that under 
the cosine distance metric, this ratio is always greater than that 
of the Euclidean distance. The results illustrate that the cosine 
distance is more advantageous in determining the difference 
between classes, which will greatly contribute to improving 
the accuracy of classification. Thus, the cosine distance metric, 
which is defined in Eq. (6), is a more effective kernel function.

Combining the aforementioned analysis and the compari-
son with the Euclidean distance, we can obtain the following 
two characteristics of cosine distance:

(1)	 Using the cosine distance metric enlarges the distance 
between all sample value margins between different 
channels at the same time point. This enlargement dem-
onstrates that the metric of the cosine distance can help 
obtain a large margin, making it advantageous for the 
classification of motor imagery.

(2)	 Compared to Euclidean distance, the cosine distance metric 
can enlarge the distance between samples of different classes.

	   Therefore, the cosine distance metric not only obtains 
a greater degree of discrimination between different 
channels but also increases the degree of discrimination 
between the different classes of motor imagery data. 
This outcome greatly improves classification accuracy. 
Combining the aforementioned analysis for the cosine 
distance metric, we build a robust formulation for CSP. 
By simple algebra, Eq. (6) can be rewritten as Eq. (7).

where

is called the Euler representation of xj.
Equation (7) illustrates that the sample values of different chan-

nels at two time points obtained by the cosine distance metric are 
equivalent to the ℓ2-norm between the corresponding two vectors 
with the Euler representation. In addition, the ℓ2-norm is a better 
function expression of the optimization problem than the cosine 

(7)

d(xj,xp)=
∑m

c=1
{1 − cos(��(xj(c) − xp(c)))}

= ‖ 1√
2
(ei��xj − ei��xp)‖2

2

= ‖zj − zp‖22

(8)zj =
1√
2

⎡⎢⎢⎣

ei��xj(1)

...

ei��xj(c)

⎤⎥⎥⎦
=

1√
2

ei��xj

distance in practical applications. Therefore, our proposed method 
first maps the sample values xj normalized in [0, 1] onto the com-
plex representation zj ∈ Cm and then performs the complex CSP 
in Euler space. To more intuitively observe the contribution of the 
Euler representation for EEG data, we use its formulation, which 
is defined in Eq. (8) for EEG data. As shown in Fig. 1, the results 
indicate that the use of the Euler representation can obtain more 
consequential information. This outcome further confirms that 
our consideration is feasible and that the Euler representation is 
meaningful as an optimization strategy for CSP.

2.2.2 � Euler CSP

The Euler representation is used to transform the two classes 
of motor imagery data, and for the EEG data of a single trial, 
Zn1=

1√
2
ei��Xn1 , where Xn1 is a vector consisting of the sam-

pled values of each channel at a time point, then the EEG data 
for a single trial can be denoted as Z = [Zn1, Zn2...ZN] , and 
data for all trials are denoted as such.

By simple algebra [16], the objective function of CSP (Eq. (5)) gives

where (i) denotes the i-th trial, �j  is the j-th column of matrix w, 
and T1 and T2 correspond to the numbers of trials for X1 and X2, 
respectively. On account of the use of the Euler representation 
for X1 and X2, the numerator of the objective function becomes

and the denominator is likewise formulated. The covari-
ance matrices of X1 and X2 are calculated by

where Z1 and Z2 are the Euler representations of X1 and X2, 
respectively. Then, the total covariance matrix G is calcu-
lated by

(9)

J(w) =
tr(wTR1w)

tr(wTR2w)

=
tr(wT (

1

T1

∑T1
i=1

R1(i))w)

tr(wT (
1

T2

∑T2
i=1

R2(i))w)

=

1

T1

∑T1
i=1

∑C

j=1
(�T

j
X1(i)X1(i)

T∕tr(X1(i)X1(i)
T ))

1

T2

∑T2
i=1

∑C

j=1
(�T

j
X2(i)X2(i)

T∕tr(X2(i)X2(i)
T ))

,

(10)
1

T1

∑T1

i=1

∑C

j=1

(
�
T
j
Z1(i)Z1(i)

T∕tr
(
Z1(i)Z1(i)

T
))

,

(11)G1 =
Z1Z

T
1

tr(Z1Z
T
1
)
,G2 =

Z2Z
T
2

tr(Z2Z
T
2
)
,

Table 1   Comparison of normalized dissimilarity measures between 
the same class

Subject 1 2 3 4 5

Dissimilarity A-A A-A A-A A-A A-A
Euclidean 0.2674 0.2909 0.2245 0.3241 0.2635
Cosine-based 99.64 115.25 74.98 134.49 98.51

Table 2   Comparison of normalized dissimilarity measures between 
different classes

Subject 1 2 3 4 5

Dissimilarity A-B A-B A-B A-B A-B
Euclidean 0.3266 0.3923 0.3491 0.5267 0.3699
Cosine-based 134.01 168.66 146.43 238.11 159.94
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Hence, the objective function of e-CSP is rewritten as

(12)G = G1 + G2.

(13)J(Q) =
tr(QTG1Q)

tr(QTG2Q)
,

where Q is the new projection matrix of e-CSP, G1 is the 
spatial covariance matrix of the average trials for one class 
and G2 is the spatial covariance matrix of the average trials 
for the other class.

The procedure of solving the objective function, i.e., 
e-CSP, is summarized in the following algorithm.

Fig. 1   Contribution of the Euler 
representation for EEG data. a 
The traditional data; b the data 
using the Euler representation

3 � Data and experiment

In this section, we use two publicly available EEG data 
sets from BCI competitions and a new Motor Imagery 
dataset from Cho et al. [36] to evaluate the performance 
of the proposed algorithm and compare the results with 
the conventional CSP algorithm. In our experiments, 

linear discriminant analysis (LDA) and support vec-
tor machines (SVM) are used as classifiers. As shown 
in Fig. 2, the experiments mainly include three parts: 
preprocessing, feature extraction, and classification. To 
fully verify the performance of our proposed method, 
we design four experimental paradigms, which are 
described below.
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(1)	 For experiment 1, we compare the classification accura-
cies of the e-CSP with other optimization methods of 
CSP in the BCI competition III dataset IVa and BCI 
competition III dataset IIIa publicly available datasets 
under the LDA classifier.

(2)	 For experiment 2, we empirically set the maximum 
number of projection vectors as the number of elec-
trodes and set the parameter α in the e-CSP to 0.9, 1.2, 
and 0.5 in the BCI competition III dataset IVa, BCI 
competition III dataset IIIa, and Cho’s dataset, respec-
tively. In addition, to obtain the accuracies of the e-CSP 
and the CSP, we also calculated the F1-score based on 
the accuracy to fully evaluate the performance of the 
e-CSP.

(3)	 For experiment 3, we set the parameter α in the e-CSP 
to 1.1 in the BCI competition III dataset IVa and BCI 
competition III dataset IIIa. We set the parameter α in 
the e-CSP to 0.5 in Cho’s dataset. Then, we compare 

the classification accuracies of the e-CSP and CSP 
algorithms under the LDA and SVM classifiers.

(4)	 For experiment 4, we respectively set the number of 
projection vectors to 30, 48, and 24 in the BCI compe-
tition III dataset IIIa, BCI competition III dataset IVa, 
and Cho’s dataset. We set the parameter α in the e-CSP 
from 0.1 to 1.9 to observe its influence on the accuracy.

All experiments are performed on the Windows 10 oper-
ating system, and the fivefold cross-validation was used for 
model evaluation. It includes three steps. First of all, the data-
set was divided into five subsets, and then the four subsets of 
that were used to train the model while the rest subset was used 
to test and calculate the accuracy of the method; finally, this 
process was repeated five times such that each subset was used 
once as testing set. We recorded the final averaged accuracy. 
The rest of this section includes the description of the specific 
information of the dataset and the preprocessing of the data.

Fig. 2   The block diagram of the 
experiments

Table 3   BCI competition 
datasets information

Dataset BCI competition III dataset IVa BCI competition III dataset 
IIIa

Subject aa al av aw ay s1 s2 s3

Number of training trials 168 224 84 56 28 90 60 60
Number of test trials 112 56 196 224 252 90 60 60
Total number of trials 280 180 120 120
Number of electrodes 118 60
Sample rate 100 Hz 250 Hz
MI task type Right hand and right foot Left hand and right hand

Table 4   Cho’s dataset 
information

Dataset Cho’s dataset

Subject S01 S02 S03 S06 S14 S23 S35 S41 S43 S50

Number of training trials 150 66 150 150 100 150 150 134 100 150
Number of test trials 50 134 50 50 100 50 50 66 100 50
Total number of trials 200
Number of electrodes 64
Sample rate 128 Hz
MI task type Left hand and right hand
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3.1 � Data description

3.1.1 � BCI competition datasets

The two publicly available datasets used to evaluate the per-
formance of our proposed method are the BCI competition 
III dataset IVa and the BCI competition III dataset IIIa. The 
detailed information is described in Table 3.

3.1.2 � Cho’s dataset

This dataset conducted a BCI experiment for motor imagery move-
ment (MI movement) of the left and right hands with 52 subjects 
(19 females, mean age ± SD age = 24.8 ± 3.86 years). Each subject 

took part in the same experiment, and subject ID was denoted and 
indexed as S01, S02, …, S52. In this paper, we randomly select 
the data of 10 subjects to evaluate the performance of the proposed 
method. The detailed information is described in Table 4.

For the MI performance, some brief descriptions were provided 
[36]. The performance of subjects “S02” and “S23” are worse than 
that of the other subjects, as will be seen in the experiments.

3.2 � Data preprocessing

According to the background knowledge of neurophysiology, 
it can be known that during imagination, the neuronal cluster 
discharge of the sensorimotor cortex of the brain can cause ERS 
or ERD [37]. The characteristic frequency of these phenomena 
mainly includes an α-rhythm of 8–12 Hz and a β-rhythm of 
13–30 Hz. Thus, in the preprocessing phase, a fifth-order But-
terworth filter was first used for 8–30 Hz bandpass filtering. As 
in [38], the cut-off speed will increase when the order of the 
filter increases. For MI signals, the selection of the 5th order 
filter usually leads to the optimal cut-off speed. For the signal 
data for feature extraction, EEG data between 0.5 and 2.5 s after 
the visual cue of the motor imagery task were selected because 
this is the best time period for the EEG to detect ERD/ERS [38].

4 � Results and discussion

In this section, the results of the three experiments will be 
detailed in turn. The classification accuracy is used as an 
index to evaluate the performance of the algorithm in our 
study. Higher accuracy indicates higher class separability. 
A higher separability can be considered a better motor 
imagery discrimination performance. Moreover, the F1-
score is also used as an index to compare the performance 
of the e-CSP and the CSP. The results include three parts: 
the performance comparison of e-CSP and CSP based on 
other optimization strategies, the performance comparison 
of e-CSP and CSP, and the impact of the parameter α in 
the Euler representation.

Table 5   Classification accuracies of the proposed method and differ-
ent methods in the BCI competition III dataset IVa. The bold content 
in each row of the table represents the highest accuracy achieved in 
that row

Subject e-CSP CSP 
phase + amp

LTCSP p-LTCSP

aa 90.00 ± 1.8 96.4 ± 1.22 73.21 ± 1.76 77.68 ± 1.16
al 96.78 ± 1.16 66.96 ± 1.01 98.00 ± 1.18 97.10 ± 1.28
av 93.10 ± 1.86 57.95 ± 0.87 71.43 ± 1.77 71.94 ± 1.07
aw 96.10 ± 1.86 75.36 ± 1.13 89.72 ± 1.41 92.41 ± 1.38
ay 95.60 ± 2.86 64.76 ± 0.97 74.60 ± 1.91 72.41 ± 1.10
Mean 94.31 ± 2.07 72.29 ± 1.08 81.39 ± 1.33 82.63 ± 1.24

Table 6   Classification accuracies of the proposed method and differ-
ent methods in the BCI competition III dataset IIIa. The bold content 
in each row of the table represents the highest accuracy achieved in 
that row

Subject e-CSP CSP 
phase + amp

LTCSP p-LTCSP

s1 94.10 ± 2.35 76.48 ± 1.22 94.83 ± 1.89 96.6 ± 1.88
s2 92.90 ± 2.87 86.48 ± 1.66 73.30 ± 1.22 71.67 ± 1.28
s3 97.50 ± 1.46 80.87 ± 0.97 96.40 ± 0.97 97.50 ± 0.98
Mean 94.83 ± 2.66 81.27 ± 0.98 88.51 ± 1.77 88.59 ± 1.32

Fig. 3   Average classification 
accuracies of the proposed 
method and different methods 
on the two datasets. a The BCI 
competition III dataset IVa, 
and b the BCI competition III 
dataset IIIa
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4.1 � Performance comparison of the e‑CSP 
with other methods on BCI competition 
datasets

To evaluate the performance of the proposed method, we also 
compare the classification accuracies of several other methods 
in two public competition datasets. We obtained the accura-
cies of the other three methods in the two competition datasets 
from previous studies [16, 21, 23]. The results are presented 
in Table 5, Table 6, and Fig. 3. Table 5 lists the classification 
accuracies of the proposed e-CSP and the other three methods 
in the BCI competition III dataset IVa. The e-CSP obtains 
higher classification accuracies for the subjects “av” and “aw” 
than the other three methods. The mean classification accu-
racy of the e-CSP is better than that of the other methods. 
The e-CSP classification accuracy is 22.02%, 12.92%, and 
11.68% higher than those of the CSP phase + amp, LTCSP, 
and p-LTCSP, respectively. As seen in Table 6, the perfor-
mance of the CSP phase + amp [23] is very unstable in com-
parison with the e-CSP. The LTCSP [16] and p-LTCSP [21] 
are both CSPs based on temporally local manifolds, and they 
both show better classification performance for subject “al” 
than the e-CSP. However, the mean classification accuracy of 
e-CSP is higher than that of the LTCSP and p-LTCSP.

We also evaluate the performance of the e-CSP in the 
BCI competition III dataset IIIa. Table 6 shows the classifi-
cation accuracies of the e-CSP, CSP phase + amp, LTCSP, 
and p-LTCSP. It is evident that the e-CSP also achieves 
the greatest mean classification accuracy. The mean clas-
sification accuracy of the e-CSP is better than that of the 
other methods, with accuracies that are 13.56%, 6.32%, and 
6.24% higher than those of the CSP phase + amp, LTCSP, 
and p-LTCSP, respectively.

The classification accuracies of the four methods on the 
two datasets are presented in Fig. 3. By contrast, the e-CSP 
has relatively superior classification accuracies across the 
eight subjects. A T-test was performed for the e-CSP and 
one of the other methods one by one. The results also reveal 
that the accuracies of the e-CSP are significantly higher than 
other methods (P < 0.05). The results demonstrate that the 
Euler representation is indeed a meaningful optimization 
strategy based on CSP.

4.2 � Performance comparison of e‑CSP with CSP

In addition, to verify the effectiveness of the e-CSP on BCI 
competition datasets, we also performed experiments using 

Cho’s dataset. The average classification accuracies across 
all subjects of the conventional CSP and the proposed e-CSP 
with the number of projection vectors can be seen in Fig. 4 
and Table 7. As shown in Fig. 4, some results are revealed 
in the curve of the classification accuracies across the 8 
subjects.

(1)	 When the number of projection vectors is small, the 
classification accuracy of the e-CSP is higher than that 
of the CSP, and when it reaches a certain threshold, the 
performance of the conventional CSP will be slightly 
higher than that of the e-CSP. For different subjects, the 
threshold points are different, but the overall perfor-
mance trend is the same. As shown in Fig. 4(b), when 
the number of projection vectors is set as 40, the clas-
sification accuracy of the CSP and e-CSP is the same. 
When the number of projection vectors is less than 40, 
the classification accuracy obtained by the e-CSP is 
higher than that obtained by the CSP. However, when 
the number of projection vectors is greater than 40, 
the classification accuracy obtained by the e-CSP is 
lower than that of the CSP. The results illustrate that 
to achieve the same classification accuracy: the e-CSP 
requires fewer features than those of the CSP. In other 
words, the e-CSP is more effective.

(2)	 In addition, principal component analysis (PCA) is 
used to select the features with a variance of 95% from 
the extracted features. During the evaluation process, 
it is found that the proportion of the effective features 
among all the features extracted by the e-CSP is always 
higher than that of the CSP when extracting the same 
number of features. This result further validates the 
effectiveness of the e-CSP.

(3)	 As shown in Fig. 4(a), (b), and (d), although the accu-
racy obtained by the e-CSP is greater than 80% regard-
less of the number of the projection vectors, the accu-
racies show a decreasing trend. In previous works, the 
number of the pair of filters (i.e., projection vectors) 
was empirically set to 3 [37]. In this paper, in order to 
compare the impact of the number of projection vec-
tors, we set it from the maximum value to the minimum 
value. The trend shown in the figure demonstrates that 
a few leading projection vectors contain more discrimi-
native features.

The above results indicate that, compared with con-
ventional CSP, the e-CSP shows better classification per-
formance when the number of projection vectors is rela-
tively small. When the number of features extracted by 
these two algorithms is the same, the features extracted by 
the e-CSP contain more effective features. These results 
reveal that the e-CSP has better feature discrimination per-
formance, which provides a more efficient proposal for 

Fig. 4   Average classification accuracies versus the number of projec-
tion vectors in the BCI competition III dataset IVa and BCI competi-
tion III dataset IIIa. The horizontal axis in the figure represents the 
number of projection vectors, and the vertical axis represents the clas-
sification accuracy

◂
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feature extraction of EEG data. The good performance of 
the e-CSP can also be confirmed in the curve of classifica-
tion accuracy of the left- and right-hand motor imagery 
tasks. In Fig. 4(g), it can be observed that under various 
projection vector numbers, the classification accuracy of 
the e-CSP is higher than that of the conventional CSP from 

a macro perspective. Moreover, the average accuracy of 
the e-CSP is significantly higher than that of CSP by per-
forming a T-test (P < 0.05). In summary, by comparing the 
experimental results above, it is obvious that a substantial 
improvement of the CSP is obtained by the e-CSP in the 
majority of cases.

Table 7   Classification 
accuracies versus the number 
of projection vectors for each 
subject in the Cho’s dataset

Number of pro-
jection vectors

Method Subject

S01 S02 S03 S06 S14 S23 S35 S41 S43 S50

4 CSP 46 46 52 56 77 52 90 66 66 46
e-CSP 62 53 82 76 79 60 90 61 69 64

8 CSP 60 52 58 72 78 58 90 63 68 46
e-CSP 66 60 84 78 80 58 90 72 74 60

12 CSP 68 57 84 70 79 56 86 69 77 64
e-CSP 60 58 84 78 80 60 88 72 70 62

16 CSP 68 56 78 74 80 64 86 61 78 60
e-CSP 60 64 82 74 81 58 92 73 75 62

20 CSP 64 53 72 72 82 68 86 63 76 68
e-CSP 58 66 80 74 80 54 88 73 76 72

24 CSP 62 53 80 74 83 64 76 64 81 80
e-CSP 58 62 80 74 81 66 90 73 76 74

28 CSP 58 51 78 78 78 72 82 66 81 76
e-CSP 62 59 80 78 83 60 86 75 74 76

32 CSP 60 48 76 80 81 68 82 69 84 78
e-CSP 58 63 74 78 80 64 86 70 75 76

36 CSP 68 49 72 66 84 72 84 69 81 78
e-CSP 62 61 76 74 80 66 84 64 72 74

40 CSP 66 50 76 66 77 70 80 64 82 78
e-CSP 58 58 82 78 78 68 86 64 76 76

44 CSP 68 53 66 62 82 64 80 66 81 76
e-CSP 60 58 80 78 77 68 84 64 74 78

48 CSP 68 56 66 64 78 64 78 61 82 72
e-CSP 56 57 80 78 78 68 78 66 75 74

52 CSP 66 51 62 66 71 56 80 61 81 70
e-CSP 62 59 76 78 77 62 74 69 73 70

56 CSP 62 46 62 66 75 56 74 63 84 66
e-CSP 62 59 74 76 77 64 78 66 74 70

60 CSP 54 51 68 68 72 54 78 66 81 68
e-CSP 66 59 72 78 76 64 76 69 75 70

64 CSP 60 47 70 68 73 56 76 66 80 70
e-CSP 66 54 76 76 76 60 76 73 74 72

Table 8   Average F1-score of 
the CSP and the e-CSP for each 
subject in three datasets

Method Subject

aa al av aw ay s1 s2 s3 S01

CSP 0.5 0.98 0.52 0.71 0.47 1 1 1 0.63
e-CSP 0.52 0.98 0.54 0.7 0.6 1 1 1 0.65

S02 S03 S06 S14 S23 S35 S41 S43 S50
CSP 0.57 0.69 0.65 0.68 0.6 0.82 0.62 0.71 0.72
e-CSP 0.64 0.77 0.69 0.72 0.69 0.87 0.75 0.83 0.78
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Fig. 5   Average classification 
accuracies versus the different 
methods under two classifiers 
on two datasets. a The BCI 
competition III dataset IVa; b 
the BCI competition III dataset 
IIIa; c the subjects S01, S02, 
S23, S41, and S43 in the Cho’s 
dataset; and d the subjects S03, 
S06, S14, S35, and S50 in the 
Cho’s dataset

Fig. 6   Average classification 
accuracies versus the α value 
of different datasets. a The BCI 
competition III dataset IVa; b 
the BCI competition III dataset 
IIIa; c the subjects S03, S06, 
S14, S35, and S50 in Cho’s 
dataset; and d the subjects S01, 
S02, S23, S41, and S43 in the 
Cho’s dataset. The horizontal 
axis in the figure represents the 
value of the parameter α, and 
the vertical axis represents the 
classification accuracy
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As shown in Table 7, some results similar to those on 
the two public datasets can also be observed in Cho’s data-
set. Although the classification accuracy of the e-CSP is 
not the same when the number of projection vectors is 
different, the same is that the classification accuracy of 
the e-CSP is higher than the CSP in the majority of cases. 
Furthermore, this behavior becomes more obvious when 
the number of projection vectors is small. Some other phe-
nomena are also deserved to be discussed. When the num-
ber of projection vectors was set as 48 and 52, the classifi-
cation accuracies of subjects “S01” and “S43” obtained by 
the e-CSP are not greater than that by the CSP. It may be 
due to the impact of the parameter α. Thus, we also inspect 
the fluctuation of classification accuracy of the e-CSP with 
the change of the parameter α in the following section. In 
summary, the performance of Cho’s dataset has further 
verified the effectiveness of the e-CSP.

Based on the classification accuracy, we calculated the 
F1-score to further compare the performance of the two 
methods. F1-score is defined as the harmonic mean of pre-
cision and recall, whose range is [0, 1] [39]. The results are 
shown in Table 8. It is demonstrated that the F1-score of the 
e-CSP is higher than that of the CSP. It is worth mentioning 
that better accuracy does not mean a higher F1-score, but 
the higher F1-score represents the robustness of the method.

In Fig. 5, the average classification accuracy of the con-
ventional CSP and e-CSP algorithms across all subjects 
under both LDA and SVM classifiers are obtained. In the 
experiment, the linear kernel function was set for the SVM 
classifier, and the LDA classifier was followed the Fisher 
criterion. In the majority of cases, the classification accu-
racy of the e-CSP is higher than that of the CSP regardless 
of whether LDA or SVM is used. Statistical significance of 
accuracy was estimated by performing a T-test with a con-
fidence level of 0.05, which verified the result mentioned 
above. It is evident that the results obtained by the SVM are 
in exceptionally good agreement with those obtained by the 
LDA. This outcome proves that our proposed algorithm has 
no classifier dependency, and the classifier has no effect on 
the essence of the results.

4.3 � Performance comparison of e‑CSP based 
on parameter α

The change in the average classification accuracies across all 
subjects of parameter α in the Euler representation of the two 
public datasets and Cho’s dataset is reported in Fig. 6. Tables 9 
and 10, respectively, list the value of α when the e-CSP obtains 
the best classification accuracy. The parameter α is set from 0.1 to 
1.9 with a step size of 0.1 to observe the change in classification 
accuracy. Similar behavior is observed in the BCI competition 
III dataset IVa and BCI competition III dataset III a two publicly 
datasets; although the values of the best classification accuracy of 
each subject are not the same, they are concentrated in the range 
of 0.8–1.3. However, some different results between the two data-
sets can also be noticed. As shown in Fig. 6(a), the parameter α 
has a small influence on the performance of e-CSP, while it is 
seen that in another dataset (Fig. 6(b) ), with the change in param-
eter α, the classification accuracy displays large fluctuations.

However, in Cho’s dataset, it can be observed that as the 
parameters change, the performance of the e-CSP does not 

Table 9   Values of α for the best 
classification of the proposed 
method in the two datasets

Dataset BCI competition III dataset IVa BCI competition III dataset IIIa

Subject aa al av aw ay s1 s2 s3

The best α 0.8 0.9 1.2 1.0 1.3 1.1 1.1 1.2

Table 10   Values of α for 
the best classification of the 
proposed method in the Cho’s 
dataset

Dataset Cho’s dataset

Subject S01 S02 S03 S06 S14 S23 S35 S41 S43 S50

The best α 1.4 0.4 1.9 0.9 1.6 0.7 0.5 0.8 0.4 0.4

Fig. 7   Average classification accuracies of the proposed method and 
CSP in the lower limb MI data
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show similar behavior as in the two public datasets. As shown in 
Fig. 6(c), for the subjects “S35” and “S50”, the e-CSP can achieve 
relatively high accuracies when the values of the parameter α are 
concentrated in the range of 0.1–0.5; moreover, as the parameter 
α increases, the accuracy decreases. As shown in Fig. 6(d), the 
curve of the classification accuracy for the subject “S01” shows a 
rising trend with the increase of the parameter α. For the most of 
subjects, when the parameter α is in [0.3 0.8] interval, the e-CSP 
overall has good performance. Thus, we set the parameter α as 
0.5 in experiment 1 and experiment 2 on Cho’s dataset.

Moreover, we compared the classification accuracies of 
the CSP and the e-CSP in lower limb MI data. The dataset 
was collected by our laboratory, which was based on the 
MI task of the right foot and left foot. As shown in Fig. 7, 
the average classification accuracy of the e-CSP is greater 
than that of the CSP.

5 � Conclusion

A novel feature extraction method is proposed for EEG 
classification, which is called the e-CSP. Different from 
other methods proposed to optimize the objective function 
of the CSP, e-CSP maps the sample values into the Euler 
space by explicit Euler representation and then performs 
the complex CSP in Euler space. Compared to the con-
ventional CSP, e-CSP uses the cosine distance metric to 
measure the within-class and between-class scatters in the 
criterion function. The effectiveness of the e-CSP is illus-
trated by comparing with the CSP in the BCI competition 
III dataset IVa, the BCI competition III dataset IIIa and the 
Cho’s dataset. From the experimental results, the e-CSP 
performs better than the CSP under both the LDA and 
SVM classifiers. Moreover, the e-CSP enhances EEG clas-
sification and outperforms some other recent related meth-
ods in the publicly available BCI competition datasets.
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