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Abstract
Diffusion tensor imaging (DTI) data interpolation is important for DTI processing, which could affect the precision and 
computational complexity in the process of denoising, filtering, regularization, and DTI registration and fiber tracking. In 
this paper, we propose a novel DTI interpolation framework named with spectrum-sine (SS) focusing on tensor orientation 
variation in DTI processing. Compared with the state-of-the-art DTI interpolation method using Euler angles or quaternion to 
represent the orientation of DTI tensors, this method does not need to convert eigenvectors into Euler angles or quaternions, 
but interpolates each tensor’s unit eigenvector directly. The prominent merit of this tensor interpolation method lies in tensor 
orientation information preservation, which is different from the existing DTI tensor interpolation methods that interpolating 
tensor’s orientation information in a scalar way. The experimental results from both synthetic and real human brain DTI data 
demonstrated the proposed SS interpolation scheme not only maintains the advantages of Log-Euclidean and Riemannian 
interpolation frameworks, such as preserving the tensor’s symmetric positive definiteness and the monotonic determinant 
variation, but also preserve the tensor’s anisotropy property which was proposed in the spectral quaternion (SQ) method.

Keywords  Diffusion tensor MRI · Spectrum-sine interpolation · DTI mean · Riemannian manifold

1  Introduction

Diffusion tensor imaging (DTI), as a modality of magnetic 
resonance imaging (MRI), can noninvasively quantify the 
self-diffusion of water in vivo to obtain the structural infor-
mation of human tissue for further studies, such as human 
white matter fiber tracking (Basser et al., 1994; [9, 10], reg-
istration [1, 11] and brain atlas construction (Hervé et al., 
2011; [19, 23]. The matrix-valued data obtained by DTI, 
namely tensor field, is very important in the field of scientific 
visualization and image processing (Weickert et al., 2005). 
The concept of a tensor is a common physical description of 
anisotropic behavior, especially in solid mechanics and civil 
engineering, generally used in the measurement of stress, 

strain, inertia, permeability, and diffusion. A tensor can be 
defined as a 3 × 3 symmetric positive definite matrix [5], 
which can be expressed as an ellipsoid. The tensor’s orien-
tation and size are respectively represented by its eigenvec-
tors and eigenvalue. These diffusion tensors can be used to 
express the fiber architectural characteristics of anisotropic 
fibrous tissues and organs in vivo, and they contain direc-
tional information, diffusion anisotropy, and diffusion coef-
ficient magnitude of the microstructure information, which 
has important value for clinical medical analysis. However, 
due to the technical limitations of image acquisition, the 
resolution of DTI data is relatively low, such as the sparse 
and discontinuous myocardial part of the heart, which is 
misleading for clinical analysis. In addition, tensor inter-
polation is required to obtain information between voxels 
in some applications, all that makes DTI interpolation an 
important step in DTI processing. Diffusion tensor interpola-
tion is a process in which tensors of known sampling voxels 
are used to generate tensors of unknown voxels, and then, 
high-resolution images are generated from low-resolution 
images [28].

Classical methods of DTI interpolation were completed 
by converting tensor information into scalar data in Euclid-
ean space. Kindlmann et al. [12] decomposed the original 
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diffusion-weighted images (DWI) into six channels of DWI 
scalar images, each corresponding to a pair of gradient 
encoding directions used during scanning acquisition, and 
then, values at each sampling point in the volume from these 
scalar images are interpolated linearly. Zhukov et al. (29) 
proposed reconstructing continuous tensor fields by using 
trilinear piecewise interpolation. Wang et al. [25] suggested 
a novel constrained variational principle for simultaneous 
smoothing and estimation of the diffusion tensor field. In 
the field of medical image registration, scalar interpola-
tion methods based on the Euclidean framework have been 
widely used in clinical [16, 21], but it cannot guarantee the 
positive definiteness and invariance of tensor [13–16].

In order to overcome this problem, the concepts of 
affine invariant metric, logarithmic Euclidean metric, and 
Riemannian symmetric space metric have been introduced 
into a tensor field in literature [17, 18, 23], Fletcher et al., 
2007; [4]. The tensor space is a manifold, which is not a 
vector space with the usual additive operator. Pennec et al. 
[17] studied partial differential equations (PDE) in the 
framework of affine invariants and firstly introduced the 
affine invariant Riemannian metric on the tensor space 
and treated the diffusion tensor space as a Riemannian 
manifold. Fletcher et  al. (2007) demonstrated that the 
space of diffusion tensors is more naturally described as a 
Riemannian symmetric space, rather than a linear space, 
and developed a natural method for three-dimensional 
interpolation of diffusion tensor images based on the space 
formulation in this framework. Besides, the Riemannian 
symmetric geometry of tensors maybe allow to define 
an anisotropy property called geodesic anisotropy. This 
framework is based on geodesic interpolation and rotation 
interpolation proposed by Batchelor et al. [4]. In order to 
reduce the computational cost of the algorithm, Arsigny 
et al. [2] proposed a tensor interpolation method based 
on the logarithmic Euclidean (Log-E) metric. However, 
the Log-E interpolation method based on the Riemannian 
framework always generates a fixed determinant profile, 
which is not adapted to various diffusion modes in biological 
tissue. Therefore, Son et al. (2012) proposed a profile control 
method based on the non-uniform motion on a Riemannian 
geodesic. This method can use an arbitrary monotone 
profile such as linear profile, Riemannian profile, and 
sinusoidal profile instead of the fixed profile so that the final 
interpolation results can be changed with the characteristics 
of the diffusion model of biological tissue.

Although these interpolation methods can guarantee 
the monotonic variation of tensor determinant to avoid the 
expansion effect, the monotonicity of tensor properties is 
neglected. Yang et al. [27] introduced a feature-based inter-
polation framework for the tensor fields. In this framework, 
a diffusion tensor has two features in terms of its size and 
orientation. Through interpolating the Euler angles [6] or 

quaternion [20] relevant to tensor orientation and loga-
rithmically transformed eigenvalues, the tensor can be 
reconstructed from the interpolated tensor orientations and 
eigenvalues. This method not only preserves the symmetric 
positive definiteness of the tensor and the monotonic deter-
minant variation, but also maintains the monotonicity of 
fractional anisotropy (FA) and mean diffusivity (MD) val-
ues. These methods achieve the goal of keeping some prop-
erties of the tensor invariable, but they ignore the anisotropy 
of the tensor. In order to solve this problem, Collard et al. [7] 
suggested a spectral quaternion (SQ) interpolation method 
based on quaternion, defining Hilbert anisotropic (HA) value 
and replacing linear quaternion interpolation weight with 
the weight relative to HA. The SQ method well maintains 
the anisotropy of interpolated tensors and improves compu-
tational efficiency. However, this method interpolates dif-
fusion tensors by converting diffusion tensor eigenvectors 
into scalar quaternion data, which is not suitable for high-
dimensional manifold space interpolation.

In this paper, taking into account the internal relation 
between tensor components, we propose a novel spectrum-
sine-based interpolation framework for the diffusion tensor 
fields. In our, SS interpolating framework, the interpolated 
tensor is also represented by its eigenvalues and eigenvec-
tors. Compared with the means about Euler angles or qua-
ternion mentioned above [7, 27], this method does not need 
to convert eigenvectors into Euler angles or quaternions, 
but deals directly with DTI eigenvectors. Experimental 
results on synthetic and real human brain DTI data, both 
demonstrated that the SS interpolation scheme can not only 
maintain the advantages of Log-Euclidean and Riemannian 
interpolation such as preserving symmetric positive definite-
ness and the monotonic determinant variation, but can also 
preserve the anisotropy property as SQ method while saving 
more computational cost.

The rest of this paper is organized as follows. Section 2 
introduces our interpolation framework, from two tensors 
interpolation, four tensors interpolation to multidimensional 
interpolation, together with a brief invariant property deduc-
tion during the SS interpolation. In Sect. 3, the evaluation 
indexes for DTI interpolation are briefly described. Section 4 
gives comparison on experimental results with Log-E and 
SQ methods on both synthetic and real DTI data. Section 5 
illustrates the results of our framework in different applica-
tions, such as filtering and regularization, followed by dis-
cussion and conclusion respectively in Sects. 6 and 7.

2 � Methods

A diffusion tensor has two main features, including size 
and orientation. The tensor’s size and orientation can 
be represented respectively by its three eigenvalues and 
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eigenvectors. Suppose there are two positive tensors S1 
and S2 at point t = 0 and t = 1 , then we try to interpolate 
the tensor S(t) at point t(0 < t < 1) . Decompose S1, S2 as 
S1 = U1Λ1U

T
1

,S2 = U2Λ2U
T
2

 , where Λi = diag
(
�i1, �i2, �i3

)
 

with 𝜆i1 ≥ 𝜆i2 ≥ 𝜆i3 > 0 , U1,U2 are the orthogonal eigenvec-
tor matrices of S1, S2 , (i = 1, 2) . For size feature interpola-
tion, since the Log-E method gives a good solution, here we 
also choose their method [2]. Therefore, the interpolated 
eigenvalues of S(t) can be written as

For tensor’s orientation feature interpolation, i.e., eigen-
vectors interpolation, we propose a new framework named 
with spectrum-sine, which will be described in the following 
subsections.

2.1 � Interpolation of two tensors

For a one-dimensional case, suppose v1, v2 are the corre-
sponding unit eigenvectors of tensors S1, S2 , and the included 
angle of v1, v2 is � . Note the corresponding interpolated 
eigenvectors of S(t) as v(t) since v1, v2 are both unit vectors 
and v(t) is also a unit vector. According to Fig. 1,

Owing to the sine theorem, namely

(1)

⎧
⎪⎨⎪⎩

�
�

i1
= exp

�
tlog�11 + (1 − t)log�21

�
�

�

i2
= exp

�
tlog�12 + (1 − t)log�22

�
�

�

i3
= exp

�
tlog�13 + (1 − t)log�23

�

(2)v(t) = ������⃗OM = �����⃗OP + �����⃗PM

Then, v(t) is given as

Extending the idea in Eq. (4) to DTI eigenvector matrices 
interpolation, suppose the eigenvector matrices U1,U2 can be 
decomposed of Ui =

(
vi,1, vi,2, vi,3

)
, i = 1, 2 , whose columns 

are unit eigenvectors. According to Eq. (1), the interpolated 
eigenvalue matrix can be computed as

We also denote the interpolated eigenvectors matrix as

where �1(t), �2(t), �3(t) are the eigenvectors of the diffu-
sion tensor to be interpolated. Using the same idea as in 
Eq. (4), we have,

where �i = arccos
(
v1,i, v2,i

)
, i = 1, 2, 3 are the included 

angles of corresponding eigenvectors of S1 and S2 . Equally, 
the interpolated orthogonal matrix U(t) can be also sum-
marized as,

(3)
1

sin(� − �)
=

b

sin(t�)
=

a

sin((1 − t)�)

(4)v(t) =
sin((1 − t)�)

sin�
v1 +

sin(t�)

sin�
v2

(5)Λ(t) = exp
(
(1 − t)logΛ1 + tlogΛ2

)

(6)U(t) =
(
�1(t), �2(t), �3(t)

)

(7)
⎧⎪⎨⎪⎩

v1(t) =
sin(1−t)�1

sin�1
v1,1 +

sint�1

sin�1
v2,1

v2(t) =
sin(1−t)�2

sin�2
v1,2 +

sint�2

sin�2
v2,2

v3(t) =
sin(1−t)�3

sin�3
v1,3 +

sint�3

sin�3
v2,3

(8)

U(t) = (v1(t), v2(t), v3(t))

= (
sin(1−t)�1)

sin�1
v1,1 +

sint�1

sin�1
v2,1

sin(1−t)�2)

sin�2
v1,2 +

sint�2

sin�2
v2,2,

sin(1−t)�3

sin�3
v1,3 +

sint�3

sin�3
v2,3)

=
�
v1,1, v1,2, v1,3

�⎛⎜⎜⎜⎝

sin(1−t)�1

sin�1
0

0

0

sin(1−t)�2

sin�2

0

0

0
sin(1−t)�3

sin�3

⎞⎟⎟⎟⎠
= U1diag(

sin(1−t)�1

sin�1
,
sin(1−t)�2

sin�2
,
sin(1−t)�3

sin�3
) + U1diag(

sint�1

sin�1
,
sint�2

sin�2
,
sint�3

sin�3
)

+
�
v2,1, v2,2, v3,3

�⎛⎜⎜⎜⎝

sint�1

sin�1
0

0

0

sint�2

sin�2

0

0

0
sint�3

sin�3

⎞⎟⎟⎟⎠

In the implementation, Schmidt orthogonalization 
strategy is required for interpolation correction, and the 
final interpolated diffusion tensor can be composed as 
S(t) = U(t)Λ(t)U(t)T.

2.2 � Interpolation of four tensors

In order to generalize one-dimensional interpolation to the 
two-dimension case, here we present the proposed interpola-
tion strategy on four tensors. Given four positive tensors S1 , 
S2 , S3 , and S4 , the interpolated eigenvalue matrix of S(t) can 
be computed similarly as

For eigenvector matrix part interpolation, we still 
denote the interpolated eigenvector matrix of S(t) as 
U(t) =

(
�1(t), �2(t), �3(t)

)
 . What differs from two tensor inter-

polation cases, there exist several included angles between 
the four corresponding eigenvectors. Considering the eigen-
vectors of the interpolated tensor should be covered by the 
eigenvectors of S1 , S2 , S3 , and S4 , therefore, we define the 
interpolated eigenvectors as,

(9)Λ(t) = exp

(
4∑
i=1

tilogΛi

)
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where �i = max
m,n=1,2,3,4

{
arccos

(
vm,i, vn,i

)}
, (i = 1, 2, 3) , vm,i 

are the ith eigenvector of diffusion tensor Sm and ti are the 
corresponding weights associated with the four diffusion 
tensors. Therefore, the interpolated eigenvector matrix U(t) 
can be summarized as,

Finally, the tensor to be interpolated can be composed as 
S(t) = U(t)Λ(t)U(t)T.

2.3 � Multidimensional interpolation and DTI mean

Based on the definition of four tensors interpolation, it is 
easy to define SS interpolation in the multidimensional case. 
Suppose S1, S2,… , SN is a set of diffusion tensors, which 
can be decomposed as Si = UiΛiUi

T
, (i = 1, 2,… ,N) , where 

Λi = diag
(
�i1, �i2, �i3

)
 and Ui =

(
vi,1, vi,2, vi,3

)
 . Interpolating 

the eigenvalue and eigenvector matrices separately, we have 
the interpolated eigenvalue matrix.

Λ(t) = exp

�
N∑
i=1

tilogΛi

�  ,  t h e  e i g e n v e c t o r  m a t r i x 

U(t) =
N∑
i=1

Uidiag
�

sinti�1

sin�1
,
sinti�2

sin�2
,
sinti�3

sin�3

�  w i t h 

�
i
= max

m,n=1,2,…,N

{
arccos

(
v
m,i, vn,i

)}
, (i = 1, 2, 3) , and the final multidimen-

sional interpolated tensor S(t) = U(t)Λ(t)U(t)T.

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v1(t) =
4∑
i=1

sinti�1

sin�1
vi,1

v2(t) =
4∑
i=1

sinti�2

sin�2
vi,2

v3(t) =
4∑
i=1

sinti�3

sin�3
vi,3

(11)

U(t) =
(
�1(t), �2(t), �3(t)

)
=

4∑
i=1

Uidiags

(
sinti�1

sin�1
,
sinti�2

sin�2
,
sinti�3

sin�3

)

Interestingly, the question about multidimensional 
interpolation is very similar to DTI mean in essence. As 
described above, the question about multidimensional inter-
polation is to seek a reasonable tensor based on its neighbor 
tensors, while the question of DTI mean is to compute a 
common representative tensor from a group of tensors at 
the same point. In other words, the interpolating weights in 
multidimensional interpolation are designed according to the 
distance from local neighbor tensors, and the weights used in 
computing DTI mean are estimated by minimizing the target 
function that measures the distance from the mean tensor 
to the others. Now we present the solution on DTI mean 
question based on the proposed SS interpolation framework.

The Fréchet mean is well known in application; for DTI 
mean, this definition is described as,

where the distance measure dist(⋅, ⋅) gives the distance 
between two tensors, wi are the weights, and the optimized 
solution is the DTI mean tensor Smean . In the affine invariant 
framework, the computation of the DTI mean needs a large 
number of use of matrix exponential, logarithm, inverse, and 
square root operations [17], which makes DTI processing 
very complex. Since the tensor space of logarithmic Euclid-
ean metric has actually the same form as the corresponding 
Euclidean transformation space of the symmetric matrix, 
the Log-Euclidean Fréchet mean is generalized as (Moakher 
M, 14),

The Log-Euclidean method provides a much simpler 
strategy for the mean tensor calculation.

The solution for DTI mean question using the proposed 
SS interpolation framework is consistent with that of the SQ 
method, in which the mean tensor is defined with two dif-
ferent components: mean eigenvalue and mean orientation. 
Given N positive weights �1,… ,�N that satisfy 

∑N

i=1
�i = 1 , 

and the weighted mean of N tensors S1,… , SN is defined by 
Smean = UmeanΛmeanU

T
mean

 , where the different components 
Umean and Λmean are defined as follows. As shown in Eqs. (9, 
11), here the weighted mean eigenvalue matrix is defined as,

and the mean eigenvector matrix can be computed 
according to the equation

(12)Smean

(
S1, S2,… , SN

)
= argmin

S

N∑
i=1

widist
2
(
S, Si

)

(13)SLEmean

(
S1, S2,… , SN

)
= exp

(
N∑
i=1

wilog
(
Si
))

(14)Λmean = exp

(
N∑
i=1

�ilogΛi

)

Fig. 1   The figure of geometrical relationship between V_{1} and 
V_{2} vectors (Please check if figure captions are presented/captured 
correctly.)
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This is different from that of the SQ method. For mean 
orientation estimation, the SQ method consists in selecting 
the tensor with the largest mean of Hilbert anisotropy as 
the reference quaternion firstly, then realign the quaternion, 
and finally get the mean quaternion. Here the SS method 
performs a direct orientation interpolation, without choos-
ing any reference tensor; therefore, the estimated DTI ori-
entation matrix depends on all the original tensors, with no 
dependence on any special reference tensors.

2.4 � Invariant properties of SS

Invariant properties are important for DTI processing, as 
reported in Collard et al. [7],the SQ interpolation formula is 
shaped invariant by scaling, congruence, and even general 
linear group. According to SS interpolation formulas (5, 8), 
for scaling invariant property, if 𝛼 > 0,

This shows that the SS interpolate satisfies the shape 
invariant property. Compared to shape invariant property, 
orientation invariant property is more attractive. Denote 
SO(3) as the special orthogonal group of rotation matrices 
with determent equal to 1, ∀M ∈ SO(3),

where

Therefore,

What shows the SS interpolate formula satisfies the ori-
entation invariant property under elementary rotation trans-
formation. Similarly, we can deduce the scaling and rotation 
invariant formula,

(15)Umean =

N∑
i=1

Uidiag

(
sin�i�1

sin�1
,
sin�i�2

sin�2
,
sin�i�3

sin�3

)

(16)

S
(
t;�S1;�S2

)
= Uexp

(
(1 − t)log

(
�S1

)
+ tlog

(
�S2

))
UT

= Uexp
(
log� + (1 − t)logS1 + tlogS2

)
UT

= �Uexp
(
(1 − t)logS1 + tlogS2

)
UT

= �S
(
t;S1;S2

)

(17)
S
(
t;MS1M

T
;MS2M

T
)
= S

(
t;MU1Λ1

(
MU1

)2)
≜ U

�(t)Λ(t)U�(t)T

(18)

U
�

(t) = MU1diag(
sin(1−t)�1

sin�1
,
sin(1−t)�2

sin�2
,
sin(1−t)�3

sin�3
) +MU2diag(

sint�1

sin�1
,
sint�2

sin�2
,
sint�3

sin�3
)

M(U1diag(
sin(1−t)�1

sin�1
,
sin(1−t)�2

sin�2
,
sin(1−t)�3

sin�3
) + U2diag(

sint�1

sin�1
,
sint�2

sin�2
,
sint�3

sin�3
))

= MU(t)

(19)S
(
t;MS1M

T
;MS2M

T
)
= MU(t)Λ(t)U(t)TMT = MS

(
t;S1;S2

)
M

T

(20)S
(
t;�MS1M

T ;�MS2M
T
)
= �MS

(
t, S1, S2

)
MT

3 � Evaluation measures of DTI interpolation 
strategy

In this section, we introduce a range of measurements, which 
can be used to evaluate different DTI interpolation methods. 
A diffusion tensor can be classified by its size, shape, and 
orientation. We evaluate different interpolation methods on 
the basis of their sensitivity to the changes in these prop-
erties. For an interpolation method, the general evaluation 
properties are mainly divided into the following two catego-
ries: (1) DTI scalar indices evaluation and (2) DTI orienta-
tion angular difference.

3.1 � DTI scalar indices evaluation

The easiest way to get the difference between two diffusion 
tensors S1 and S2 is to compare the absolute difference of 
their scalar indices (Peeters 15). These indices reduce the 
6D information in a tensor to a scalar value. Several kinds of 
commonly used measures, including mean diffusivity (MD), 
fractional anisotropy (FA), relative anisotropy (RA) [3], geo-
desic anisotropy (GA) [8], and Hilbert anisotropy (HA) [7] 
are introduced in Table 1. These measures are defined by the 
eigenvalues and they are rotation invariant.

3.2 � DTI orientation evaluation

The scalar indices mentioned above are related to tensor 
shape and size, and the orientation information of diffusion 
tensor is related to tensor’s eigenvectors, which is important 
to fiber tractography. For tensor orientation evaluation, we 
employ the included angle of two tensors’ corresponding 
eigenvectors [24].

where vi1, vi2 are the principal eigenvectors of different 
tensors S1 and S2 . A smaller IA value means a better orienta-
tion overlap. In practice, since the principal eigenvectors 
determine the direction of fiber tractography which is impor-
tant in the application, therefore we compute the IA measure 
of the principal eigenvectors only.

4 � Experiments

In this paper, simulated diffusion tensor data and real DTI 
data are used to verify the proposed SS interpolation method, 
which is compared with the SQ and the Log-E interpolation 
methods. In order to fully consider the interpolated tensors, 

(21)IA = arccos
(
vi1 ⋅ vi2

)
, i = 1, 2, 3.
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the synthetic data constructed in this experiment include ani-
sotropic and isotropic tensors of different sizes. Therefore, 
the merits and demerits of these three interpolation methods 
are investigated comprehensively and systematically.

4.1 � Synthetic tensor data experiments

Firstly, the interpolation experiments of three different meth-
ods are carried out using the synthetic tensor data for the 
interpolation of two tensors. In order to fully observe the 
variation of tensor to be interpolated, the synthetic data in 
this experiment have the same shape in different orienta-
tions. Firstly, the orientation is determined according to the 
pre-defined rotation matrix R of a tensor with different 
angles � , and then, the size of this tensor is determined by 
selecting different eigenvalues. Let S(t) denote a series of 
tensors, in which S(0) = S1 , S(1) = S2 , and the other tensors 
in S(t) are interpolated equally between 0 and 1 with step 
Δt = 0.125 . The orientation of S1 and S2 is determined 
a c c o rd i n g  t o  t h e  d e f i n e d  ro t a t i o n  m a t r i x 

R =

⎛⎜⎜⎝

cos� −sin� 0

sin� cos� 0

0 0 1

⎞⎟⎟⎠
 with different angles �1 = 2�∕360 , 

�2 = 2� × 63∕360 , and the shape changes are controlled by 
t h e  s i z e  o f  e i g e nv a l u e s  Λ1 = diag(10, 1, 1)  , 
Λ2 = diag(40, 4, 1).

Figure 2 shows the interpolation results of the SQ, Log-
E, and SS methods between two tensors. Figure a, b, and 
c present the interpolated tensors of SQ, Log-E, and SS 
methods, and Figure d computes the evaluation indices of 
tensor size, shape, and orientation. According to the change 
of color and shape of the ellipsoid in Fig. 2, it can be seen 
that the interpolated tensors corresponding to t = 0.625 ∶ 1 
of the Log-E method tend to be isotropic, and the change 
on tensor’s orientation of Log-E interpolation is too abrupt, 
while the SQ and SS interpolation methods both present 
a gradual interpolation process. In Figure d, from left to 
right, the horizontal axis represents the parameter t and the 

longitudinal axis represents the determinant (Det), fractional 
anisotropic (FA), Hilbert anisotropic (HA), and the principal 
eigenvectors included angle (IA) respectively. From Fig. 2, 
we can see that for tensor determinant variation curves, 
the determinant curves of the three interpolation methods 
overlap, which shows that the determinant changes of these 
three methods are coincident, showing a monotone increas-
ing trend. From the second and third figure of (d), for the 
variation of FA and HA, only the SQ and SS methods are 
monotonic. The Log-E method has a minimum value in the 
second figure of (d), this indicates that the Log-E method 
collapses for FA and HA values at some interpolated tensor, 
where the tensor is more like isotropic while the anisotropy 
is restrained.

For tensor orientation evaluation in the last figure of 
Fig. 2d, the difference between SQ, Log-E, and SS is obvi-
ous, while the difference between SQ and SS is hard to 
observe. In fact, there is a small difference between SQ and 
SS methods. In order to show this difference clearly, we 
compute the differentiation of the IA curve in Fig. 2d, which 
is presented in Fig. 3a. In the Log-E interpolation method, 
the tensor’s orientation changes greatly from the first tensor 
to the last tensor, and both the SQ and SS methods display 
the tensor’s orientation changes gradually. To be precise, 
the tensor’s orientation of the SS method changes equally 
according to the circle arc while the orientation of the SQ 
method changes equally according to the circle chord, which 
leads to the IA index changes equally for SS, symmetrically 
for SQ. The precise quantitative values of mark points in 
Fig. 2d are presented in Fig. 3b, a small difference exists 
between SQ and SS.

The second synthetic tensor data experiment is to verify 
the effectiveness of SS for four tensors’ interpolation. Using 
the same synthetic data generation strategy as in the above 
two tensors’ interpolation experiment, we define four tensors 
S1 , S2 , S3 , and S4 with �1 =

�

3
 , �2 =

�

4
 , �3 =

�

2
 , �4 = 0 , and 

Λ1 = diag(1, 0.95, 0.9) , Λ2 = Λ3 = Λ4 = diag(2, 0.25, 0.1) , 
which are placed at four corners of the rectangle region from 
the bottom left corner to the top left corner counterclock-
wise. As displayed in Fig. 4, S1 is approximate to an isot-
ropy tensor, S2 , S3 , and S4 are linear shape anisotropy tensors 
with different orientations. The interpolation experiment is 
to estimate the tensors distributed on the uniform grid points 
within the rectangle region.

Using the proposed SS framework on four tensors’ 
interpolation, the interpolation results are presented in 
Fig. 4. In the first column of Fig. 4, the top, middle, and 
bottom figures are the interpolation results of SS, SQ, 
and Log-E methods respectively. According to the shape 
and color changes of these ellipsoidal tensors shown in 
Fig. 4, the difference of interpolated tensors between SS, 
SQ, and Log-E method is obvious, while the interpolation 
performance between SS and SQ is hard to distinguish. In 

Table 1   Scalar indices for diffusion tensors

Scalar index Equation

Mean diffusivity MD =
(
�1 + �2 + �3

)
∕3

Fractional anisotropy
FA =

�
3
∑3

i=1

�
�i−�

�2

2
∑3

i=1
�2
i

Relative anisotropy
RA =

�
∑3

i=1

�
�i−�

�2

3�

Geodesic anisotropy
GA =

�∑3

i=1

�
log

�
�i

�
− log

�
3
√
�1�2�3

��2

Hilbert anisotropy HA = log
(
�max∕�min

)
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the second column of Fig. 4, the corresponding principal 
eigenvectors direction maps are displayed, and a large 
difference can be seen from the Log-E method, but only 
little difference between SS and SQ. The last column 
figures are the corresponding HA contour maps of SS, SQ, 
and Log-E. Both SS and SQ methods present a uniformly 
distributed contour map.

In order to further compare the difference between SS and 
SQ methods, we compute the weighted angles between each 
interpolated tensors and the four given tensors, which is 

defined as WA(i, j) =
4∑

k=1

�ijarccos
�
ek ⋅ eij

�
 , where �ij is the 

weight at a grid point (i, j) , eij is the principal eigenvector of 
the interpolated tensor S(i, j) , and ek, k = 1, 2, 3, 4 are the 
principal eigenvector of Sk . As expected, the weighted angle 
index of SS is a little smaller than that of SQ and Log-E at 
all the inner grid points, and the WA index is consistent with 
the result of two tensors’ interpolation at the border interpo-
lated grid points. The final average WA indices for the three 
methods are  WASS = 0.3595 ,  WASQ = 0.3851 ,  and 

(a)                                                    (b)                                                    (c )

(d)

Fig. 2   Interpolation results of two tensors. Panels a, b, and c are the interpolation results of SQ, Log-E, and SS methods respectively. Panel d, 
from left to right, the determent index, FA and HA indices, and the IA index of the principal eigenvectors between S_1 and interpolated tensors

Fig. 3   Detailed tensor orienta-
tion changes comparison cor-
responding IA index in Fig. 2d. 
a Differentiation of IA cor-
responding with three different 
methods; b quantitative values 
of mark points in Fig. 2d

(a)                                                      (b )
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WALog−E = 0.3989 . In order to observe the vision effect dif-
ference of both SS and SQ methods, we present the overlap 
principal eigenvectors direction map in the following Fig. 5. 
After calculating the angle between adjacent principal eigen-
vectors in one row, we find that the principal eigenvector 
direction of SS varies uniformly, while the principle direc-
tion of SQ changes a little bigger at the beginning and end 
points than the middle points.

4.2 � Real DTI data experiments

In order to further verify the interpolation performance of 
the proposed SS framework, we now perform SS on real 
DTI data by comparing it with SQ and Log-E methods. 
In this experiment, the brain DTI data was acquired from 
Shanghai Ninth People’s Hospital, and the matrix size is 
128 × 128 × 60 with a 2 × 2 × 2 mm3 voxel size, and the 

b-value is 800 s mm−2, and the scanning series is EPI. To 
observe the interpolation performance clearly, only a 41 × 41 
region of interest (ROI) focusing on the corpus callosum is 
chosen for interpolation methods validation, which is shown 
in Fig. 6a. In this experiment, the DTI data is firstly down-
sampled to 21 × 21 in Fig. 6b, and then, interpolating the 
downsampled tensor field to original resolution with SS, SQ, 
and Log-E methods.

In order to display the interpolation results clearly, this 
study selects two small regions in Fig. 6b with black and 
red rectangles, where the black rectangle region focuses 
on anisotropy tensors interpolation while the red rectangle 
focuses on relative isotropy tensors interpolation. The 
interpolation results focusing on the black rectangle region 
are displayed in Fig. 7. For comparison, the original tensor 
image together with the SS, SQ, and Log-E interpolated 
images around the black rectangle are displayed. As the 

Fig. 4   Interpolation results of 
four tensors. Topline: a interpo-
lation results of SS method, b 
the principal eigenvectors direc-
tion map of a, c the HA contour 
map of a; middle line: d the 
interpolation results of SQ, e 
the principal eigenvectors direc-
tion map of d, f the HA contour 
map of d; bottom line: g the 
interpolation results of Log-E, 
h the corresponding principal 
eigenvectors direction map of g, 
i the HA contour map of g 

(a)                                          (b)                              (c)

(d)                                          (e)                                                          (f )

(g)                                          (h)                                                          (i )
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tensors’ shape and orientation change slowly in real DTI 
data, the difference between three different methods is very 
small. To observe the black rectangle region carefully, 
it can be seen that the SS interpolation results show a 
better shape and orientation variation. For quantitative 
evaluation, the evaluation measures described in the 
previous section are computed in Fig. 7a–d respectively. 
The difference between SS, SQ, and Log-E methods and 
the original images are summarized in Table 2, and a small 
value means better interpolation performance. Since the 
eigenvalue interpolation strategy is the same in SS and 
SQ methods, the HA, FA, MD, and Det indices show the 
same performance, while the tensor’s orientation index IA 
shows some difference. The IA index of the SS method is 
the smallest, which indicates that the SS method has the 
best orientation preservation ability.

The red rectangle region interpolation results are 
shown in Fig.  8. A very similar performance to the 

black rectangle region is completed by SS, SQ, and 
Log-E methods, which shows that the region with much 
anisotropy (black rectangle region) or much isotropy (red 
rectangle region) has no effect on all the three interpolation 
methods. Quantitative indices are compared similarly and 
summarized in Table 3. The IA index shows some decrease 
in the SS method with respect to SQ and Log-E, and the 
other indices show no difference.

In addition, in order to observe the whole contour of the 
corpus callosum, according to the three methods interpo-
lated results, we select a specific boundary area around the 
corpus callosum. The interpolated tensor fields of SS, SQ, 
and Log-E methods are presented in Fig. 9, the correspond-
ing FA indexes are computed. From Fig. 9a to d, the bounda-
ries of the three methods are preserved well. However, from 
the corresponding FA images, SS and SQ present a much 
better contour performance than Log-E.

Fig. 5   The overlap of SS, SQ 
principal eigenvector direc-
tions. The solid line is the SS 
principal eigenvectors direction 
and the dotted line is the SQ 
principal eigenvectors’ direction
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Fig. 6   Real brain DTI data 
experiment. a 41 × 41 corpus 
callosum ROI; b downsampling 
of a 

(a)                                                                     (b )

Fig. 7   Interpolation results 
focusing on the black rectan-
gle region. a Original tensor 
image; from b to d, the results 
of SS, SQ, and Log-E methods 
respectively

(a)                                                      (b)

(c)                                                                     (d)
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Table 2   Error analysis of three interpolation methods in the black 
rectangle region

Methods HA FA MD (10−8) Det (10−19) IA

SS 0.1372 0.0048 1.6170 2.6981 1.1314
SQ 0.1372 0.0048 1.6170 2.6981 1.1965
Log-E 0.1580 0.0056 1.6223 2.6981 1.2583

Fig. 8   Interpolation results 
focusing the on red rectan-
gle region. a Original tensor 
image; from b to d, the results 
of SS, SQ, and Log-E methods 
respectively

(a)                                                          (b )

(c)                                                          (d )

Table 3   Error analysis of three interpolation methods in the red rec-
tangle region

Methods HA FA MD (10−9) Det (10−20) IA

SS 0.0080 0.0018 6.5874 4.2373 0.8871
SQ 0.0080 0.0018 6.5874 4.2373 0.8989
Log-E 0.0176 0.0044 6.3463 4.2373 0.9407

5 � DTI processing with SS interpolation

In this section, we further develop some DTI processing 
methods based on the proposed SS interpolation framework, 
together with the multidimensional interpolation strategy 
and DTI mean. Filtering and regularization are basic in 
DTI data processing; therefore, we present these two DTI 
processing algorithms in the following. To be pointed out, 
the proposed SS framework and the definition of DTI mean 
can be further used in many other applications, such as DTI 
registration and brain template construction.

5.1 � Gaussian filtering of DTI

The concept of DTI weighted mean based on the SS interpo-
lation framework provides novel ideas for DTI processing, 
and Gaussian filtering is one of the most widely used tech-
nique. Here, we apply the weighted mean of SS interpolation 
to Gaussian filtering, and experimental results are shown in 
Fig. 10. In this experiment, the size of the Gaussian filter 
is 3 × 3 × 3 , and the Gaussian kernel parameter � = 0.5 . In 
Fig. 10, figure (a) is the original tensor data focusing on 
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Fig. 9   The contour of corpus 
callosum comparison. Top row: 
from left to right, the original 
tensor fields, SS interpolated 
results, SQ and Log-E inter-
polated results; bottom row: 
corresponding FA images of 
the original image, SS, SQ, and 
Log-E interpolated images

(a)                                    (b)    (c)                                  (d)

(e)                                    (f)                                       (g)                                 (h )

Fig. 10   DTI Gaussian filtering 
experiment. a Original DTI 
brain data focusing corpus 
callosum; b noisy DTI data of 
image a; c Gaussian filtering 
result of image b 

(a)                                      (b)                                                        (c)

the brain corpus callosum, (b) is the noisy tensor display of 
(a), and (c) is the filtering result of (b). From the two black 
rectangle regions in figure (b), we can find that the shape and 

orientation of some tensors are askew, and the shape and ori-
entation of tensors after filtering are improved significantly. 
At last, we give a brief algorithm steps for Gaussian filtering.
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5.2 � DTI regularization

In the process of DTI acquisition, due to the influence of 
noise or some other factors, the shape and orientation of 
some diffusion tensors are usually blurred, which makes 
it difficult to identify the detailed edges or small lesions. 
In order to alleviate the influence of noise on the diffusion 

tensor image and to effectively preserve the edge or lesion 
information, regularization of DTI data is required. Due to 
the difficulty of dealing with DTI orientation information, 
the traditional scalar image regularization technique does 
not work for DTI images. Here we present a new DTI regu-
larization procedure based on the SS framework on multi-
dimensional interpolation. A brief step is listed as follows:
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The regularization result of the above algorithm on real 
DTI data is reported in Fig. 11. In Fig. 11, (a) is the corpus 
callosum ROI in the central slice of brain DTI data, (b) is the 
zoom-in view of the pink rectangle region in figure (a), and 
figure (c) is the corresponding regularization ROI to figure 

(b). It is clear after regularization, and the tensor’s shape and 
orientation are normalized. The profile of tensors in the pink 
band of figure (b) and (c) is drawn in figure (d), where the Det, 
FA, HA, and IA indices profile are compared with different 

Fig. 11   Regularization results 
of a real brain DTI data. a 
Original tensor image of brain 
corpus callosum ROI; b zoom-
in view of a in the pink rectan-
gular; c regularization results of 
the corresponding region with 
b; d The Det, FA, HA, and IA 
curves corresponding to the 
tensors within the pink band in 
b and c 

(a)

(b)

(c)

(d)

Fig. 12   Demonstration of SQ 
and SS interpolation model. a 
SQ changes uniformly along the 
chord. b SS changes uniformly 
along the arc

(a)                                                             (b )
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colors. The profiles after regularization are almost coincident 
with the original DTI data.

6 � Discussion

This work proposed a new DTI interpolation framework named 
with spectrum-sine (SS) by connecting the spectrum of tensor to 
be interpolated with the spectrum of known tensors with some 
sine weights analytically. One-dimensional DTI interpolation 
strategy is built between two tensors in a geometric manner, 
in which the shape and orientation of interpolated tensors 
vary uniformly. As presented, a two-dimensional case is not a 
direct generalization of one-dimensional interpolation since the 
sum of four tensors is not twice of two. In a two-dimensional 
interpolation, the SS framework is further developed from 
the idea of geometric interpolation view. The orientation of 
the interpolated tensor should be included by the known four 
tensors. Based on this point, the two-dimensional interpolation 
strategy is successfully proposed. It should be pointed out, the 
try of twice of one-dimensional interpolation failed because 
the idea of bilinear is algebraic, not geometric in essence. For 
the multidimensional interpolation strategy, we can generalize 
the idea of the two-dimensional interpolation strategy. Another 
output accompanying the multidimensional interpolation 
method is the DTI mean definition under the SS framework. 
Thus far, the whole SS framework for DTI interpolation was 
proposed comprehensively.

The main merit of the SS interpolation framework is 
the tensor’s orientation preservation. Most of the current 
DTI processing techniques try to transfer the tensor’s high-
dimensional information to one-dimensional scalar informa-
tion; then, a lot of mature technique in scalar information 
processing can be used in DTI processing directly. In the 
DTI interpolation area, from element-wise linear interpola-
tion to the Log-E framework, the tensor’s high-dimensional 
information is approximated better and better, and until the 
SQ framework based on representing the tensor’s orientation 
with quaternions ingeniously, the tensor’s anisotropy feature 
was well preserved. As the SS framework is concerned, this 
is the first try to interpolate the tensor’s orientation directly, 
and the good shape and rotation invariant property proposed 
in the SQ framework are all satisfied in SS. There is a small 
difference between SQ and SS framework, focusing on the 
orientation preservation; the interpolation of SQ is to make 
the changes vary uniformly along the chord direction while 
the SS framework is to lead the orientation changes to vary 
uniformly along the arc direction. This is further illustrated 
in Fig. 12, figure (a) is the demonstration of the SQ method, 
in which the length of each chord is equal, and figure (b) is 
for the SS method in which the length of each arc is equal. 
Therefore, the interpolated angles of SS are equal, and the 
angles of SQ are symmetric changing and near to equal.

Experiments were carried on both synthetic and real DTI 
data. In synthetic DTI data, the interpolation experiments 
between two tensors in 1D and four tensors in 2D were 
compared in detail with SS, SQ, and Log-E methods. The 
results show that the SS and SQ methods perform well in the 
preservation of the tensor’s size, shape, anisotropy, and all 
scalar indices related to the eigenvalues. For the orientation 
of tensor, the interpolation results of two tensors and four 
tensors both show that the orientation variation obtained 
by the SS method is more homogeneous than SQ. In a real 
DTI data experiment, the three interpolation methods were 
further validated on brain images. No matter anisotropy and 
isotropy ROI, the interpolation performance of both SS and 
SQ is better than Log-E, and the difference between SS and 
SQ only lies in orientation variation. As the result of syn-
thetic DTI data, the continuity of tensor’s orientation in SS 
is a little better than SQ. For multidimensional interpolation 
and DTI mean methods validation, we further developed 
Gaussian filtering and regularization applications for DTI. 
The experimental result of DTI Gaussian filtering based on 
the SS framework shows that the procedure is satisfied on 
both the tensor’s shape and orientation preservation. Regu-
larization of DTI experimental results shows that the Det, 
FA, HA, and IA profile after regularization is coincident 
with the original DTI data, while the tensor’s shape and 
orientation feature at some bad points were improved sig-
nificantly. In addition, the computing complexity of the SS 
method is lower than that of SQ since there is no represen-
tation calculation process of quaternions or Euler angles of 
the spectrum.

Finally, we want to discuss the disadvantages of the cur-
rent SS framework. For convenience, the whole method 
related to the SS framework in this work was deduced on 
positive diffusion tensors since no singular tensor is con-
cerned. In theory, all of the tensors from DTI should be 
positive; however, there are some cases in real numerical 
implementation related to tensors close to singular. This is 
not covered by the current SS framework, which will be 
further supplemented in our future study.

7 � Conclusion

In conclusion, a new spectrum-sine interpolation frame-
work for DTI processing is proposed in this work. The SS 
framework for DTI processing was developed for two tensors 
interpolation, four tensors’ interpolation, and multidimen-
sional interpolation. Based on these interpolation methods, 
the idea of DTI mean was proposed using the multidimen-
sional SS interpolation strategy. This is further developed for 
DTI Gaussian filtering and regularization. Experiments on 
synthetic and real brain DTI data both verify the effective-
ness of the proposed DTI processing technique. In the near 
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future, we will apply the proposed SS interpolation frame-
work in DTI registration for a better registration accuracy, 
especially on the principal direction accuracy, which is also 
important for DTI fiber tracking.
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