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Wilson disease tissue classification and characterization using seven
artificial intelligence models embedded with 3D optimization
paradigm on a weak training brain magnetic resonance imaging
datasets: a supercomputer application
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Abstract
Wilson’s disease (WD) is caused by copper accumulation in the brain and liver, and if not treated early, can lead to severe
disability and death. WD has shown white matter hyperintensity (WMH) in the brain magnetic resonance scans (MRI) scans, but
the diagnosis is challenging due to (i) subtle intensity changes and (ii) weak training MRI when using artificial intelligence (AI).
Design and validate seven types of high-performing AI-based computer-aided design (CADx) systems consisting of 3D opti-
mized classification, and characterization ofWD against controls.We propose a “conventional deep convolution neural network”
(cDCNN) and an “improved DCNN” (iDCNN) where rectified linear unit (ReLU) activation function was modified ensuring
“differentiable at zero.” Three-dimensional optimization was achieved by recording accuracywhile changing the CNN layers and
augmentation by several folds. WDwas characterized using (i) CNN-based feature map strength and (ii) Bispectrum strengths of
pixels having higher probabilities of WD. We further computed the (a) area under the curve (AUC), (b) diagnostic odds ratio
(DOR), (c) reliability, and (d) stability and (e) benchmarking. Optimal results were achieved using 9 layers of CNN, with 4-fold
augmentation. iDCNN yields superior performance compared to cDCNN with accuracy and AUC of 98.28 ± 1.55, 0.99 (p <
0.0001), and 97.19 ± 2.53%, 0.984 (p < 0.0001), respectively. DOR of iDCNN outperformed cDCNN fourfold. iDCNN also
outperformed (a) transfer learning–based “Inception V3” paradigm by 11.92% and (b) four types of “conventional machine
learning–based systems”: k-NN, decision tree, support vector machine, and random forest by 55.13%, 28.36%, 15.35%, and
14.11%, respectively. The AI-based systems can potentially be useful in the early WD diagnosis.
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1 Introduction

Wilson’s disease (WD) is due to excessive copper accumula-
tion in the liver and brain [1]. The National Organizations for
Rare Disorders (NORD) reported that 1 in every 30,000 to
40,000 people in the world are affected by WD [1]. It is esti-
mated that there were nearly 600 cases of WD in the USA in
the year 20071 and there will be 9000 people affected by WD
in the USA by the end of 2020.

WD causes severe disability and death, if not treated early.
The present diagnosis of WD uses anatomical tests, but they
are not reliable [2, 3]. MRI has shown promising signs for
diagnosing WD since it shows white matter hyperintensity
(WMH) in the brain [4–7]. However, due to the volumetric
nature of the MRI and subtle nature of the hyperintensity
between WD and controls, human bias and interobserver var-
iability may complicate diagnosis. To overcome these chal-
lenges, computer-aided diagnosis (CADx) methods can play a
vital role in improving the classification and characterization
of WD [8, 9].

Artificial intelligence (AI) is a branch of computer science
that can handle classification effectively as it can map nonlin-
earity between input variations and disease severity [10]. AI
methods can be broadly divided into two supervised learning
categories namely machine learning (ML) and deep learning
(DL). Machine learning methods [11–16] like decision tree
(DT), k-nearest neighbor (k-NN), support vector machine
(SVM), and random forest (RF) can be applied for classifica-
tion, but they use manually identified features and can yield
low performance. In contrast, deep learning (DL) [17–20]
methods are more reliable because they can automatically
learn features using hidden layers within a dataset. One such
example is a deep convolution neural network (DCNN) that
has been well-adopted by industry for image classification
[11, 19].

Furthermore, DL systems can augment the size of the input
data to ensure a balance between classes leading to stronger
learning protocols.

The DL systems are having several parameters, in particu-
lar the number of layers in the DCNN architecture. These
layers are typically (i) convolution layers, (ii) max-pooling
layers, and the (iii) combination of dense layers that consti-
tutes the neural network, along with the softmax layer. Since
the low-level and high-level MRI features of the WD are ex-
tracted by the convolution and max-pooling set of layers, it is,
therefore, important to define as to how many such sets are
needed for the optimization of the DCNN system [21].
Furthermore, since DCNN is sensitive to the training data size,

it is customary to understand what should be the total size of
the input training data. This training data size can be altered by
the “augmentation procedure”well-developed in the AI indus-
try [22]. For the best combination of “augmentation folds” and
the “number of layers” of the DCNN, we, therefore, need to
optimize the DL system for best classification and character-
ization of the WD. Thus, there is a direct bearing between the
WD classification and (a) number of DCNN layers and (b)
augmentation folds of the training data size. Such an optimi-
zation paradigm is being attempted the first time for the WD
application. Furthermore, because conventional DCNN
(cDCNN) uses the rectified linear unit (ReLU) as an activation
function that is not continuously differentiable at the origin,
we have designed an improved DCNN (iDCNN) which is
smooth near the origin thereby improving its performance.
Finally, we, validate the hypothesis that there is WMH in
WDMRI images. The system uses two novel characterization
strategies by taking advantage of the CNN layers and the
Bispectrum signal processing framework [12, 19, 23]. This
is another unique feature of our paradigm. Furthermore, we
benchmark our two DCNN systems against the transfer
learning–based “Inception V3” [24] framework and four types
of machine learning systems. Overall, we designed, applied,
and compared seven kinds of AI approaches for the diagnosis
of WD.

As part of performance evaluation, we conducted several
new experiments: (i) computing diagnostics odds ratio (DOR)
and correlating this to classification accuracy were conducted,
which were never attempted previously. (ii) Furthermore, a
power study was also conducted to estimate the optimum
dataset size. (iii) Since all implementation were conducted
on a supercomputer having 8 GPUs, timing analysis was per-
formed to demonstrate the horsepower of our design. (iv) For
best operating point characteristics of the DL system in terms
of training data size, we optimize the CNN models by com-
puting classification accuracy on varying the percentage of
training data.

This study is the first study of its kind having the following
novel approaches:

(i) Design of 3D optimization of two deep learning systems
by classification accuracy with (a) changing DL layers
and (b) folds of augmentation. The DL layers were varied
between 5, 7, 9, and 11, and each design was tested with
different dataset sizes created using the augmentation
protocol. Augmentation was utilized to increase the
dataset size by 2×, 3×, 4×, and 5× folds to create 5 sets
of data including the original size. Three-dimensional
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optimization was carried amongst these 4 DL designs and
5 augmented dataset sizes creating 20 combinations,
which could then be used for choosing the best DCNN
design for optimized classification. The final estimation
would then be the number of layers and augmentation
fold for the highest accuracy.

(ii) Design of inter-comparison benchmarking between the
three kinds of DL systems and four types of ML classi-
fication systems.

(iii) Hypothesis validation by characterization of WD vs.
controls using a combination of AI-based feature map
strength (FMS), and Bispectrum signal processing
approach.

(iv) Performance evaluation by computing (a) DOR, (b)
generalization of DL paradigms, (c) reliability, (d) sta-
bility, and (e) time analysis of supercomputing.

This study is subdivided into the following sections:
Section 1 details the ongoing research in the field of classifi-
cation in MR neuroimaging. Section 2 explains the methods
and materials used in this study. Section 3 has the details of all
classification results, and Section 4 discusses the characteriza-
tion of WD. Section 5 shows the performance evaluation, and
Section 6 presents the discussion on the novel techniques used
in this paper. The paper concludes with Section 7.

2 Background literature

The role of AI in WD classification has not taken the front
stage yet. Few studies are using AI, on this topic compared
with other diseases such as Alzheimer’s, Parkinson’s, or can-
cer and neuroimaging in general. One can therefore not ignore
studies in the WD area which are not AI-based. Our recent
work is the culmination of two decades of research, where
biomarkers like serum or urine were used for diagnosis or

segregation of patients having WD, primarily based on the
threshold ranges of these biomarkers [1, 2, 25]. These
methods consisted of 24-h urinary and serum laboratory tests
for the identification of WD. Another class of method for
diagnosis of WD consisted of eye examination for Kayser-
Fischer rings and gene mutations [25]. A more recent method
used all four types of biomarkers such as serum, eye, urine,
and brain imaging to confirm WD [1].

Other frameworks for diagnosis of WD have been studied
such as laboratory-based (blood) tests or genetic mechanisms
for WD classification. Vrabelova et al. [26] described the uti-
lization of blood tests involving DNA analysis for the ATP7B
gene mutation study. Rosencrantz and Schilsky [3] used mu-
tation of ATP7B analysis along with Kayser-Fischer ring in
eyes and elevated copper level in urine. These tests were better
at diagnosing disease compared to the serum/urine biomarker
tests.

With the advent of MRI, several studies diverted towards
neuroimaging-based classification approaches; however, they
remained manual in nature. WMH has recently been explored
recently in many diseases [27–29]. Kim et al. [30] analyzed
hyperintensity in T1-weighted (T1W) and T2-weighted
(T2W) MRI scans of suspected patients and found WMH in
different parts of the brain such as the globus pallidus, thala-
mus, midbrain, and pons.

Recently, AI-community has started implementing this
technology for characterization and classification of WD. In
2011, imaging took a leap towards fMRI for WD. Hu et al.
[31] studied changes in the amplitude of low-frequency fluc-
tuations (ALFF) while conducting fMRI on WD patients.
Resting-state functional magnetic resonance (fMRI) images
have shown promise and were employed to measure ALFF
in different parts of the brain [32, 33]. Furthermore, the evo-
lution of ML started to penetrate the imaging domain for WD
classification [34, 35]. Kaden et al. [34] have demonstrated the
use of support vector machine (SVM) and parameterized

Fig. 1 Control (left) and WD
(right). Both images show the
skull and background removed
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generalized learning vector quantization (PGLVQ) for WD
classification with an accuracy of 87.5% and 90.1%, respec-
tively. Jing et al. [35] used independent component analysis
(ICA) with functional networks and SVM for WD classifica-
tion and obtained the AUC of 0.94 and accuracy of 89.4%
(specificity: 90.0%, sensitivity: 89.3%) with aberrant func-
tional networks (FN). None of the above studies demonstrated
automated approaches for WD classification and characteriza-
tion. Our study uses a 3D optimized deep learning–based par-
adigm for classification of WD against controls and further
extends the DL models combined with signal processing for
tissue characterization. The CADx system shows three kinds
of DL and four kinds ofML for WD classification and offers a
novel approach to the diagnosis of WD.

3 Methodology

3.1 Patient demographics, acquisition, and data
augmentation

A cohort of 46 patients T2W-TSE MRI scans (average age:
40.73 ± 11.3 years, equal M/F ratio) between the years 2011
and 2015 was analyzed (approval was obtained from the

Institutional Ethics Committee, Azienda Ospedaliero
Universitaria (A.O.U.), Cagliari, Italy).

Imaging examinations were performed using a 1.5-T
superconductingmagnet (Philips, Best, The Netherlands) with
a head coil according to a standardized protocol. In each sub-
ject, the conventional diffusion-weighted imaging (DWI) was
performed with single-shot spin-echo with 2 diffusion-
sensitivity values of 0 and 1000 s/mm2 along the transverse
axis. As part of our general brain protocol, axial and sagittal
2D FLAIR images (10000/140/2200 ms for TR/TE/TI; ma-
trix: 512 × 512; FOV: 240 × 240 mm2; section thickness: 5
mm) were acquired. In addition to FLAIR and DWI se-
quences, axial spin-echo T1-weighted images (500–600/15/2
for TR/TE/excitations) and fast spin-echo T2-weighted im-
ages (2200–3200/80–120/1,2 for TR/TE/excitations; turbo
factor, 2) were also obtained with the same section thickness.

3.1.1 Data augmentation

The initial MRI data were manually classified by our radio-
logical team which was then prepared for further processing.
Because the cohort consisted of 37 controls and 9 WD pa-
tients, we had an unequal number of images in both classes.
As each patient MRI study had 12–13 slices, this resulted in
458 control images and 115 WD images. For optimal

Fig. 2 A 3D view of DCNN used
for training and testing of the
WD/control dataset

Table 1 Five types of cDCNN
models consisting of different
CNN layers

C1 C2 C3 C4
DCNN type Convolution 2D layers Max-pool layers Dense layers

R1 DCNN5 1 1 3

R2 DCNN7 2 2 3

R3 DCNN9 3 3 3

R4 DCNN11 4 4 3

R5 DCNN13 5 5 3
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performance with an unbalanced dataset, the augmentation
protocol using a python “Augmentor” API was applied in
WD class resulting in 343 more WD images. Because deep
CNN (DCNN) needs a large number of images for proper
training and performance, we increased the number of images
from 458 by 2×, 3×, 4×, and 5× folds in both classes, and the
system was then trained and tested to find which augmented
set yield optimal results. To avoid the unrealistic brain MRI
scans during the augmentation protocol, we followed the ac-
ceptable protocol of rotating the image by − 10 to 10° ran-
domly. This would prevent methods like flipping horizontal or
vertical or rotating by larger angles.

3.1.2 Preprocessing: skull and background removal

Preprocessing is an essential component of the classification
process. It helps extract the region-of-interest (ROI) from the
MRI images. There are two important steps: (i) removal of the
skull region and (ii) removal of the black background to pre-
pare for the segmented ROI. As there are standard packages
available which are well-accepted and published, we used
BrainSuite [36] combined with volBrain [37] to segment and
remove the background images. BrainSuite was used to read
DICOM images that converted to nii files (nii file type is
primarily associated with NIfTI-1 Data Format by

Fig. 3 Block diagram of DL-
based classification and charac-
terization system
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Neuroimaging Informatics Technology Initiative) and obtain
the grayscale images of the brain with the skull. volBrain
helps to create a mask of the brain which can be used to
remove the skull from the original MRI grayscale images.
These were then further segmented and morphologically
cleaned to remove the background. A sample pair of images
from a patient with WD and control is shown in Fig. 1. The
WD segmented brain images had brighter regions (higher
WMH) in the convoluted zones of the brain (as shown
inside yellow dotted rectangles Fig. 1) compared to control
images.

3.2 Local architecture: deep CNN configurations

Our group had developed several CNN architectures covering
a wide number of applications, namely, radiological imaging
[38], stroke [19, 21, 39–41], liver [42], and cancer [43]. We
have extended this to Wilson disease first time, and this is the
first study of its kind which uses deep learning. The DCNN
architecture used is shown in Fig. 2. It is composed of three
convolution layers, each followed by a max-pooling layer,
thus a total of six layers. A flattening layer that follows after
these six layers converts the 2D signal to 1D. The final layer is
a hidden dense layer consisting of 128 nodes. As usual, the
final output is a softmax layer that has two outputs

corresponding to WD or control. This design of lesser layers
was chosen as the number of classes was only two, and the
DCNN was able to work with the desired accuracy. Thus, the
current configuration would need less storage space and infer-
ence time as compared to pre-trained CNN models. We
adapted the ReLU function for the convolution and dense
layers since that helps with fast convergence to the solution
as compared to sigmoid or tanh activations functions [44].
Because the DCNN had augmentation implemented, we,
therefore, consider several layered options corresponding to
different DCNN configurations, shown in Table 1. It shows 5
types of DCNN combination consisting of different convolu-
tion layers, max-pool layers, and dense layers. Thus, for the
adaption of all experiments, it is, therefore, necessary to un-
dergo 3D optimization between the accuracy, CNN layers,
and the folds of augmentations. The block diagram of the
DL-based classification and characterization system is shown
in Fig. 3. As seen in Fig. 3, the MRI scans are preprocessed
and split into training and testing. Training images are used to
train the deep learning model along with gold-standard labels,
generating the training weights. These weights transformed
the test patients to predict their class labels. Bispectrum, DL
model’s mean feature strength, and histogram were used for
the characterization process to yield mean feature strength
(MFS) and Bispectrum (B) values.

Fig. 4 Block diagram of the ML-based classification system

Table 2 Combination of feature
types for four types of ML
systems (bold cell indicates
maximum accuracy obtained with
FC3 feature combination and
random forest ML technique)

Feature combinations (FC) Four types of ML systems

ML1 ML2 ML3 ML4
k-NN DT SVM RF

FC1 Haralick 63.813 ± 1.54 75.43 ± 1.58 84.08 ± 2.21 85.55 ± 1.67

FC2 Haralick + LBP 63.348 ± 2.41 76.56 ± 1..86 85.19 ± 1.71 86.12 ± 2.00

FC3 Haralick + Hu moments 63.156 ± 2.41 75.34 ± 1.65 84.62 ± 2.58 87.43 ± 1.54

FC4 LBP + Hu moments 68.276 ± 1.44 76.03 ± 1.35 47.40 ± 2.46 85.93 ± 2.46
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The definition of conventional ReLU is as given as σ =
max(0, x). Here, σ is the activation value and x is the input
to ReLU function. This equation was modified to σ = (max(0,
x)) ^ 1.00001. Note that the differential of this equation is 0 at
point x = 0, whereas the conventional ReLU is not differen-
tiable at the origin. Since loss minimization in DCNN used
gradient descent process which needs differential of various
variables, it is, therefore necessary to have ReLU made con-
tinuously differentiable at x = 0. The equation for loss is given
in formula 13 in Appendix. In the improved deep CNN
(iDCNN) for better performance, this change of activation
function was implemented in for all the convolution layers
and the dense layer.

3.2.1 Transfer learning

As part of the overall CADx system, we benchmark our DL
systems against the “transfer learning–based Inception V3”
[24] pre-trained CNN and four machine learning paradigms
such as k-NN, DT, SVM, and RF. InceptionV3 is a 42-layered
deep model consisting of 11 inception modules (each com-
prising of multiple convolution layers and max-pooling fil-
ters), followed by three fully connected layers and a softmax
activation layer. It was originally designed for a 1000 class

ImageNet dataset for the famous ImageNet Large-Scale
Visual Recognition Competition (ILSVRC) and the model is
customized to two class problems for this study and trained
further after loading the pre-trained weights of the ImageNet
dataset. Inception V3 was designed to reduce the overall num-
ber of parameters to reduce network size and inference time.
The reduction in parameters is done with help of factorizing
convolutions. For example, a 5 × 5 filter convolution can be
done by two 3 × 3 filter convolutions. The parameters in this
process reduce from 5 × 5 = 25 to 3 × 3+3 × 3 = 18. Thus, it
brings a 28% reduction in the number of parameters. With a
smaller number of parameters, the model will less overfit and
thus also increases the accuracy.

3.2.2 Machine learning

Our group has been very active in machine learning (ML) in
several tissue characterization and classification applications,
namely, diabetes [45], plaque [46–50], thyroid cancer [51,
52], ovarian cancer [53, 54], prostate cancer [23], liver cancer
[42, 55, 56], lung cancer [57], skin cancer [58], bladder cancer
[59], heart [60], cardiovascular disease risk [61–64], coronary
artery disease [65], stroke [50, 66, 67], arrhythmia [68], and
gene expression characterization [69]. We adapted similar

Fig. 5 Three-dimensional optimization for best DCNN layers. a cDCNN showing optimization point at cDCNN = 9 layers and b iDCNN showing
optimization point at iDCNN = 9 layers

Table 3 Accuracy of different
cDCNN layers vs. augmentation
(bold cell indicates that maximum
accuracy obtained with 4× fold
augmentation using 9 layered
cDCNN)

C1 C2 C3 C4
Classification accuracy (%) vs. CNN layers vs. augmentation

cDCNN layers Augmentation types

2× times 3× times 4× times* 5× times

R1 5 91.56 ± 4.72 84.059 ± 12.14 86.715 ± 5.62 94.997 ± 2.18

R2 7 95.465 ± 2.49 97.025 ± 2.00 97.028 ± 2.6 95.465 ± 1.55

R3 9* 96.303 ± 2.66 96.558 ± 2.30 97.185 ± 2.52 96.402 ± 2.33

R4 11 95.621 ± 2.18 96.559 ± 1.91 96.558 ± 2.53 95.621 ± 3.10

R5 13 93.121 ± 4.30 93.278 ± 3.29 94.215 ± 2.85 93.745 ± 2.55
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paradigm in our current setting forWilson disease application.
Different feature selection methods were used consisting of
Haralick, Hu moments, and LBP feature extraction frame-
works. Table 2 ML4 (consisting of random forest) shows the
highest accuracy corresponding to selected feature combina-
tion FC3 that consisted of Haralick’s and Hu’s moments. A
brief description of these features is as given below:

& Haralick features: These are based on the texture of the
image and generated using Gray Level Co-occurrence
Matrix (GLCM) using one of energy, entropy, or homo-
geneity of these matrix element values.

& Humoments: These are features of the object in the image
and generated using centralized moments.

& LBP features: LBP (Local Binary Pattern) is also a pow-
erful texture-based feature calculated by comparing a pix-
el with 8 neighboring pixels.

The equations for energy, entropy, and homogeneity used
in Haralick features are given in Eqs. 1–3.

Energy ¼ ∑i ∑ jPd i; jð Þ2 ð1Þ

Entropy ¼ −∑i ∑ jPd i; ið Þ log Pd i; jð Þð Þ ð2Þ

Homogeneity ¼ ∑i ∑ j
1

1þ iþ jð Þ2 Pd i; jð Þ ð3Þ

The equation for Hu moments is given by Eq. 4.

μpq ¼ ∑
x

∑
y

x−xð Þp y−yð Þq f x; yð Þ ð4Þ

where μpq are the centralized moments; x, y are pixel coordi-
nates and f(x, y) are pixel intensities at these coordinates. Here
p = 0, 1, 2, 3 and q = 0, 1, 2, 3.

The block diagram of the ML-based classification system
is shown in Fig. 4. As seen in Fig. 4, the preprocessing block
processes the acquiredMRI scans to yield the segmented brain
region. This was implemented using BrainSuite and volBrain
software which gives a very clean mask used to segment gray-
scale images very clearly. The engineering features were ex-
tracted using a combination of Haralick, Hu moments, and
LBP feature–based methods. ML-based methods (k-NN,
DT, SVM, or RF) already trained on labeled segmented im-
ages are used as input to the prediction process for classifica-
tion of the test MRI input. The final output consisted of a
binary output class consisting of either WD or control class.

Fig. 6 Comparison of cDCNN9*
and iDCNN9* for different
augmentation size

Table 4 Results on the “effect of
training data size” using
DCNN9*-Augm4* (DL9A4)
combination

K-
fold

C1 C2 C3 C4 C5
Train-test
ratio

TC& cDCNN accuracy
(%)

iDCNN accuracy
(%)

tDCNN accuracy
(%)

R1 K2 50:50 2 94.53 ± 1.10 95.31 ± 2.20 78.12 ± 8.83

R2 K3 67:33 2 96.04 ± 2.10 96.87 ± 1.56 83.85 ± 6.76

R3 K4 75:25 4 96.48 ± 1.49 97.26 ± 0.78 86.45 ± 2.38

R4 K5 80:20 5 96.79 ± 1.12 97.49 ± 1.78 86.71 ± 2.70

R5 K10 90:10 10 97.19 ± 2.52 98.28 ± 1.55 87.81 ± 2.42

R6 TT 100:100 1 98.43 100 90.62

& TC, total combinations
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3.3 Performance evaluation protocol

To evaluate the model performance of the DCNN systems,
different tests were adopted such as (a) Wilson Disease
Segregation Index (WDSI) to estimate the feature strength of
different AI techniques between two classes; (b) diagnostics
odds ratio (DOR) for DCNN and ML methods; (c) power
analysis to find the optimum dataset size; (d) timing analysis
of supercomputer vs. local computer; (e) for best operating
point characteristics, optimization of the CNN model with a
percentage of the training datasets; and (f) finally, the valida-
tion of DL models against the well-accepted and published
biometric facial dataset.

3.3.1 Wilson Disease Segregation Index of WD against control

We compute the WDSI, which is an indicator for the class
separation between the controls and Wilson disease,
expressed as percentage, and is mathematically given by Eq.
5:

WDSI ¼ jμWD−μCj
μC

� �
� 100 ð5Þ

where μC is the mean feature strength of control class andμWD

is the mean feature strength of WD class.

4 Results

This section primarily demonstrates three optimization exper-
iments on DCNN, and four comparative experiments between
DCNN and ML systems. The first three experiments show 3D
optimization of DCNN layers during the augmentation pro-
cess (DCNN9*), the effect of training onDCNN performance,
and the optimal sample size selection for DCNN to be gener-
alized. The batch is focused on benchmarking of the DL sys-
tem against four ML systems, AUCs of DL vs. ML systems,
and the segregation index of WD vs. controls.

Fig. 8 Comparison of cDCNN9*
and iDCNN9* for different
percent of training data

Fig. 7 Generalization of the
cDCNN9* using K10 protocol
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4.1 Three-dimensional optimization of DCNN layers
during augmentation process (DCNN9*)

The objective of this protocol is to find out the best CNN layer
and augmentation combination. Since there are 20 “DCNN +
Augm” combinations (5 types of CNN layers and 4 types of
augmentations) and each combination is a K10 protocol (10
combinations in each of the K10 protocols), then a total of 200
different runs (or jobs), we, therefore, take advantage of su-
percomputer power to run five types of DCNN designs over
four kinds of augmentations. Since DCNN accuracy varies
depending upon the number of hidden convolution layers, it
is, therefore, vital to undergo the optimization run (see
Table 1). The results of this can be seen in the 3D surface plot
in Fig. 5 and 3D bar graphs in Fig. 14 in Appendix, and the
corresponding values for cDCNN are shown in Table 3. As
seen in the 3D surface plot, with an increase in the CNN layers
(down the rows R1 to R5), the accuracy increases and then
gradually falls. Similarly, with an increase in augmentation,
the accuracy increases initially (from C1 to C3) and then falls.
The best CNN layer-augmentation combination was
DCNN9*-Augm4*. All the subsequent experiments were
then conducted at this combination point of DCNN9*-
Augm4* or a short form as “DL9A4”. The equation of accu-
racy is given as formula 8 in Appendix. The equation for
standard deviation is given as formula 14 of Appendix.

4.2 Effect of training on DCNN performance using
“DL9A4”

K-fold cross-validation protocols were executed on DCNN9*-
Augm4* combination dataset. For this different train and test
split (K2, K3, K4, K5, K10, and TT), we used different com-
binations, as required.

Table 4 shows the effect of training data size (with increas-
ing K-fold) on the three types DCNN systems. For conve-
nience, we have added the transfer learning system (tDCNN)
here as well. The comparisons of cDCNN and iDCNN results
are given in Fig. 15 in Appendix and Fig. 6.

As seen, accuracy slowly rises from K2 to K10 and is best
for TT (training is the same as testing) protocol, which was
used for validation. Note the order of performance was
iDCNN > cDCNN > tDCNN.

4.3 Optimal sample selection for generalization of the
DL system

The DL9A4 was tested with a different percent of training
data, and K10 accuracy was found for each data size as shown
in Fig. 7. The curve shows accuracy increases until the point
of inflection, which is 60% of the training dataset. This shows
the data size has the capacity to generalize after 60% of the
dataset.

The comparison of cDCNN and iDCNN performance for
different percent of training data is shown in Fig. 8.

4.4 Benchmarking of three DL systems against four
ML systems

The benchmarking was conducted for DCNN9*-Augm4*
(DL9A4) combination against the transfer learning–based

Table 6 WDSI between DCNN and ML systems

Method Control WD WDSI

tDCNN 189.92 ± 54.35 239.69 ± 62.57 26.20

cDCNN 148.30 ± 44.93 247.74 ± 69.52 67.05

iDCNN 146.53 ± 43.56 251.65 ± 45.39 71.73

ML 954.99 ± 276.43 1037.66 ± 292.01 8.65

Fig. 9 ROC curves for 7 AI systems: 3 DCNN systems (cDCNN,
iDCNN, tDCNN) and 4 ML (k-NN, DT, DVM, RF). The AUC values
are shown from lowest to highest, where iDCNN does the best

Table 5 Comparison of 7 AI systems for WD classification (in the
increasing order of AUC) (bold cell indicates the maximum AUC value
obtained with iDCNN)

Model C1 C2 C3 C4
Accuracy (%) AUC p value Confidence interval

4 machine learning systems

R1 k-NN 63.35 ± 2.42 0.781 < 0.0001 0.683339 to 0.776441

R2 DT 76.56 ± 2.14 0.812 < 0.0001 0.717490 to 0.806813

R3 SVM 85.20 ± 1.72 0.851 < 0.0001 0.714949 to 0.793839

R4 RF 86.13 ± 2.00 0.918 <0.0001 0.732858 to 0.820271

3 deep learning systems

R5 tDCNN 87.81 ± 2.42 0.927 < 0.0001 0.809110 to 0.965826

R6 cDCNN 97.19 ± 2.53 0.984 < 0.0001 0.894384 to 0.996754

R7 iDCNN 98.28 ± 1.55 0.990 < 0.0001 0.943991 to 1.000000

520 Med Biol Eng Comput (2021) 59:511–533



Inception V3 pre-trained model (tDCNN) and four types of
ML systems (k-NN, DT, SVM, and RF) using K10 protocol as
discussed in Section 3. The comparative results of
benchmarking can be seen in Table 5.

The best performance was achieved for iDCNN9* using a
modified ReLU function.

4.5 Receiver operating characteristics curves (DL vs.
ML)

Receiver operating characteristics curve shows the relation-
ship between the false-positive rate (FPR) and the true-
positive rate (TPR). The AUC validates our hypothesis. The

ROC curve for 4ML classifiers and three DCNNs are given in
Fig. 9, while the AUC values are shown in Table 5 (column
C2). ROC curve is a plot between TPR (y-axis) and FPR (x-
axis). The equation for TPR and FPR is given as formula 11
and 12 in Appendix.

4.6 Wilson Disease Segregation Index

The Wilson Disease Segregation Index (WDSI) was calculat-
ed using the mean feature strengths of DCNN and ML fea-
tures. The large value of WDSI shows larger segregation be-
tween WD and controls which justifies the ability of the AI

Fig. 11 Pixels in range 100–140 marked red in a control and bWD. c and d show the comparison of the histogram for control andWD class. The camel
hunch is seen in the WD class representing the WMH

Fig. 10 a Comparison of FMS
values for control (green color)
and WD class (red color). b
Comparison of Bispectrum (B)
values for control (green color)
and WD class (red color)
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method as seen in Table 6. The order of theWDSI is iDCNN>
cDCNN > tDCNN > ML.

5 WD characterization

Characterization [12, 19, 23, 70] is vital for validation of our
hypothesis that WD has a higher WMH compared to controls
and this accounts for the increase in feature strength in the
layers of the hidden layers of the DCNN. We thus evaluate
the FMS for the layers and see the value of the FMS between
the WD against controls.

5.1 Hypothesis validation 1: mean feature map
strength using DNN9*-Augm4* (DL9A4)

Feature map strength (FMS) is the mean of activation values
over all images in a class. FMS for a trained DNN9*-Augm4*
model at 8 hidden layers is shown in Fig. 10a.

As seen from Fig. 10a, the FMS values are consistently
higher for WD class of the output layers. The mean FMS
values for control and WD class are 500.14 ± 46.09 and
529.68 ± 47.23, respectively, showing an increase of 5.77%
(C.I. 4.5463 to 54.5426, p value < 0.0001). This supports our

1st hypothesis that WMH of WD class is higher than the
controls.

5.2 Camel hunch phenomenon

The WMH could be better visualized by understanding the
histogram distribution of the brain region. The histogram is
computed by considering the bin size of 4, leading to 64 bins
(256 values, divided by 4). This is repeated for both classes.
As seen in Fig. 11c, d, the histograms show a camel hunch-
like shape inWD class from 25th to 35th bin corresponding to
intensity range 100–140. This phenomenon occurs due to re-
gions of WMH [5–7] in WD MRI scans, mainly at the con-
voluted edge of the folds of the brain.

5.3 Hypothesis validation 2: bispectrum strength
computation

Bispectrum (B) falls in the category of higher order spectra
(HOS) [23]. To calculate HOS, the Radon transform of im-
ages was calculated at various angles from 0 to 180° in an
interval of 15°. Here, the Radon transform was applied to
the images where pixels of MRI scans in range 100–140 are
segregated (shown in red: Fig. 11a, b). On calculating mean

Fig. 13 Bispectrum 3D plot of a control class and b WD class. (Black arrows show more B-value for the WD class indicated by higher peaks in 3D
Bispectrum plots)

Fig. 12 Bispectrum 2D plot of a control and b WD. (White arrows show higher strengths of the B-values in the WD class in 2D Bispectrum plots)
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B-values on all images of two classes, the B-value for WD is
found consistently higher than control (see Fig. 10b), with
mean of 20.87 for WD and 13.47 for control class showing
a rise by 54.71% (C.I. 5.5490 to 9.2526, p value < 0.0001).
Figure 12 shows the 2D representation of the Bispectrum
strength for WD against the control, and Fig. 13 shows more
Bispectrum strength for WD in its 3D plot. The equation for
Bispectrum is given as Bispectrum B f1; f2ð Þð Þ ¼ E F f1ð Þ½ �
F f2ð Þ �F f1þ f2ð Þ�, where, B is the Bispectrum value, F
is the Fourier transforms and E is the expectation operator.
The region Ω of computation of bispectrum and bispectral
features of a real signal is uniquely given by a triangle 0 < =
f2 < = f1 < = f1 + f2 < = 1.

6 Performance evaluation

6.1 Diagnostics odds ratio

Diagnostic odds ratio (DOR) is used to discriminate subjects
with a target disorder from subjects without it. DOR is calcu-
lated according to Eq. 6 [71]. DOR can take any value from 0
to infinity. A test with a more positive value means better test
performance. A test with a value of 1 means it gives no infor-
mation about the disease and with a value less than 1 means it
is in the wrong direction and predicts opposite outcomes.

DOR ¼ TP=FN

FP=TN
¼ sens= 1−sensð Þ

1−specð Þ=spec ð6Þ

where TP, FP, TN, and FN represent true positive, false pos-
itive, true negative, false negative. Sens and spec stand for the
sensitivity and specificity, respectively, and equation is given
in Formula 9 and 10 of Appendix. The DOR values for all ML
and DL methods are shown in Table 7.

6.2 Power analysis

The sample size was calculated according to Eq. 7 [72] using
the mean difference between K10 mean accuracy of DCNN9*
and DCNN11 while keeping the augmentation 4× (see
Table 3, cell number (C3, R3), and cell number (C3, R4)).

Sample Size ¼ 2� Zα þ Z1−β
� �2 � σ2

Δ2 ð7Þ

Here, the value of Zα = 3.2905 for type 1 error having a
value of 1%, and Z1-β = 1.6449 for type II error having a value
of 1%. Here, σ (standard deviation) = 2.53 and Δ (mean
difference) = 0.627. Substituting these values in Eq. 2, the
sample size returns a value of 793. This is the required sample
size. The database we adapted has 1832 samples for WD or
controls using 4× augmentations. Thus, our database is 2.31
times the required limit and we are above the limit by 1039
samples.

6.3 Timing analysis

The supercomputer was adapted during the training of DCNN
for the optimal performance of the CADx system. We,

Table 9 Reliability analysis for different percent of training data

C1 C2 C3 C4
Data percent Accuracy (%) Reliability (%) Standard deviation

R1 10 82.10 89.45 8.66

R2 20 89.18 94.28 5.09

R3 30% 91.26 97.74 2.06

R4 40 93.90 96.92 2.89

R5 50 95.93 97.55 2.35

R6 60 96.71 98.81 1.15

R7 70 95.62 97.85 2.05

R8 80 95.93 97.32 2.57

R8 90 96.71 97.79 2.14

R10 100 97.18 97.40 2.52

Table 8 Timing analysis
and gains in time for the
supercomputer against
the local computer

Comparison between LC# vs. SC+ (1-
epoch in s)

LC# SC+ Gain (folds)

2× Augm 170 19 8.94

3× Augm 179 25 7.16

4× Augm 215 27 7.96

5× Augm 234 29 8.06

+ SC, supercomputer
# LC, local computer

Table 7 Sensitivity and specificity with increasing order of DOR for the
7 AI systems (the bold rows indicate the maximum values using cDCNN
and iDCNN)

Model C1 C2 C3
Sensitivity (%) Specificity (%) DOR

R1 k-NN 62.50 50.75 1.71

R2 DT 80.95 71.91 10.88

R3 RF 92.43 82.41 57.25

R4 tDCNN 93.40 82.16 65.25

R5 SVM 80.40 98.29 235.86

R6 cDCNN 98.11 95.34 1066

R7 iDCNN 99.06 97.64 4399

523Med Biol Eng Comput (2021) 59:511–533



therefore, calculated the gain as the ratio of time taken by local
computer (LC) (which was HP Desktop 2010) to the time
taken by the supercomputer (SC) (which was NVIDIA). The
gain values are shown in Table 8.

As seen, the time taken by a local computer using CPU is
around 7–9 times more than that of a supercomputer. Thus, it
will take 72 h or 3 days for a job to run on a local computer
which will take only 8 h on a supercomputer. The C.I. and p
value of the timings are 113.2824 to 215.3842, p value =
0.0052.

6.4 Reliability analysis

Reliability is calculated using the formula: Reliability %ð Þ ¼
1−μN
�

σNÞ �100, where μN and σN are the mean and standard
deviation of the classification accuracy. The variation of reli-
ability according to data size is given in Table 9. For the
system to be reliable and stable, we must meet three criteria
[70, 73]: (i) If the reliability of the DCNN > 95%, then the
system is reliable; (ii) If the SD < 5%, then the DCNN is
considered as stable; (iii) Furthermore, if the variation in ac-
curacy is not more than 5%, then the system is considered
stable. In our case, we meet all the above 3 criteria. For data
size above 20% (row R3), reliability (column C3) is above
95%, SD < 5% (row R3, column C4), and variation in accu-
racy < 5% for rows R4 to rows R10. This concludes the com-
pliance of our DCNN system to be stable and reliable.

7 Discussion

The objective of this study was to classify images from pa-
tients with WD against control in unbalanced and weak brain
MRI training datasets. The system design consisted of 3D
optimization of the best DCNN model under best-

augmented conditions. Our optimization uses the best combi-
nation of DCNN9*-Augm4*. The design of iDCNN was
comparable but superior to cDCNN. We also showed that
iDCNN outperformed tDCNN by 11.92% and four types of
“conventional machine learning–based systems” such as k-
NN, decision tree, support vector machine, and random forest
by 55.13%, 28.36%, 15.35%, and 14.11%, respectively. The
performance evaluation of the DCNN system was evaluated
using DOR and WDSI and all showed consistent results. We
also showed the effect of training data on the system accuracy
for this optimal point. The hypothesis was validated using two
novel strategies for WD characterization using FMS and
Bispectrum analysis.

7.1 Benchmarking

We benchmarked our DCNN systems against existing sys-
tems as shown in Table 10. As found from existing research,
no classification work has been done in WD. Benchmarking
table also shows a comparison between the previous studies
and current proposed study. Overall, this was the first paper
using state-of-the-art technology to optimize several AI
methods in the diagnosis of WD. The benchmarking is done
with recent papers referred by author and year and 1st column
C1; it is followed by the type of brain diseases such as
Alzheimer (ALZ), brain tumor (BT), and mild cognitive im-
pairment (MCI) in column C2. In column C3, the techniques
used are mentioned such as SVM, CNN, and DBM. Column
C4 tells the imaging modality such as MRI and fMRI. In
column C5, we have mentioned where authors have used
ML- or DL-based AI technique. Columns C6 and C7 describe
the accuracy and AUC (p value) comparison with these re-
ferred papers. The column C4 shows the neurological appli-
cations such as spatial MRI imaging or functional MRI imag-
ing. Majority of the studies use ML or DL models. The

Table 10 Benchmarking of our proposed DCNN strategy against the previously published literature (the bold rows indicate that best accuracy/AUC
values obtained using cDCNN and iDCNN)

SN C1 C2 C3 C4 C5 C6 C7
Author Appl. Technique Imaging modality AI$ Accuracy (%) AUC (p value)

R1 Kaden et al. [35] (2015) WD SVM and PGLVQ NG ML 90.1 NG

R2 Suk et al. [74] (2017) ALZa DBN+NN MRI (ADNI) DL 85.91 0.9082

R3 Abiwinanda et al. [11] (2018) BT& CNN MRI DL 84.19 NG#

R4 Zhang et al. [75] (2019) MCIb SSGSR fMRI ML 88.50 0.965

R5 Abrol et al. [76] (2018) MCIb vs. ALZa ResNet MRI DL 82.7 0.89

R6 Jing et al. [35] (2019) WD SVM and ICA fMRI ML 89.4 0.94

R7 Richhariya et al. [77] (2020) MCIb SVM MRI ML 90 NG#

R9 Liu et al. [78] (2020) MCIb SVM MRI ML 88.5 0.897

R10 Proposed study (cDCNN) WD CNN MRI DL 97.19 0.984 (p < 0.0001)

R11 Proposed study (iDCNN) WD CNN MRI DL 98.28 0.990 (p < 0.0001)
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accuracy of the systems has an average value of 87%, while
our system had about 10% improvement compared to the
average value. R10 and R11 showed the proposed cDCNN
and iDCNNmethods which had an accuracy of ~ 97.2% and ~
98.3%, respectively. The AUC for our proposed methods
were 0.98 (p < 0.0001) and 0.99 (p < 0.0001).

7.2 A short note on WD characterization

Even though we are able to characterize the WD by comput-
ing the Bispectrum values and AI models, it is important to
note that the Bispectrum values are computed in the pixel zone
corresponding to the camel hunch region. This was valid for
our datasets, but definitely need a wider set of clinical valida-
tions. Furthermore, the spatial slices considered were on an
average of 12 per patient. To begin with the number of pa-
tients on control was four times the WD, which shows a slight
imbalance. Thus, a strong pool of data is required to more
validate this paradigm.

7.3 A short note on the role of the gold standard for
the design of the Wilson disease system

The role of the gold standard is very crucial in the design of
deep learning systems. They act like the binary event, “high
risk and low risk,” or “benign cancer vs. malignant cancer,” or
“cardiovascular event vs. no-cardiovascular event” or “cere-
brovascular event vs no-cerebrovascular event.” Such binary
events can be well-detected diagnostically if they are trained
using the deep learning model. Recently, our group developed
a method for classification of symptomatic risk likely to have
stroke vs. asymptomatic patients not likely to have the stroke
[21]. The deep learning solution was very successful by train-
ing the deep CNNmodel using the gold standard based design
by the neurologist. Such a process is also called as character-
ization of the disease since the deep learning system is able to
use the features of the disease to classify into binary events
such as Wilson disease vs. normal. Examples of several kinds
of well-defined characterization systems can be seen in the
machine learning section. Even though typically, the charac-
terization can be used for binary classification, but the
multiclass scenarios can also be developed when it comes to
characterization [61, 79]. It just provides several levels of risk
rather than two types of risk.

7.4 Strength, weakness, and extensions

This is the first study of its kind that considered DCNN archi-
tecture for classification and characterization of the WD. The
architecture was optimized by changing the number of layers
of the DCNN architecture and augmentation protocol. The AI
system showed high performance and the results were validat-
ed. The WD characterization was conducted using two

different models, first using the AI framework, and second
using signal processing framework using higher order spectra
by computing the Bispectrum values. The system showed
consistent results and the hypothesis was validated.

Even though the pilot study showed powerful results, one
can automate the manual segmentation step by automated
methods [9, 80, 81]. Furthermore, more ML alternative and
more features can be used in future [59]. More validations
need to be conducted in the future, such as cross-modality
fusion using registration methods [82, 83]. More neurological
model-based techniques can be designed [84, 85].

The system can be extended to transfer learning–based ap-
proaches to avoid the heavy supercomputer processing time
during training, therefore using the pre-trained weights [79].
In spite of our successful pilot study showing a set of seven
successful AI models, this can be taken as a launching pad for
multicenter data collection for bigger trials. The scanners used
for imaging also can play a role while acquiring the MRI data,
just like other modalities [86].

8 Conclusion

This is the first study of its kind to use an advanced CADx
system based on seven kinds of AI combinations to classify
images from patients withWD vs. controls to achieve the best
possible architecture of DCNN and to attain the best accuracy
of 98.28 ± 1.55%. The three DCNN methods were compared
with four ML methods showing the benefit of deep learning.
The study also used the characterization of WD using two
hypotheses showing feature map strength and Bispectrum
strength of WD higher due to regions of WMH in MRI scans.
A detailed performance evaluation was also implemented
using diagnostics odds ratio, power analysis, supercomputer
timing analysis, and generalization analysis of DCNN
performance.

Appendix

If TP, FP, TN, FN, TPR, and FPR represent true positive, false
positive, true negative, false negative, true-positive rate, and
false-positive rate, respectively, then the performance param-
eters can be computed as follows:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð8Þ

Sensitivity ¼ TP

TPþ FN
ð9Þ

Specificity ¼ TN

TNþ FP
ð10Þ

TPR ¼ TP

TPþ FN
ð11Þ
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FPR ¼ FP

FPþ TN
ð12Þ

£ Θð Þ ¼ − yi � logpi þ 1−yið Þ � log 1−pið Þ½ � ð13Þ
where yi is the class label for input and pi is the predicted
probability of class being yi.

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
xi−μð Þ2

N

vuuut ð14Þ

where σ is the standard deviation and xi is the accuracy at ith
combination of K-fold cross-validation, μ is the mean accura-
cy, and N is the number of combinations, equal to 10 for K10.

Fig. 14. a Three-dimensional optimization for best cDCNN layer and
augmentation combination (cDCNN9*), where * shows the optimized
CNN layer. The black arrow represents optimized value at cDL9A4. b

Three-dimensional optimization for best iDCNN layer and augmentation
combination (iDCNN9*), where * shows the optimized CNN layer. The
black arrow represents the optimized value at iDL9A4.

Fig. 15 Comparison of
cDCNN9* and iDCNN9* for
different training protocols
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Scientific validation of DCNN systems
The DCNN9*-Augm4* system was validated using well-

accepted and well-published facial biometric data. The facial
dataset consisted of 72 subjects, and each subject represented
a class. Each subject had 20 different face images totaling to
1440 images in the dataset. Using K10 protocol, the accuracy
obtained with cDCNN, tDCNN, and iDCNN was 96.72 ±
2.01%, 97.18 ± 1.23%, and 98.27 ± 1.55%, respectively.
These numbers are comparable with the accuracy obtained
in WD. The order of performance was iDCNN > tDCNN >
cDCNN. The results demonstrated the proposed DCNN
methods as they promised encouraging high accuracy on an
already published dataset. Table 11 shows the 10 K10 combi-
nations of cDCNN, tDCNN, and iDCNN for the facial bio-
metric dataset in sorted form.
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