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Abstract
The segmentation of ultrasound (US) images is steadily growing in popularity, owing to the necessity of computer-aided
diagnosis (CAD) systems and the advantages that this technique shows, such as safety and efficiency. The objective of this work
is to separate the lesion from its background in US images. However, most US images contain poor quality, which is affected by
the noise, ambiguous boundary, and heterogeneity. Moreover, the lesion region may be not salient amid the other normal tissues,
which makes its segmentation a challenging problem. In this paper, an US image segmentation algorithm that combines the
learned probabilistic model with energy functionals is proposed. Firstly, a learned probabilistic model based on the generalized
linear model (GLM) reduces the false positives and increases the likelihood energy term of the lesion region. It yields a new
probability projection that attracts the energy functional toward the desired region of interest. Then, boundary indicator and
probability statistical–based energy functional are used to provide a reliable boundary for the lesion. Integrating probabilistic
information into the energy functional framework can effectively overcome the impact of poor quality and further improve the
accuracy of segmentation. To verify the performance of the proposed algorithm, 40 images are randomly selected in three
databases for evaluation. The values of DICE coefficient, the Jaccard distance, root-mean-square error, and mean absolute error
are 0.96, 0.91, 0.059, and 0.042, respectively. Besides, the initialization of the segmentation algorithm and the influence of noise
are also analyzed. The experiment shows a significant improvement in performance.
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1 Introduction

The segmentation of ultrasound (US) images is an essential
step in computer-aided diagnosis (CAD) systems [1, 2]. The
underlying objective of US image segmentation is to separate
the lesion from its background, which is necessary for CAD.
Besides, US imaging technologies are cost-effective, non-in-
vasive, and practically harmless [3]. Therefore, there are more
and more demands for US image segmentation in CAD tech-
nologies. However, owing to the noise, ambiguous boundary,
and heterogeneity, US image segmentation is yet one of the

challenging problems [4]. Various segmentation methods for
US images [5, 6] have been proposed. The energy functional–
based active contour model (ACM) [7–9] is among the most
successful technique, which has been extensively used for this
application showing useful properties for lesion detection
[10–13].

ACM evolves the closed curve as a level set into a higher
one-dimensional function, and the purpose of evolution is to
obtain the minimum value of the energy function [9, 14]. In
other words, an initial evolving curve is known, and image
segmentation based on the energy function can be modeled by
using the closed curve that divides the image into regions
within and outside the interface. ACM can be divided into
two categories according to the image characteristics: edge-
based energy function and region-based energy function. The
edge-based energy function [8, 15] uses boundary informa-
tion, which is usually provided by gradient operators to guide
the evolution of the curve. This energy function depends on
the premise that images have clear and distinct boundaries.
The region-based energy function [9, 10, 13] is such a
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statistical formulation that can incorporate model properties
(e.g., curvature and smoothness) and image information
(e.g., intensity, color, and texture) for the optimal segmenta-
tion flexibly.

However, due to the poor quality such as noise, ambiguous
boundary, and heterogeneity of US images, the traditional
energy function may suffer from some inherent drawbacks
and do not achieve good segmentation performance.
Different strategies have been proposed in an attempt to im-
prove the traditional energy function by introducing new in-
formation such as region scalable fitting [16] and Gaussian
distribution with a bias field [17]. In addition, Fang et al.
[10] is our previous works, which is used to segment US
images using global and local energy functional (GL-EF).
The above methods can produce impressive results, but utiliz-
ing some restricted information may weaken the anti-noise
ability. Statistically, the energy functional incorporating edge
information [18, 19] and the similarity measure [12, 20] can
also tackle the model’s sensitivity to noise.

In US image segmentation, the approximation and uncer-
tainty are common and refractory, which can be tackled by
machine learning methods, such as deep learning using time-
series information [21] and attention-enriched deep learning
model [22]. Besides, there have beenmanymethods to control
the energy function with machine learning methods in the
literature. Here, the machine learning methods contain ran-
dom forest [23], monogenic signal [24], self-organizing map-
ping network [25], etc. Among them, the most representative
methods include the edge-driven energy function (ED-EF)
[26, 27] and the region-driven energy function (RE-EF)
[28–31] based on SVM and fuzzy clustering. Besides, they
include the global and local energy function–based US image
segmentation method (GL-EF) [10], and the active contours
driven by the local Rayleigh distribution fitting energy meth-
od (LRDF-ACM) [31].

Concretely, Agus et al. [26] propose an algorithm (i.e.,
ED-EF) to construct a set of edge stop functions based on
an active contour model to segment US images. The algo-
rithm can find the final edge of the segmentation target well,
but the algorithm relies on initialization. Meanwhile, Li et al.
[30] propose a new level set for selective image segmenta-
tion using fuzzy region competition (i.e., RE-EF). It can de-
tect and track any combination of selected objects or image
components, but the algorithm has inherent disadvantages
when it encounters both weak boundary and low contrast.
To solve this problem, Fang et al. [10] propose a new active
contour method combining global and local information
(GL-EF). Global information can segment US images with
noisy and fuzzy boundaries. Moreover, local information can
determine the intensity uniformity [32, 33]. For the inhomo-
geneity of US images, Hui et al. [31] introduce local
Rayleigh distribution fitting (LRDF) energy terms in the tra-
ditional level set method.

On this basis, this paper proposes a new energy function by
integrating the probability projection. The proposed method
allows the combination of the probability projection and the
energy function in a couple of ways: (1) A learned probabilis-
tic model is obtained by the generalized linear model (GLM),
which yield a new probability projection. (2) Both boundary
indicator–based and probability statistical–based energy func-
tions are utilized to direct the level set evolution. (3)
Integrating the probability projection into the energy function-
al framework attracts the evolving curve toward the desired
lesion boundary. By probability projection based on Gabor
wavelet and GLM, the noise problems in US images are
solved well. Besides, the boundary indicator–based and prob-
ability statistical–based energy functions deal with ambiguous
boundary and heterogeneity of US images. Thus, the proposed
method achieves rapid convergence to its boundaries and seg-
ments the lesion region accurately.

The rest of this paper is organized as follows. Section II
briefly introduces the generation of probability projection, in-
cluding the Gabor filter and the GLM. The boundary
indicator–based and probability statistical–based energy func-
tions are elaborated in Sect. III. Section IV reports the exper-
iments and performance evaluations. The last section is re-
served for concluding remarks.

2 Generation of image probability projection

To model the lesion region, a feature vector and the corre-
sponding probability projection are generated at each pixel
location in the US images using the Gabor filter [34, 35] and
the GLM [36–38] in this paper. Suppose z is a feature vector
extracted by Gabor filter, and ℘ is the probability projection
generated by the GLM.

2.1 Feature vector

To further analyze the complex characteristics of the US im-
age, one with ambiguous boundary and heterogeneity is se-
lected as the experimental analysis object in this paper. Fig. 1b
shows the gray value distribution map of the gallbladder im-
age in Fig. 1a. As can be seen from Fig. 1b, the lesion and
background partially coincide (e.g., the x-axis interval 30 has
lesion, boundary, and background), and the classification of
each pixel is fuzzy. So it is difficult to distinguish the lesion
and background. In this paper, the US image is modeled by
the Gabor filter, and then the machine learning method is used
to confirm the probability that the pixel belongs to the lesion
or background before the segmentation.

Gabor filter hG(x, y, λ, σ, θ) can analyze the spatial frequen-
cies and the orientations of images, which is defined as
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hG x; y;λ;σ; θð Þ ¼ 1=2πexp −1=2 x2=σx þ y2=σy
� �� �

⋅exp 2πλj xcosθþ ysinθð Þð Þ
ð1Þ

where x and y are the horizontal and vertical coordinates of
pixel points in the image, respectively; λ is the modulating
frequency of the Gaussian kernel; σ is the standard deviation;
and θ is the orientation.

By a 2D convolution operation with hG(x, y, λ, σ, θ), the
feature vector z(x, y) of a Gabor filter to an image I(x, y) is
obtained:

z x; yð Þ ¼ I x; yð Þ*hG x; y;λ;σ; θð Þ ð2Þ

The frequency, standard deviation, and orientation consti-
tute a set of parameters. The reason why the parameters are
chosen is that they can cover the spatial frequency space and
enhance the image information. In this paper, four spatial fre-
quencies, four spatial variances, and seven orientations are
used.

Boundary

Lesion

Background

(a)

The probability projection of boundary (partial)

0.6385 0.5474 0.5733 0.5920 0.5369

0.5771 0.5522 0.6164 0.5319 0.4786

0.5457 0.6158 0.6336 0.5876 0.5286

0.5713 0.5414 0.4320 0.5859 0.4994

0.5332 0.4175 0.4833 0.5315 0.5433

The probability projection of lesion (partial)

0.6168 0.6131 0.6145 0.6409 0.6398

0.6154 0.6120 0.6137 0.6406 0.6400

0.6161 0.6130 0.6146 0.6405 0.6397

0.6165 0.6134 0.6149 0.6392 0.6388

0.6178 0.6143 0.6155 0.6380 0.6368

The probability projection of background (partial)

0.3610 0.3596 0.3750 0.3945 0.4155

0.3519 0.3503 0.3652 0.3869 0.4106

0.3673 0.3760 0.4040 0.4323 0.4195

0.3751 0.3836 0.4029 0.4071 0.4211

0.3835 0.3898 0.4078 0.4188 0.4382

(b) (c)

Fig. 1 The gray value distribution
and the corresponding probability
projection of the gallbladder
image. a The gallbladder image. b
The gray value distribution. c The
probability projection. Here, red
points in a are the positions
corresponding to probability
values in c, respectively
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2.2 Probability projection

Generating the probability projection ℘ requires selecting the
appropriate statistical model. The posterior probability ℘ is
defined as

℘ ¼ p z ρ η;κð Þjð Þ ð3Þ

where κ is the convolution kernel [39]. The linear predictor
η is an averaging operation [40], and the link function ρ is the
identity function [41]. The GLM is one of the most widely
used machine learning methods for probability statistics, due
to its efficiency for data representation with a relatively small
number of parameters. For the GLM, half of the image is used
for training and the other 1/2 is used for testing. The basic
process of the GLM is as follows:

Training: A half of an image is fed into the GLM and the
model can directly segment an approximate region
around the annotated object.
Testing: The trained model predicts the probability value
from the other half of the image. Then, the probability is
thresholded and replaces the pixel value of each point.
Thus, the probability projection ℘ is obtained.

The obtained probability projection fully reflects the posi-
tion of the image, and the probability information belongs to
the lesion region and background, which indicates that pixels
are most likely to belong to the lesion region and background.
Fig. 1c presents the probability projection obtained from the
gallbladder image in Fig. 1a. One can see that there is a sig-
nificant difference between the lesion and the normal region,
so the proposed probability projection can be used to distin-
guish the lesion and background. However, the probability of
the boundary is still fuzzy. Therefore, more necessary infor-
mation needs to be contained in the proposed model to steer
the evolving curve to an accurate segmentation result.

3 Proposed method

4 Using the above obtained image probability
projection, boundary indicator–based
and probability statistical-based energy
functions are introduced in the following
essay.

In this paper, the segmentation problem is reduced to the
problem of partitioning the domain of definition Ω ⊂ℜ of
the US image I(x, y) (with (x, y) ∈Ω) into two subsets, namely,
lesion region Ω+ and its background Ω−. The two subsets can
be defined utilizing a level-set function ϕ(x, y) :Ω→ℜ in the

following manner:Ω+ = {(x, y) ∈Ω : ϕ(x, y) > 0} andΩ− = {(x,
y) ∈Ω : ϕ(x, y) < 0}, respectively. By combining probability
mapping, the lesion region and its background are denoted as

ζ1 ¼ ∫℘⋅H ϕð ÞdΩ=∫H ϕð ÞdΩ
ζ2 ¼ ∫℘⋅ 1−H ϕð Þð ÞdΩ=∫ 1−H ϕð Þð ÞdΩ

�
ð4Þ

where H(Φ) is a smoothed Heaviside function [42, 43]. In
this paper, the proposed optimal energy function is defined as

ϕ* ¼ arg inf
ϕ

E ϕð Þf g ð5Þ

with Eb(ϕ) and Ep(ϕ) are boundary indicator–based and
probability statistical–based energy functions, which can be
described below.

E ϕð Þ ¼ Eb ϕð Þ þ Ep ϕð Þ ð6Þ

4.1 Boundary indicator function

Based on the above analysis, the image probability of the
lesion, the boundary, and the background is more than 0.5,
approximate 0.5, and less than 0.5, respectively. Therefore,
the proposed boundary indicator function should have the
following properties:

(1) It should be approximately equal to 0 on the boundary of
the lesion region and positive elsewhere.

(2) The value of the boundary indicator function is increased
in the location that has a high probability of belonging to
the lesion, vice versa; the value is reduced when the
probability is low. In this paper, a function that meets
these properties is proposed:

Eb ¼ ∫Ω cos π⋅ζþ 1=2πð Þ þ 1½ �dΩ ð7Þ

where ζ = (ζ1, ζ2) is the probability connection matrix of
lesion region and background. Fig. 2 shows the trend of the
boundary indicator function of the interval LR. One can see
clearly that the boundary indicator function is approximately
equal to 0 at the boundary L and R.

4.2 Probability statistical function

In this paper, the probability statistical-based energy function
is constructed:

Ep ¼ ∫Ω
ffiffiffiffiffiffiffiffiffiffiffi
ζ1⋅ζ2

p
dΩ ð8Þ

Subsequently, given a level-set function ϕ, the following
evolving curve is computed (see Appendix 1):
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ϕp ¼ −∂Ep ϕð Þ=∂ϕ
¼ −δ⋅ 1=2Ep ϕð Þ⋅ Aþ−A−ð Þ þ 1=2⋅℘ 1=Aþ ⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
þ 1=A−⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=ζ2

p� �� �

ð9Þ
where δ is the Dirac delta [44, 45].
The proposed probability statistical function can give it the

latitude to stop the evolving curve more effectively owing to
the probability value of the current pixel. Besides, it can han-
dle complex shapes and topological changes owing to the
level set.

At last, by taking the first variation of the proposed energy
functional concerning ϕ, the final evolution equation is ob-
tained (see Appendix 1):

∂E ϕð Þ=∂ϕ ¼ ∂Eb ϕð Þ=∂ϕþ ∂Ep ϕð Þ=∂ϕ
¼ −π⋅sin π⋅ζþ 1=2πð Þ⋅∂ζ=∂ϕþ δ ϕð Þ⋅V ð10Þ

The integrated probability statistical information and the
energy function can be complementary for US image segmen-
tation. Furthermore, statistical information can control the di-
rection and velocity of the evolving procedure. Meanwhile,
the integrated energy function can facilitate the detection of
lesion regions more accurately. The feasibility analysis of the
proposed method refers to Appendices 2 and 3. Finally, the
iterative steps of the proposed method are summarized in
Algorithm 1, and a sequence of steps are depicted intuitively
as shown in Fig. 3.

Algorithm 1 Iterative Steps for the Proposed Method

Input: Initialize the parameters σ, θ, and λ of the Gabor filter, the level set
function ϕ.

Output: Final contour of the lesion region.
Step 1: noise removal and extract feature vector z by Gabor filter using

(3);
Step 2: generate the probability projection ℘;
Step 3: compute the boundary indicator function and the probability

statistical function using (6) and (8), respectively;
Step 4: solve the proposed energy functional concerning ϕ using (9);
Step 5: check the convergence of the level set function ϕ, if the solution is

not converged, go to step 3.

5 Experiments

In this section, to evaluate the effectiveness of the method, 40
pairs of US images are selected from the datasets (http://
onlinemedicalimages.com/index.php/en/site-map, http://
www.ultrasound-images.com, http://www.radiologyinfo.org)
for the experiment. Here, eight representative images are
selected to present the experimental results in Fig. 5; images
A to H are intramural nodule (237*183), gall bladder
(244*206), cholecystitis (284*203), liquefied hematoma
(251*205), breast cyst (296*350), thymic cyst (247*206),
malignant solid mass(768*520), and liver hydatid cysts
(166*90), respectively. The ground truths of these images
are created by imaging experts for comparison and testing.
All experiments are implemented with Matlabs R2019a in a
Windows 10 system and run on an Intel (R) Core (TM) i5-
4210H CPU@2.90GHz.

5.1 Experimental evolution

To prove the effectiveness of the proposed method, the visual
examples of the evolving processes are depicted in Fig. 4.
Both the simulated images (the first two rows) and real US
images (the last two rows) are carried out. Here, the simulated
images with noise, ambiguous boundary (the first row), and
heterogeneity (the second row) are chosen. Besides, the first
column shows the original images and the initial curves. The
second and third columns show the concrete evolving process-
es. The segmentation results and the corresponding energy
function are shown in the fourth and fifth columns.
According to the ground truths shown in the sixth column,
the proposedmethod successfully obtain segmentation results.

5.2 Effectiveness and accuracy of the proposed
method

The proposed segmentation method (GLM-EF) combines
two components: the probability-based method (GLM) and

Pixel sequence of extended solid line
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Fig. 2 The trend of the boundary indicator function. a The original image. b Boundary indicator function of the interval LR
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the energy function–based method (EF). To further verify
the effectiveness of the proposed method, the segmentation
performance of each component is tested separately and
then combined, as shown in Fig. 5.

The probability-based GLM shows a marked improve-
ment, unlike the EF. Indeed, the learning process helps to
differentiate between the lesion region and background in
US images.

However, the probability projection provides a fuzzy
localization which limits the segmentation accuracy.
Besides, despite the robustness of the energy-based meth-
od, segmentation results are unsatisfactory. Most lesions
of US images contain ambiguous boundaries, which can
influence the contour evolution. Compared with each
component, it can be seen that the proposed method
slightly improves the segmentation. Therefore, we can

(a) (b)                   (c)                     (d)             (e)                    (f)

Fig. 3 All steps involved in the proposed method. a Original image. b The feature vector is extracted by the Gabor filter. c The probability projection is
generated by the GLM. d–e Intermediate evolution results. f Segmentation result

Fig. 4 The proposed segmentation method on the simulated images (the
first two rows) and real US images (the last two rows). First column:
original images with initialization. Second-third columns: intermediate

evolution results. Fourth column: segmentation results. Fifth column:
ground truths. Sixth column: the final energy functional
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get that the proposed energy function incorporated with
the probability projection can enhance the precision of the

segmentation process. The proposed method is also com-
pared with different state-of-the-art methods: two machine

GLM EF GLM-EF Ground truths

No. A

No. B

No. C

No. D

No. E

No. F

No. G

No. H

Fig. 5 Comparison of the
proposed method with the
separate component. First
column: the probability-based
method (GLM). Second column:
the energy function-based method
(EF). Third column: the proposed
segmentation method (GLM-EF).
Fourth column: ground truths
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learning-based energy functions (the ED-EF method [26,
27] and the RE-EF method [30] ), the GL-EF method
[10], and the LRDF-ACM method [31], as shown in
Fig. 6.

Their results, labeled as ED-EF, RE-EF, GL-EF, and
LRDF-ACM, are shown in the first four columns of Fig.
6, respectively. The parameters of these methods are cho-
sen according to their best performance. However, for the
sake of fairness, the same initialization is used.

Fig. 6 shows classical examples of US image segmentation,
in which different regions including the lesion and the back-
ground intertwine with each other. Because of severe hetero-
geneity and ambiguous boundary, the ED-EF and the RE-EF
methods are not sufficient to segment the lesions, as shown in
the first two columns. Although the GL-EF takes both local
and global information into account, they eventually perform
inaccurate segmentation because of ambiguous boundary and
complex cases, as shown in the third and fourth columns. In

      

 

      

 

      

ED-EF RE-EF GL-EF LRDF-ACM GLM-EF Ground truths

No. A

No. B

No. C

No. D

No. E

No. F

No. G

No. H

Fig. 6 Comparison of the proposed method with other methods. First
column: the edge-driven energy function (ED-EF). Second column: the
region-driven energy function (RE-EF). Third column: the global and
local energy function-based US image segmentation method (GL-EF).

Fourth column: the active contours driven by local Rayleigh distribution
fitting energy (LRDF-ACM). Fifth column: the proposed segmentation
method (GLM-EF). Sixth column: ground truths
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contrast, the proposed method enhances the probability pro-
jection and makes the proposed energy functional effective to
segment lesion well, as shown in the fifth column.

In this paper, a quantitative evaluation is also carried out to
measure the performances of the proposed method. Here, four
metrics are used: the DICE coefficient [44], the Jaccard (JAC)
distance [45], root-mean-square error (RMSE) [46], and mean
absolute error (MAE) [47]. For DICE and JAC, higher scores
mean better performances. For RMSE and MAE, the smaller
the value, the better the segmentation performance. To verify
the performance of the proposed algorithm further, 40 pairs of
US images are selected in three datasets mentioned above.
Besides, the mean DICE, JAC, RMSE, and MAE of the ex-
perimental results are shown in Fig. 7. The results show that
the proposed algorithm is favorable compared with the state-
of-the-art performance.

5.3 Iterations and time

Iterations and time (in seconds) of the methods in Figs. 5 and 6
are studied as shown in Table 1. Compared with the other
methods, the proposedmethod needs fewer iterations and time

due to the following reasons: (1) with a suitable evolution
strategy, the noise and heterogeneity can be handled well,
and (2) the probability projection based on the GLM is inte-
grated into the energy function, which can accelerate the
evolution.

5.4 Analysis of initialization

It is noteworthy that due to image noise, ambiguous boundary,
and heterogeneity, initialization will dominate the level set
evolution. Considering the complexity of medical image seg-
mentation, most computerized systems run in a semi-
automatic or interactive manner. In this paper, different seg-
mentation results can be obtained by using different initial
contours on the same image. Therefore, the proposed method
requires a robust initialization, which contains the approxi-
mate position of objects in the image. In this paper, two types
of initialization are used:

(1) Manual method: In this setting, initialization is done
manually by visual inspection. The input required from the
user is a single click to indicate the approximate initialization
of the lesion.
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Fig. 7 Quantitative analysis of
the proposed method for US
image segmentation
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(2) Automatic method: the common practice is to employ
automatic initialization. Inspired by Li et al. [30], we construct
automatic initialization as follows:

ϕ0 ¼ 2 ℘n > θ
� �

−1 ð11Þ

where ℘n represents the average gray value of n neighbor-
hood pixels and θ is customizable between 0 and 1. A large
number of experiments verify that a conservative 0.5 works
well in this paper.

The segmentation results on the simulated image (the first
two rows) and the real US image (the last two rows) are shown
in Fig. 9. The first three columns show the results of the
manual initialization. The last column shows the segmentation
results of the automatic initialization. The corresponding
quantitative evaluations, e.g., DICE and JAC, are shown in
Fig. 8. From Figs. 8 and 9, one can get that as long as the
manual initialization contains partial lesion information (the
first two columns), better segmentation results can be
achieved. However, it can still be a tedious task for large-
scale datasets. Besides, the automatic procedure results in un-
stable results, mainly because this type of initialization can
lead to the local optimum of the likelihood function.

5.5 Analysis of the effect of different noise

For most medical US images, there exists speckle noise [48].
Considering the complexity of US medical images and the
effect of image noise on the evolution of level sets, three
images are added with different noise (i.e., speckle and
Gaussian) with different variances, as shown in Fig. 10. It
can be seen from the experimental results that the proposed
method is more robust to different noise with different vari-
ances. This is because that our method contains the Gabor
wavelet and the GLM, which is useful for removing different
noise.

5.6 Analysis of energy function

In this paper, a novel energy functional method based on
boundary indicators and probability statistics is proposed. To
verify the effectiveness of the proposed energy function and
each component, three experiments are carried out, as shown
in Fig. 11. From Fig. 11, one can get that the proposedmethod
is superior to that of any of the two individual energy
functions.

Table 1 Iterations and average time of each method

GLM EF ED-EF RE-EF GL-EF LRDF-
ACM

GLM-EF

Time Iterations Time Iterations Time Time Iterations Time Iterations Time Time

A 4.626221 160 4.799857 260 8.094173 2.001662 200 5.049912 120 7.904136 3.520851

B 5.027462 160 3.996325 260 5.056189 6.369509 100 4.796649 80 5.432857 2.807395

C 5.293911 160 4.783542 260 5.080172 5.615257 150 8.291787 130 9.468921 5.425473

D 6.441007 160 4.244805 260 5.433054 7.361961 400 6.560387 400 6.918762 3.955187

E 6.064497 160 5.344353 260 5.038205 8.479992 400 4.827462 500 9.936148 6.275422

F 6.503189 160 4.992588 260 9.556102 9.669284 150 7.990366 120 10.079014 4.245761

G 6.279467 160 4.168492 260 6.768949 10.01346 400 6.607451 200 7.776539 3.803146

H 5.897671 160 5.016437 260 9.886324 7.658796 200 7.095899 150 6.639863 4.786339

ED-EF, LRDF-ACM, and the proposed method (i.e. GLM-EF) are iterative adaptively

Fig. 8 Quantitative analysis of
different initialization. a
Simulated image. b Real US
image
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Fig. 9 Segmentation results with
different initialization on the
simulated images (the first two
rows) and real US images (the last
two rows). The first three
columns: manual initialization.
The last column: automatic
initialization

Speckle noise Gaussian noise

Noiseless

0.1 0.3 0.1 0.3

No. A

No. B

No. C

Fig. 10 Segmentation results of different noise
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6 Conclusion

In this paper, the complementary strengths of the machine
learning method and the energy function are combined into
a robust workflow. To segment the lesion region in the US
image efficiently, the US image is denoised by the Gabor
wavelet and the GLM. Besides, each value of the proba-
bility projection is considered as a weighting coefficient of
the boundary indicator–based and probability statistical–
based energy function. The energy function utilizes a dy-
namic variational method for US image segmentation com-
pared to the GLM using pixel classification. This makes it
possible to emphasize the lesion region and allows rapid
convergence to its boundaries. To verify the proposed al-
gorithm, different initializations and the influence of noise
are analyzed. Its performance has been validated on differ-
ent US image datasets. Qualitative and quantitative perfor-
mance evaluations of the proposed method demonstrate
improvements in accuracy.

Appendix 1

In this paper, the proposed optimal energy functional is de-
fined as

ϕ* ¼ arg inf
ϕ

E ϕð Þf g ð12Þ

where

E ϕð Þ ¼ Eb ϕð Þ þ Ep ϕð Þ
¼ ∫Ω cos π⋅ζþ 1=2πð Þ þ 1½ �dΩþ ∫Ω

ffiffiffiffiffiffiffiffiffiffiffi
ζ1⋅ζ2

p
dΩ

ð13Þ

Differentiating (3) and (4) with respect to ϕ, we can obtain

∂ζ1=∂ϕ ¼ δ ϕð Þ⋅∫℘⋅H ϕð ÞdΩ−℘⋅δ ϕð Þ⋅∫H ϕð ÞdΩ= ∫H ϕð ÞdΩ� �2
¼ δ ϕð Þ⋅ ζ1−℘ð Þ=∫H ϕð ÞdΩ ¼ δ ϕð Þ⋅ ζ1−℘ð Þ=Aþ

ð14Þ

and

∂ζ2=∂ϕ ¼ −δ ϕð Þ⋅∫℘⋅ 1−H ϕð Þð ÞdΩ−℘⋅δ ϕð Þ⋅∫ 1−H ϕð Þð Þ
dΩ= ∫ 1−H ϕð Þð ÞdΩ� �2

¼ −δ ϕð Þ⋅ ℘þ ζ2ð Þ=∫ 1−H ϕð Þð ÞdΩ
¼ −δ ϕð Þ⋅ ℘þ ζ2ð Þ=A−

ð15Þ

Next, the concrete derivation process is as follows:

∂Eb ϕð Þ=∂ϕ ¼ π⋅sin π⋅ζþ 1=2πð Þ⋅∂ζ=∂ϕ ð16Þ

and

∂Ep ϕð Þ=∂ϕ
¼ 1=2 ζ1ζ2ð Þ‐1=2⋅ ∂ζ1=∂ϕ⋅ζ2 þ ∂ζ2=∂ϕ⋅ζ1ð Þ
¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
⋅∂ζ1=∂ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=Ρ2

p
⋅∂ζ2=∂ϕ

� � ð17Þ

Boundary indicator Probability statistics Proposed method

No. A

No. B

No. C

Fig. 11 Segmentation results of
different energy function
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By substituting (8) and (9) into (7) and combining the cor-
responding terms, we can obtain

∂E ϕð Þ=∂ϕ ¼ ∂Eb ϕð Þ=∂ϕþ ∂Ep ϕð Þ=∂ϕ
¼ −π⋅sin π⋅ζþ 1=2πð Þ⋅∂ζ=∂ϕþ δ ϕð Þ⋅V ð18Þ
where

V ¼ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
⋅ ζ1−℘ð Þ=Aþ −

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=ζ2

p
⋅ ℘þ ζ2ð Þ=A−

� �
¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
⋅ζ1=Aþ −1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
⋅℘=Aþ −1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=ζ2

p
⋅℘=A−−1=2

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=ζ2

p
⋅ζ2=A−

¼ 1=2
ffiffiffiffiffiffiffiffiffi
ζ1ζ2

p
⋅1=Aþ −1=2

ffiffiffiffiffiffiffiffiffi
ζ1ζ2

p
⋅1=A−−1=2⋅℘ 1=Aþ ⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
þ 1=A−⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=ζ2

p� �
¼ 1=2Ep ϕð Þ⋅ 1=Aþ −1=A−ð Þ−1=2⋅℘ 1=Aþ ⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ2=ζ1

p
þ 1=A−⋅

ffiffiffiffiffiffiffiffiffiffiffiffi
ζ1=ζ2

p� �
ð19Þ

Appendix 2

Theorem 1. The energy function (9) is uniformly bounded in
the Sobolev space Wlp(Ω).

LetΩ denote the bounded open subset in space R, and Γ be the
locally integrable function in Sobolev space Wlp(Ω) [35]
(Sobolev space is such a vector space of functions that
equipped with a series of lp-norms). Then, the energy function
(9) is set as

Γ ¼ sup ∫ Eb ϕð Þ þ Ep ϕð Þ� �
⋅∇ϕdΩ

��ϕ ¼ ϕ1;ϕ2;⋯;ϕNð Þ∈W01 ϕð ÞN ; ϕj jW∞ Ωð Þ < 1
n o

ð20Þ

where dΩ is the Lebesgue measure Ω = sup {Ω+,Ω−}, and

∇ϕ ¼ ∑
N

i¼1
∂ϕi=∂xi: ð21Þ

Then, we can get that Γ ∈W(Ω), ∇Γ ∈W1(Ω), i.e.,

−∫ Eb ϕð Þ þ Ep ϕð Þ� �
⋅∇ϕdΩ

¼ ∫ ∇ Eb ϕð Þ þ Ep ϕð Þ� �� �
⋅ϕdΩ ð22Þ

and the bounded variation space BV(Ω) is defined as

BV Ωð Þ ¼ ϕjϕ∈W1 Ωð Þ or Γ∈L1 Ωð Þ	 

: ð23Þ

By the characteristics of the BV, one can get that if ϕ ∈
BV(Ω), then

Γ Eb;Ep
� � ¼ ∫þ∞

−∞W
1 ∂Ωσð Þdσ: ð24Þ

Here, ∂Ωσ is the boundary, andW
1(∂Ωσ) denotes the length

of ∂Ωσ.Therefore, one can get that the energy function (9) is
uniformly bounded in the Sobolev space Wlp(Ω).

Appendix 3

Theorem 2. The convergence value is the minimum in the
energy function (9).

Proof. From Theorem 1, one can get that there exists a mini-
mal sequence {ϕn} ∈Wlp(Ω), n ∈ Z. By the property of
Sobolev Space Wlp(Ω), we can get

lim
n→∞

E ϕnð Þ ¼ inf
w→H2 Gð Þ

E ϕð Þ ð25Þ

Here, there exists a convergent subsequence ϕn that con-
verges to ϕ, that is ϕn→ ϕ. By the mandatory of function δ(ϕ)
⋅ V and the characteristics of a trigonometric function cos, we
can get that ϕn is convergent to ϕ. By Fatou’s lemma, we can
get ϕ≤ lim

n→∞
infϕn, and ϕ convergences, and there exists a

minimum. In conclusion, the energy function (9) is uniformly
bounded, convergences, and there exists a minimum.
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