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from sinusoidal and spiral handwritten drawings of people
with Parkinson’s disease
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Abstract
Parkinson’s disease (PD), whose cardinal signs are tremor, rigidity, bradykinesia, and postural instability, gradually reduces the
quality of life of the patient, making early diagnosis and follow-up of the disorder essential. This study aims to contribute to the
objective evaluation of tremor in PD by introducing and assessing histograms of oriented gradients (HOG) to the analysis of
handwriting sinusoidal and spiral patterns. These patterns were digitized and collected from handwritten drawings of people with
PD (n = 20) and control healthy individuals (n = 20). The HOG descriptor was employed to represent relevant information from
the data classified by three distinct machine-learning methods (random forest, k-nearest neighbor, support vector machine) and
a deep learning method (convolutional neural network) to identify tremor in participants with PD automatically. The HOG
descriptor allowed for the highest discriminating rates (accuracy 83.1%, sensitivity 85.4%, specificity 80.8%, area under the
curve 91%) on the test set of sinusoidal patterns by using the one-dimensional convolutional neural network. In addition,
ANOVA and Tukey analysis showed that the sinusoidal drawing is more appropriate than the spiral pattern, which is the most
common drawing used for tremor detection. This research introduces a novel and alternative way of quantifying and evaluating
tremor by means of handwritten drawings.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder af-
fecting an area called substantia nigra in the basal ganglia. PD
produces a progressive loss of dopaminergic neurons that
causes various motor symptoms such as tremor, rigidity, bra-
dykinesia, postural instability, shuffling gait, and non-motor

symptoms such as depression, sleep problems, loss of cogni-
tive function, nerve pain, and intestinal constipation [1].

PD affects about 1% of the over 60-year-old world popu-
lation. Moreover, according to the World Health Organization
(WHO), by 2050, almost two billion people worldwide are
expected to be over 60 years old. Thus, 20 million people
may be suffering from PD in the future [2].

PD, unfortunately, remains cureless and its diagnosis is not
simple. The patient must be assessed by means of standard-
ized clinical exams, diagnostic imaging exams, and the dopa-
minergic therapy response. However, the cardinal signs of the
disease, such as tremors, rigidity, bradykinesia, and postural
instability, are features that can mark the presence of the dis-
order [1, 3, 4].

An adequate understanding of these cardinal signs can help
to diagnose the condition. Thus, the evaluation of the hand
tremor is a crucial stage of the clinical assessment of the pa-
tient with PD, and it can be done by analyzing drawings that
can capture tremors. This evaluation may be conducted by a
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specialist or computer-based method [1]. Computational
methods have the main advantage that they rely on techniques
that guarantee consistency and reproducibility.

Currently, several studies demonstrate the use of tech-
niques to extract information from handwritten drawings in
real-time. Smits et al. [5] used a tablet and digitizer pen to
draw shapes such as circles, stars, spirals, and characters
(e.g., “elel”). The authors quantify the tremor, bradykinesia,
and micrographia using the writing dynamics (i.e., speed,
time, writing size, and frequency) to detect people with PD
from a control group (CG).

Features extracted from tablet-based spiral drawings were
correlated with part III of the Unified Parkinson Disease
Rating Scale (UPDRS) score [6]. The study introduced by
Almeida et al. [7] used a digitizing tablet to collect spiral draw-
ings to analyze the correlation between physiological tremor
and aging. Westin et al. [8] proposed a new web software for
viewing and comparing spiral drawing assessments. Several
research groups [9–11] have used Archimedes’ spiral drawings
to assess hand tremor in PD patients via tablet-based data
collection.

Recently, deep learning methods, which have a higher
computational cost, have been used to analyze spiral-
handwritten drawings. Khatamino et al. [12] reported a
convolutional neural network (CNN) with the highest accura-
cy of 88%. Similarly, Moetesum et al. [13] reported an accu-
racy of 83% while discriminating PD from a CG group.

Pereira et al. [14] used a smartpen with several attached
sensors to obtain data from spiral and meander drawings. The
smartpen signals were transformed into pictures, and the im-
ages were inputted in CNN to build knowledge. CNN reached
an accuracy of 83.7% in the classification of PD and CG.

Tolonen et al. [15] used a tablet and a pen with an attached
gyroscope to collect data from drawings such as spirals, cir-
cles, and zigzag triangles. They classified PD from other
movement disorders and achieved the following accuracy:
82% (essential tremor), 69.8% (functional tremor), and
72.2% (physiological tremor). Similarly, the work presented
by Matsumoto et al. [16] used a tablet and a digital pen with a
3-axis accelerometer to evaluate spiral drawings of patients
with PD and essential tremor (ET).

Although many studies have been employing inertial sen-
sors and digitizing tablets, there is a lack of research that ana-
lyzes digitized drawings made with paper and pen. This type of
analysis is relevant because of the simplicity of data collection
and its broad availability in the clinical environment.

Kraus and Hoffmann [17] used paper and pencil to collect
spiral drawings and then used these images to analyze tremor
amplitude. The regression analysis revealed a significant as-
sociation (88.9%) between the Bain et al. [18] rating scale and
tremor amplitude.

Bajaj et al. [19] collected spiral drawings using paper and
pen to distinguish cases of tremulous PD from those clinical-

SWEEDs (parkinsonian phenotype with normal presynaptic
dopaminergic imaging). The authors assessed the clinical
tremor severity (TS), spiral diameter 3-turns (3TD), and spiral
density (SD). The sensitivity and specificity in predicting the
correct classification were, respectively, 62.5% and 65.0% for
TS, 75% and 56.7% for 3TD, and 30.4% and 82.5% for SD.

Pereira et al. [20] used paper and pen to collect spiral draw-
ings fromCG and patients with PD. They reached 78.9 ± 3.5%
using the Naïve Bayes classifier. The work presented by
Pereira et al. [21] used CNN to extract features from spiral
and meanders of handwritten to identify subjects with PD and
showed average overall accuracy for meanders of 79.62% and
spirals of 89.55%. Passos et al. [22] reached 96% of accuracy
to identify people with PD using a complex structure of a deep
neural network (DNN) (ResNet-50) to learn the patterns and
extract features from the image spiral drawings, and then fed
the Optimum-Path Forest (OPT).

In addition, Gupta and Chanda [23] proposed a Fourier
transform-based distance, specific to spiral drawings, to ex-
tract features from offline images. The authors discriminated
patients with PD from a healthy group with an accuracy of
81.66% by using support vector machine.

Archimedes’ spiral drawing has been widely used to assess
tremor. However, the characteristics and methods used in the
analysis of Archimedes’ spiral cannot be applied to other
types of drawings. Besides, there is a lack of studies compar-
ing the results from Archimedes’ spiral with other drawings
for tremor quantification. As presented by Daroff et al. [24],
handwriting drawings, e.g., sinusoidal patterns, should be
employed for the evaluation of tremor. In contrast to a spiral
drawing, which captures the hand movement in the same po-
sition, the sinusoidal drawing requires the person to slide the
hand from one point to another. This difference in the motion
pattern may bring essential characteristics to be analyzed.

Folador et al. [25] introduced the analysis of sinusoidal
handwritten drawings for tremor evaluation. The authors
showed that it was possible to discriminate drawings made
from people with PD from a CG by employing computer-
vision techniques to extract features from images. A random
forest classifier was applied to these characteristics, and over-
all mean accuracy of 70% was reached.

The present research extends the investigation of Folador
et al. [25] by collecting and analyzing a data set with 960
handwritten drawings of spiral and sinusoidal patterns.
Twenty people with PD and 20 healthy subjects participated
in the experimental trials. The presented results consider the
clinical evaluation of tremor by three distinct examiners and
the comparative performance of four classifiers in
distinguishing the tremor symptom in people with PD from
the control group.

The histograms of oriented gradient (HOG) descriptor used
in computer vision has been used primarily in human body
detection [26] but extended to tsunami victim detection [27],
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texture classification [28], traffic sign detection [29], and
mammographic image classification [30]. In this research,
HOG was introduced for tremor detection in people with PD
from the spiral and sinusoidal handwritten drawings. The
HOG features were fed into three classical machine-learning
techniques, which have been employed in several related stud-
ies, i.e., random forest [31–35], k-nearest-neighbor [33, 36,
37], and support vector machine [20, 23, 27, 33–35, 38].
Additionally, the HOG features were fed in a deep learning
classifier (convolutional neural network) [12–14, 21].

The main purpose of the proposed method was to employ
solely paper and pencil to quantify tremor through spiral and
sinusoidal handwriting images by HOG feature extraction.
Practical advantages of this method are the following: (i) it
can be widely employed as it depends only on the availability
of paper and pencil; (ii) it does not need an experimental
environment with supervision of drawing parameters such as
speed, time, and pressure; (iii) it can be extended to the anal-
ysis of distinct types of drawing patterns as it does not depend
on specific metrics of a particular kind of drawing pattern.

2 Materials and methods

This transversal researchwas approved by the Research Ethics
Committee of the Federal University of Uberlândia (CAAE
07075413.6.0000.5152). The participants were informed
about the data collection procedures and signed a consent
form before data collection.

2.1 Participants

Data were collected from people with PD (PwPD) and healthy
individuals (i.e., control group—CG). MDS-UPDRS (Unified
Parkinson’s Disease Rating Scale modified by the Movement
Disorder Society in 2008) [39] was applied to PwPD. The
inclusion criteria in the control group were the absence of
neurological disorder and any physical impairment that might
prevent the individual from executing the experimental tasks.

The research included 20 PwPD, as shown in Table 1.
They were treated with antiparkinsonian drugs. The experi-
ment occurred while the participants were in the period “ON”
of the medication to get a more stable handwritten drawing.

The control group consisted of 20 matched individuals of
the same age and sex-related to PwPD, as indicated in Table 1.
The statistical equivalence of the groups was verified by the t
test in which the null hypothesis (H0) is that the means of
PwPD and CG groups are equal, and if it is rejected (p value
< 0.05), the means are different. The t test is commonly used
in data that follow a normal distribution. Thus, the normality
was confirmed by Shapiro–Wilk test (H0: the sample has a
normal distribution; if p value < 0.05, the null hypothesis is
rejected) and the inspection on the quartile-quartile plot (QQ-
Plot) [40].

2.2 Procedure for data collection

During the experiment, the participants were asked to use the
dominant hand to draw a spiral and a sinusoidal pattern. All
the participants were blind evaluated by three physiotherapists
with experience in Parkinson’s disease. Besides guaranteeing
the absence of problems or severe comorbidities that could
affect the dominant hand, they also applied the MDS-
UPDRS part III (specific questions 3.4, 3.5, 3.6, 3.15, 3.16,
and 3.17) to evaluate the hand movement, in particular the
presence and severity of hand tremor. These specific items
of the MDS-UPDRS were applied to the right and left hand.

The participants were asked to draw a countered pattern on
a printed drawing before doing the experimental task, as
shown in Fig. 1a and b. The purpose of this step was to pro-
vide prior knowledge of the experimental task to the partici-
pant. Following this, they were asked to freely draw six pat-
terns of each drawing on an A4 white sheet of paper using a
6B black pencil from Faber Castel.

Data collection was performed in two different experimen-
tal sessions with an interval of 1 week between them, account-
ing for the effect of data variability in the analysis and the
increase of data samples from a single participant. In total,
each participant drew 12 patterns in an experimental session,
being six spirals and six sinusoidal. There was no clinical
complication with the participants in this period and no
change in medication.

Therefore, a database of 960 images was created with 480
spirals and 480 sinusoidal for both sessions: 240 spirals and
240 sinusoidal images for each experimental session, being
half of them collected from PwPD and the other half from

Table 1 Characterization of the research groups

Group Number of
participants

Age in years
(mean ± SD)

Sex (M/F) Shapiro-Wilk t test

W p value t value degree of freedom p value

PwPD 20 67.65 ± 9.10 17/3 0.9517 0.3938 0.2166 37.7580 0.8297
CG 20 67.05 ± 8.40 17/3 0.9512 0.3853

PwPD people with Parkinson’s disease, CG control group, SD standard deviation, M/F male/female
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CG. Hence, a balanced dataset was set up with the same num-
ber of samples per class [41].

The drawings were digitized and preprocessed so that fea-
tures could be estimated. In the last stage, the extracted features
were classified using distinct machine-learning methods to dis-
criminate people with tremor from those without visible trem-
ulous activity. Figure 2 illustrates the main steps of the study.

2.3 Computational and data processing environment

The pencil drawings were digitized in 300 dots per inch (dpi)
of resolution using a scanner (HP Deskjet 3516 multifunction-
al). Since all the drawings of each participant were in a single
sheet of paper, it was necessary to select individual drawings
of each pattern after digitization, using an image manipulation
program (GIMP). Each drawing was rescaled to a standard
size of 256 by 256 pixels (wide and height) in 96 dpi.

Data processing and all other experiments were carried out
in a machine with Intel Core i7 2.40 GHz, with 8 GB DDR3
RAM, 256 SSD of hard disk, and a 2 GB NVIDIA GeForce
GT 650 video card on Microsoft Windows 7 Pro 64 bits.

Python programming language 3.6.5 was used with
Tensorflow 2.1 (the core of an open-source library for Machine
Learning) and Keras 2.3.1 (a deep learning framework), and the

Scientific Python Development Environment (Spyder 3.3.2) was
used for coding. R Studio 1.1.456 was used for statistical analy-
ses as well as for graphical visualization.

2.4 Clinical analysis of tremor

In this study, three examiners applied the MDS-UPDRS to
PwPD. The scores of the MDS-UPDRS part III (questions
3.4, 3.5, 3.6, 3.15, 3.16, and 3.17) given by each examiner
were summed for each participant. The scores of the left and
right hands were computed. The score range was between 0
and 48 points.

The analysis of the agreement between examiners was car-
ried out by applying Kendall’s coefficient to compare the
agreement among all examiners. Kendall’s coefficient is a
non-parametric statistic and can be used to measure the agree-
ment among several evaluators assessing a given set of n
subjects. Its value ranges from 0 (no agreement) to 1 (com-
plete agreement) [42].

2.5 Feature extraction

The histograms of oriented gradients (HOG) proposed and
detailed in [26, 28, 43] is a method based on evaluating the

Fig. 1 a The spiral and b the
sinusoidal patterns drawn by the
participants. The pattern drawings
were countered while the other
images were produced freely

Fig. 2 Flowchart depicting the main stages of the study. a Recruitment
and clinical assessment of healthy volunteers and people with Parkinson’s
disease. b The handwritten drawings were collected, digitized, and

preprocessed. c Features of the digitized images were extracted. d The
set of features was classified with the aim of discriminating people with
tremor from those without visible tremulous activity
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normalized local histograms in a dense grid that uses gradient
magnitude and angle information for object detection. The
distribution of local intensity gradients can represent the ap-
pearance and shape of the region analyzed.

Figure 3 illustrates the main steps involved in the estimate
of the HOG. In this study, a window of the digitized drawing
was divided into small regions named cells, e.g., the blue
square in Fig. 3b, of 16 (width) by 16 (height) pixels, and a
cell was represented by a vector of one dimension of histo-
gram of gradients. In this study, the histogram of a cell has 9
orientation bins (Fig. 3b), as suggested in [26, 43]. To the
normalization process, the block of cells (the green grid in
Fig. 3b) was set to 2 by 2 cells.

For estimating the HOG descriptor, the gradients gx and gy
must be calculated as in Eq. 1, where x and y are the pixel
positions in the image and f is the pixel intensity. Therefore,
the horizontal target pixel (gx) intensity is obtained by the
difference between the right and left pixel values from it. In
the vertical direction, gy is calculated by the difference be-
tween the top and bottom values of the neighbor pixels; an
example of the gradients obtained is in Fig. 3c [26, 28].

∇ f x; yð Þ ¼ gx
gy

� �
¼

∂ f
∂x

∂ f
∂y

2
66664

3
77775 ¼ f xþ 1; yð Þ− f x−1; yð Þ

f x; yþ 1ð Þ− f x; y−1ð Þ
� �

ð1Þ

The HOG is obtained as the combination of the local his-
tograms of gx and gy. The parameters that define a local his-
togram are the following: the magnitude g in Eq. 2 and the
edge orientation θ in Eq. 3 [27, 28].

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q
ð2Þ

θ ¼ arctan gy=gx
� �

ð3Þ

The number of bins in local histograms was configured to 9,
and as the value of θ ranged from 0 to 180°, the first bin ranged
from 0 to 20°, the second from 20 to 40°, and so on. After that,
the voting process [26] selects the bin based on the value of θ and
then adds the pixel magnitude to the bin (Fig. 3d).

For improving the invariance of shadows and illumination
into the process, themeasure of the local histogram is calculated
within larger regions named blocks, set as 2 by 2 cells. The
block scans the dense grid of the cell histograms produced from
left to right and from top to bottom, and the block overlap
(stride) is fixed at half of the block size (Fig. 3d). Each block
can be normalized using, for instance, L1-norm (f = v/(||v||1 +
c)) where v is the non-normalized descriptor vector of a block,
||v||1 is the 1-norm, and c is a constant value (c = 1) that prevents
division by zero [26]. Each value of the cell histogram is divid-
ed by the block normalization value. When the block overlaps,
the normalization process repeats. Each of the cells is represent-
ed in the final feature vector several times but normalized by
different blocks. However, these redundancies increase the per-
formance of the descriptor [26, 28].

The normalized block descriptors are referred to as histo-
gram of oriented gradient (HOG) descriptors (Fig. 3e). The
size of the final feature vector can be calculated multiplying
the number of bins (9), the number of cells per block (4), the
amount of horizontal overlapping (15), and the amount of
vertical overlap (15). In this study, the size of the HOG feature
vector, as represented in Fig. 3f, is 8100 (a dimensionality
reduction of 87.6% when compared to the original image,
which is 65,536). The features used in the test set of each
classifier can be visualized in the “Results” section.

2.6 Data classification analysis

The set of HOG feature vectors was classified so that it was
possible to discriminate drawings with tremor against those
without tremulous activity. Though all PwPD had tremor in
this study, it may happen that the individual did not present the
symptom during the experimental trials. Likewise, some
healthy people could present tremor because of anxiety or
other stressful factors during the experiment.

Four supervised classifiers were employed: random forest
classifier (RFC), k-nearest-neighbor (KNN), support vector
machine (SVM), and convolutional neural network (CNN).

RFC is a type of supervised machine learning algorithm
based on ensemble learning. This characteristic allows us to
combine different algorithms or the same algorithm to create a

Fig. 3 Basic steps involved in the HOG descriptor estimation: a input
image, b HOG parameters setup such as the image division in cells and
blocks, c the gradients gx and gy are computed, d the histograms of each

cell are estimated, and the normalization is processed by block, e the
HOG descriptor, and f a vector of the normalized cell histograms from
all blocks are produced
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more efficient prediction model. The combination of multiple
decision-tree algorithms was used [31]. In general, an RFC
takes N objects from the database and builds a decision tree
with this data, and every tree predicts the category of the items
belonging to it. Finally, the new object is assigned to the class
that wins the majority vote [31–33]. In this work, 500 trees
were used, such as in [34].

K-nearest-neighbor (KNN) is a type of data classification
algorithm that attempts to classify which category the data
point is in by looking at the data points around it. It is a non-
parametric method generally used for classification and re-
gression [33]. In this work, k was set to 7 neighbors (k = 7)
as in [36].

SVM is a type of supervised machine learning classifica-
tion algorithm. The algorithm aims to find a boundary that
divides the data in such a way that the misclassification error
can be minimized. The nearest points from the decision
boundary that maximize the distance between the decision
boundary and the points are called support vectors. The deci-
sion boundary in support vector machines is called the maxi-
mum margin classifier or the maximum margin hyperplane
[38]. In this work, a linear kernel was used, as in [26].

A common CNN (two-dimensional or 2D CNN) is a type
of deep learning method typically used in the classification of
images. Unlike conventional multilayer perceptron architec-
tures, CNN performs the so-called convolution and pooling
layers, attempting to reduce the image to its basic features for
understanding and classifying it [12, 14, 44].

In this proposal, the HOG features are used to feed a one-
dimensional CNN (1D CNN), which is commonly used for
sequence processing. In this context, the convolutional layer
uses a kernel to extract local patches (subsequences) from the
original sequence of features and feeds a fully connected layer
to compute the classification [44]. In this study, 1D CNN was
configured with two convolutional layers with kernel length
of 5, two pooling layers, and with 3 fully connected layers (the
first 2 with 16 units and the output layer with 1 unit) to classify
PwPD or CG. The configuration was based on [44] and em-
pirically improved.

A 2D CNNwas used to extract the features and classify the
original images of the database (without HOG) to compare the
results. The 2D CNN arrangement was set up with 5
convolutional layers with kernel length of 3 by 3, 5 pooling
layers, and with 2 fully connected layers (the first layer with
512 units and the output layer with 1 unit) to classify PwPD
and CG. The configuration was based on [44] and empirically
improved.

Cross-validation stratified k-fold was used for the evalua-
tion of all the classifiers. This method splits randomly the data
into k equally sized groups or folds preserving the same per-
centage of samples in each class, and then, one group is used
to test and the others to train the classifier [45]. In this work,

the 5-fold was employed [34, 46, 47], which means the data
are trained/tested 5 times in each experiment.

The training/test was performed separately for session 1
and session 2 for each type of drawing (spirals and sinusoidal
waveforms) on a balanced dataset with the same number of
samples in each class [41].

The following metrics were employed to assess the quality
of the classification results:

& Accuracy (ACC) is the proportion of correct prediction of
a given condition as defined in Eq. 4 [30, 46, 48].

ACC ¼ TPþ TN

TPþ TNþ FPþ FN
ð4Þ

Thus, TP is the number of true positives, TN the number of
true negatives, FP the number of false positives, and FN the
number of false negatives.

& Sensitivity (SEN) is the measure of the true positive rate,
as defined in Eq. 5 [46, 48].

SEN ¼ TP

TPþ FN
ð5Þ

& Specificity (SPE) is related to the true negative rate, as
defined in Eq. 6 [46, 48].

SPE ¼ TN

TNþ FP
ð6Þ

& Receiver operating characteristic (ROC) curve presents on
the y-axis the values of sensitivity and in the x-axis the
complement of specificity (1—specificity) [30, 48].

& The area under the curve (AUC) is given by Eq. 7. The
higher the AUC is in a range from 0 to 1, the better the
model is at distinguishing between individuals with and
without tremor symptoms [48].

AUC ¼ ∫10ROC tð Þ dt ð7Þ

The motor fluctuation was assessed by considering data
collection in two different experimental sessions. Thus, the
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following models were created for each classifier considering
the distinct types of experimental conditions:

& M1: a model of spiral drawings of the experimental session
1;

& M2: a model of spiral drawings of the experimental session
2;

& M3: a model of spiral drawings of the experimental ses-
sions 1 and 2;

& M4: a model of sinusoidal drawings of the experimental
session 1;

& M5: a model of sinusoidal drawings of the experimental
session 2;

& M6: a model of sinusoidal drawings of the experimental
sessions 1 and 2;

The accuracy of the models (M1–M6) was tested for data
normality verification. The Shapiro-Wilk test was used to test
the null hypothesis that a sample came from a normally distrib-
uted population. If p value < 0.05, the null hypothesis (H0) was
rejected. Bartlett’s test was applied to verify that the samples
had equal variances (H0). If p < 0.05, the test presents no equal-
ity of variances. Finally, the Bonferroni outlier test was used to
verify if there was the presence of outliers; on the null hypoth-
esis, the outliers do not differ from the rest of the observations.
If p value < 0.05, there is the presence of outliers [49].

The accuracy of the models was assessed by analysis of
variance (ANOVA) and Tukey-Kramer to understand the dif-
ferences of each model. ANOVA is a statistical method widely
used to explain variations between two or more group means.
The null hypothesis describes no differences between the group
means (H0: μ1 = μ2 = … = μm). Suppose ANOVA results in
significant differences (H0 is rejected, p value < 0.05), Tukey is
applied for performing multiple pairwise comparison between
the means of groups, and the means that are significantly dif-
ferent from each other are highlighted [49, 50].

The analysis of the accuracy of distinct models helps to
understand and determine whether there is motor fluctuation
[51] between different data collection sessions and also to
identify the most suitable type of drawing (i.e., spiral or sinu-
soidal pattern) for tremor evaluation.

3 Results

3.1 Statistics for control and PD groups

The QQ-plot of the age distribution for each group (PD and
CG) was inspected to confirm the normality of the variables
[49]. Furthermore, the Shapiro-Wilk normality test [49] con-
firmed that the distribution of the variable age of both groups
was normal (W = 0.9517 and p value = 0.3938 for PD; andW
= 0.9512 and p value = 0.3853 for the CG).

The t test was applied to verify possible differences be-
tween the age of the groups [40, 49]. The estimated t test
statistic was 0.2166, with 37.758 degrees of freedom and a p
value of 0.8297, which is larger than 0.05, meaning that the
null hypothesis that there are no significant differences be-
tween the ages of PwPD and CG should not be rejected.

People with PD were evaluated by three experienced eval-
uators in a blind procedure, and they had an average sum of
the score of 15.57 to the first session and 16.42 to the second
session, with a range of 0–48, indicating that PwPD are at the
presence of a slight to mild level of tremor.

Furthermore, the estimated Kendall’s coefficient was
0.6610 and the p value 0.0065, which means the coefficient
values are significantly different from zero. Therefore, the null
hypothesis that the evaluators may disagree with was rejected.

3.2 HOG feature visualization

The vector of HOG features is calculated by multiplying the
number of bins, the number of cells per block, and the amount
of horizontal and vertical overlapping. In this research, the
feature vector had 8100 elements. Figure 4 illustrates these
HOG features in a 3D plot. The data are from the test set of
PD and CG groups. The visual inspection of the features in
Fig. 4 allowed for identifying distinct feature magnitude and
variability for the spiral and sinusoidal images. For this rea-
son, three equally sized regions delimited by these features
were defined as region 1 (feature 0 to 2700), region 2 (feature
2700 to 5400), and region 3 (feature 5400 to 8100).

The mean and coefficient of variation, together with their
respective 95% confidence interval, were estimated for each
region, group (PD and CG), and proposed model (M1–M6).
The statistics and their confidence interval were estimated by
Bootstrap, which is a statistical method for estimating the
sampling distribution of a statistic (e.g., mean, coefficient of
variation) by sampling with replacement from the original
sample [49]. In this research, random sampling was executed
1000 times, as suggested in [49].

Figure 5 shows the statisticsmean and coefficient of variation,
together with their 95% confidence interval, estimated through
Bootstrap. The statistics were computed for HOG features of the
spiral and sinusoidal images. In the graphs, the x-axis labels
represent the name of the model concatenated with the group
and the region delimited by HOG features. For example, the
label M2PD3 represents model 2 (M2) of the PD group and
region 3 (features from 5400 to 8100). Figure 5a and c show
statistics for the features estimated from spiral images, while b
and d show statistic values for the sinusoidal images.

In Fig. 5, the gray area highlights the comparison between
PD and CG groups of the samemodel and region. It is possible
to note that, in general, there is no overlap between confidence
intervals of distinct groups, and when overlaps occur, they are
small; for instance, in Fig. 5a, the upper limit of the confidence
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interval for the mean of M3CG3 (0.02001) is equal to the
lower limit of M3PD3. The results shown in Fig. 5 show that
the confidence intervals for the statistics are narrow, suggest-
ing an accurate estimate, for example, in Fig. 5d, the estimates
for M6CG2 (coefficient of variation 3.20853, CI 3.20778,
3.20928) do not overlap with those of M6PD2 (coefficient
of variation 3.18846, CI 3.1877, 3.18921). The results shown
in Fig. 5 highlight differences between feature values in dis-
tinct regions (from 1 to 3), which can also be observed in Fig.
4 for each group and type of image.

3.3 Classification results

3.3.1 Random forest classifier

Table 2 shows the results of each session and type of drawing.
The italicized results are the highest mean accuracy, sensitiv-
ity, and specificity, suggesting that data from both experimen-
tal sessions and the sinusoidal pattern are more relevant for the
objective evaluation of hand tremor.

Figure 6 shows the ROC curve and the AUC value calcu-
lated for each subset. The results for RFC-M6 confirm the
most accurate RFC model shown in Table 2.

3.3.2 K-nearest-neighbor

Table 3 shows the KNN results of each session and type of
drawing. The italicized outcomes in the table are the highest
mean accuracy, sensitivity, and specificity, implying that data
from both experimental sessions and the sinusoidal drawing
are more relevant for the objective evaluation of hand tremor.

Figure 7 shows the ROC curve and the AUC value calculated
for each subset. The results for KNN-M6 confirm the identifica-
tion of the most accurate KNN model shown in Table 3.

3.3.3 Support vector machine

Table 4 shows the results of each session and the type of
drawing from the SVM classifier. The italicized results are

Fig. 4 Visualization of features for PD and CG groups for the test sets
used to evaluate each model. Data (36 images per group) from
experimental session 1 (a, b, g, and h) and experimental session 2 (c, d,

i, and j) are presented. In addition, data (72 images per group) of sessions
1 and 2 (e, f, k, and l) are shown

�Fig. 5 a, b Mean HOG and its 95% confidence interval for spiral and
sinusoidal images, respectively. c, d Coefficient of variation of HOG and
its 95% confidence interval for the spiral and sinusoidal images,
respectively. The statistics are presented for distinct models (M1 to
M6), groups (PD and CG), and regions delimited by features (1, 2, and
3). For instance, M1CG1 is the statistic for model 1, group CG, and
region 1. The 95% confidence interval was relatively narrow and hence
difficult to see in the figure.
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the highest mean accuracy, sensitivity, and specificity, sug-
gesting that data from both experimental sessions and the
sinusoidal pattern are more relevant for the objective evalua-
tion of hand tremor.

Finally, Fig. 8 illustrates the ROC curve and the AUC value
calculated for each subset to the SVM classifier. The results
for SVM-M6 confirm the identification of the most accurate
SVM model demonstrated in Table 4.

3.3.4 One-dimensional convolutional neural network

Table 5 shows the results of each session and the type of
drawing from the 1D CNN classifier. The italicized results
are the highest mean accuracy, sensitivity, and specificity,
suggesting that data from both experimental sessions and the
sinusoidal pattern are more relevant for the objective evalua-
tion of hand tremor.

Table 2 Random forest classifier (RFC)

Model Session Type of drawing Accuracy (ACC) Sensitivity (SEN) Specificity (SPE)

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

M1 1 Spiral 0.625 0.771 0.700 ± 0.057 0.542 0.833 0.717 ± 0.103 0.625 0.792 0.683 ± 0.062

M2 2 Spiral 0.708 0.854 0.754 ± 0.016 0.667 0.833 0.758 ± 0.055 0.667 0.833 0.750 ± 0.059

M3 1, 2 Spiral 0.708 0.760 0.735 ± 0.022 0.583 0.875 0.767 ± 0.101 0.646 0.833 0.704 ± 0.068

M4 1 Sinusoidal 0.750 0.854 0.800 ± 0.036 0.708 0.917 0.792 ± 0.074 0.708 0.875 0.808 ± 0.062

M5 2 Sinusoidal 0.708 0.875 0.783 ± 0.061 0.667 0.833 0.783 ± 0.067 0.583 0.917 0.783 ± 0.113

M6 1, 2 Sinusoidal 0.730 0.875 0.817 ± 0.047 0.708 0.896 0.808 ± 0.061 0.688 0.875 0.825 ± 0.070

These results are from a test set

SD standard deviation

Fig. 6 ROC curve and AUC values of the RFC model. The M1, M2, and
M3 graphs represent the results of the spiral drawing test set of the data
collected from session 1, session 2, and all data together, respectively.

Similarly, M4, M5, andM6 show the results of the sinusoidal drawings on
the test set of the data collected from session 1, session 2, and all data
together
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Figure 9 illustrates the ROC curve and the AUC
value calculated for each subset to the 1D CNN classi-
fier. The results for 1D CNN-M6 confirm the identifica-
tion of the most accurate model shown in Table 5.

3.3.5 Two-dimensional convolutional neural network

Table 6 shows the results of each session and the type of
drawing from the 2D CNN classifier. The italicized results

Table 3 k-Nearest Neighbor (KNN)

Model Session Type of drawing Accuracy (ACC) Sensitivity (SEN) Specificity (SPE)

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

M1 1 Spiral 0.667 0.729 0.700 ± 0.028 0.625 0.750 0.675 ± 0.041 0.583 0.833 0.725 ± 0.089

M2 2 Spiral 0.646 0.750 0.696 ± 0.036 0.667 0.792 0.750 ± 0.053 0.542 0.750 0.642 ± 0.077

M3 1, 2 Spiral 0.698 0.802 0.742 ± 0.035 0.646 0.813 0.738 ± 0.061 0.708 0.792 0.746 ± 0.028

M4 1 Sinusoidal 0.750 0.854 0.788 ± 0.036 0.792 0.958 0.842 ± 0.061 0.667 0.750 0.733 ± 0.033

M5 2 Sinusoidal 0.688 0.854 0.750 ± 0.063 0.750 0.917 0.842 ± 0.061 0.500 0.792 0.658 ± 0.096

M6 1, 2 Sinusoidal 0.750 0.865 0.804 ± 0.041 0.792 0.896 0.854 ± 0.037 0.625 0.833 0.754 ± 0.077

These results are from a test set

SD standard deviation

Fig. 7 ROC curve and AUC values of the KNNmodel. The M1, M2, and
M3 graphs represent the results of spiral drawing test set of the data
collected from session 1, session 2, and all data together, respectively.

Similarly, M4, M5, andM6 show the results of the sinusoidal drawings on
the test set of the data collected from session 1, session 2, and all data
together
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are the highest mean accuracy, sensitivity, and specificity,
suggesting that data from both experimental sessions and the
sinusoidal pattern are more relevant for the objective evalua-
tion of hand tremor.

Finally, Fig. 10 illustrates the ROC curve and the AUC
value calculated for each subset to the 2D CNN classifier.
The results for 2D CNN-M6 confirm the identification of the
most accurate model shown in Table 6.

3.3.6 Evaluation of models

Table 7 displays the data normality (Shapiro-Wilk test), vari-
ance (Bartlett’s test), the presence of outliers (Bonferroni
Outlier test), and the analysis of variance (ANOVA) that were
employed to compare the accuracy of each model (M1–M6)
for each classifier (RFC, KNN, SVM, 1D CNN, and 2D
CNN). Thus, the appropriate ANOVA fitting shall be fulfilled

Table 4 Support vector machine (SVM)

Model Session Type of drawing Accuracy (ACC) Sensitivity (SEN) Specificity (SPE)

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

M1 1 Spiral 0.667 0.750 0.696 ± 0.028 0.583 0.750 0.667 ± 0.070 0.625 0.792 0.725 ± 0.082

M2 2 Spiral 0.563 0.854 0.696 ± 0.104 0.500 0.875 0.717 ± 0.127 0.500 0.833 0.675 ± 0.113

M3 1, 2 Spiral 0.667 0.760 0.696 ± 0.033 0.542 0.833 0.704 ± 0.100 0.563 0.813 0.687 ± 0.080

M4 1 Sinusoidal 0.729 0.833 0.783 ± 0.045 0.708 0.833 0.783 ± 0.049 0.708 0.875 0.783 ± 0.055

M5 2 Sinusoidal 0.688 0.875 0.783 ± 0.061 0.667 0.875 0.800 ± 0.072 0.708 0.875 0.767 ± 0.062

M6 1, 2 Sinusoidal 0.781 0.875 0.823 ± 0.032 0.708 0.958 0.817 ± 0.082 0.792 0.875 0.829 ± 0.031

These results are from a test set

SD standard deviation

Fig. 8 ROC curve and AUC values of the SVMmodel. The M1, M2, and
M3 graphs represent the results of spiral drawing test set of the data
collected from session 1, session 2, and all data together, respectively.

Similarly, M4, M5, andM6 show the results of the sinusoidal drawings on
the test set of the data collected from session 1, session 2, and all data
together
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verifying the normal distribution, the homogeneous variance
across groups, and the absence of outliers [49].

Table 7 shows the accuracy of all models that followed the
requirements for the application of ANOVA. Therefore,
ANOVA one-way was applied for each classifier, and for most
of them, the p value was smaller than the significance level 0.05,
leading to the conclusion that there are significant differences
between the models. However, 2D CNN does not show signif-
icant differences between the accuracy means between models.

The Tukey honest significant difference method was
employed to evaluate the differences between the accuracy
of models. The results are presented in Fig. 11a and b for
RFC, Fig. 11c and d for KNN, Fig. 11e and f for the SVM
classifier, Fig. 11g and h for 1D CNN, and Fig. 11i and j for
2D CNN.

In Fig. 11, the boxplots show the accuracy values for each
model that helps identify the differences in the Tukey graph.
The label M2 −M1, for instance, denotes the average of model

Table 5 These results are from a test set of 1D CNN

Model Session Type of drawing Accuracy (ACC) Sensitivity (SEN) Specificity (SPE)

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

M1 1 Spiral 0.687 0.813 0.750 ± 0.053 0.542 0.750 0.700 ± 0.081 0.625 0.875 0.800 ± 0.093

M2 2 Spiral 0.500 0.708 0.633 ± 0.078 0.417 0.958 0.830 ± 0.207 0.125 0.875 0.442 ± 0.256

M3 1, 2 Spiral 0.677 0.792 0.735 ± 0.042 0.688 0.813 0.746 ± 0.057 0.604 0.896 0.725 ± 0.124

M4 1 Sinusoidal 0.646 0.896 0.754 ± 0.083 0.292 0.917 0.580 ± 0.208 0.875 1.000 0.933 ± 0.057

M5 2 Sinusoidal 0.646 0.833 0.750 ± 0.069 0.500 1.000 0.717 ± 0.181 0.292 0.958 0.783 ± 0.249

M6 1, 2 Sinusoidal 0.802 0.875 0.831 ± 0.028 0.792 0.938 0.854 ± 0.056 0.729 0.875 0.808 ± 0.046

SD standard deviation

Fig. 9 ROC curve and AUC values of the 1D CNN model. The M1, M2,
and M3 graphs represent the results of spiral drawing test set of the data
collected from session 1, session 2, and all data together, respectively.

Similarly, M4, M5, andM6 show the results of the sinusoidal drawings on
the test set of the data collected from session 1, session 2, and all data
together
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2 minus model 1. Thus, if M2 has a higher average than M1,
the difference is positive, otherwise negative.

4 Discussion

In this study, paper and pencil were used to quantify tremor
through handwriting images. The HOG descriptor was

introduced as a novel feature for tremor detection from sinu-
soidal and spiral patterns. The features were extracted using
HOG and classified by machine learning methods (i.e., RFC,
KNN, SVM, and CNN) to detect tremor in people with PD.
As the classification results based on sinusoidal patterns were
larger than those based on spiral patterns, this research rein-
forces the necessity of looking for alternative drawings to the
traditional spiral pattern.

Table 6 These results are from a test set of 2D CNN

Model Session Type of drawing Accuracy (ACC) Sensitivity (SEN) Specificity (SPE)

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

M1 1 Spiral 0.687 0.875 0.762 ± 0.063 0.625 0.875 0.775 ± 0.097 0.583 0.958 0.750 ± 0.137

M2 2 Spiral 0.687 0.812 0.754 ± 0.043 0.625 0.875 0.742 ± 0.113 0.667 0.917 0.766 ± 0.097

M3 1, 2 Spiral 0.729 0.813 0.763 ± 0.033 0.729 0.896 0.812 ± 0.066 0.604 0.771 0.713 ± 0.056

M4 1 Sinusoidal 0.733 0.854 0.804 ± 0.054 0.625 1.000 0.817 ± 0.136 0.708 0.875 0.792 ± 0.059

M5 2 Sinusoidal 0.708 0.833 0.767 ± 0.052 0.625 1.000 0.783 ± 0.127 0.583 0.917 0.750 ± 0.126

M6 1, 2 Sinusoidal 0.782 0.896 0.824 ± 0.039 0.771 0.896 0.835 ± 0.043 0.750 0.917 0.817 ± 0.056

SD standard deviation

Fig. 10 ROC curve and AUC values of the 2DCNNmodel. TheM1, M2,
and M3 graphs represent the results of spiral drawing test set of the data
collected from session 1, session 2, and all data together, respectively.

Similarly, M4, M5, andM6 show the results of the sinusoidal drawings on
the test set of the data collected from session 1, session 2, and all data
together
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The hand tremor of people with PDwas confirmed by three
distinct examiners through the application of the MDS-
UPDRS, which is the gold standard method [10]. Such a clin-
ical assessment is not available in several related studies that
analyzed spiral patterns [9, 10, 12, 14–17, 19–23, 25], making
it difficult for comparative evaluations. In this research, it was
found a fair agreement between assessments from the evalua-
tors as pointed out by Kendall’s coefficient (66.1%),
guaranteeing thus, the presence of a slight to a mild level of
tremor in the participants with PD, as suggested by the mean
sum of scores in MDS-UPDRS (session 1, 15.57; session 2,
16.42, values that vary between 0 and 48).

A practical and relevant aspect of this research is that there
is no need for a supervised environment. Several studies [5, 6,
8–16] use tablet-based devices, which may require strict con-
ditions to ensure the quality and usability of the acquired data.
Other researches [12–14, 21, 22] employ less complex com-
puting methods for data collection. However, they do not
compare spiral patterns with additional drawings. In this
sense, from the literature review, this is the first work to pres-
ent objective results of handwritten drawings in comparison
through the HOG descriptor.

Findings shown in Table 5 suggest that the result with
model M6 using the 1D CNNmethod yielded the best average
values of ACC 83.1%, SEN 85.4%, and SPE 80.8%. These
results are more accurate than those obtained from RFC
(Table 2), KNN (Table 3), SVM (Table 4), and 2D CNN
(Table 6). In addition, the highest true positive rates (91%)
were obtained for RFC and 1D CNN, as suggested by the
AUC estimates for M6 in Figs. 6 and 9, respectively. Despite
the small differences between the accuracies reached by the
classifiers, the average time of training the models was elevat-
ed in some classifiers: 59.8 s for KNN, 105.7 s for RFC,
138.8 s for SVM, 1300.15 s for 1D CNN, and 16,957.88 s
for 2D CNN in the environment described in this research.

Table 8 summarizes results reported by different studies,
including those obtained from this research, which is the only
one that compares results of sinusoidal and spiral drawings by
using a unique type of visual feature (HOG). Conversely to
distinct methods of feature extraction for tremor analysis [11,
12, 20, 23], HOG is independent of the type of the drawing

and does not need to be estimated online such as in [11, 12].
The use of devices for online estimate features, such as digi-
tizing tablets, can limit the use of technology in the clinical
scenario.

Two critical limitations of related researches are the lack of
UPDRS evaluation of tremor and balanced groups. This re-
search confirmed, through the assessment of three distinct
examiners, that PwPD had slight to a mild level of tremor. It
may bemore challenging to discriminate these types of tremor
from physiological tremor found in the control group.
Furthermore, the lack of balanced groups may introduce bias
in the results, thus, the comparison of outcomes from distinct
studies is not straightforward, for instance, a study that used
visual features estimated from digitized drawings reported ac-
curacy results such as 83% [13] in balanced datasets, while
89.5% was reported [21] in a similar study that did not use
balanced dataset. This research obtained, from a balanced data
set, AUC of 83% for the spiral, as shown in Fig. 9 1D CNN-
M3, and AUC of 91% for the sinusoidal, as illustrated in Fig. 9
1D CNN-M6. This suggests that the sinusoidal drawing
should be considered in the clinical evaluation of patients.

Table 6 shows the results of CNN 2D; however, as shown
in Fig. 10, the ROC curve and AUC indicate lower classifica-
tion performance compared with the other tested classifiers
employing HOG features. The fact that handwriting drawings
have insufficient visual properties to be learnt from 2D CNN
can justify this. The data set in this work only consists of 480
pictures per drawing (spiral or sinusoidal) and 240 images per
experimental session with 120 pictures per group (PwPD and
CG). This is a small dataset that can feed a 2D CNN which
normally needs several thousand images per group [44].

Figure 4 shows important differences between features of
PD and CG groups, and these differences were confirmed in
Fig. 5 that shows the mean (a and b) and the coefficient of
variation (c and d) for both groups and both types of hand-
written drawings. The differences between groups are more
considerable for features estimated from the sinusoidal than
spiral images.

ANOVA was applied to evaluate the differences between
the means of accuracies yielded by each model (Fig. 11). RFC
ANOVA test and Tukey’s analysis highlighted a mean

Table 7 Statistical tests to verify
normality, variance, and presence
of outliers

Classifier Shapiro-Wilk Bartlett’s test Bonferroni Outlier ANOVA fit ANOVA one-way

W p value B p value K p value F value p value

RFC 0.973 0.630 5.988 0.307 2.038 1.000 Yes 3.585 0.015

KNN 0.949 0.161 3.032 0.695 2.860 0.265 Yes 4.537 0.005

SVM 0.970 0.530 10.042 0.074 3.382 0.077 Yes 4.213 0.007

1D CNN 0.987 0.967 5.335 0.376 2.548 0.539 Yes 4.233 0.007

2D CNN 0.963 0.369 1.911 0.861 2.601 0.479 Yes 1.609 0.196

W, B, and K are coefficient values of Shapiro-Wilk, Bartlett, and Bonferroni test. F value is the ANOVA result
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Fig. 11 Accuracy values of M1–M6models for RFC (a and b), KNN (c and
d), SVM (e and f), 1D CNN (g and h), and 2D CNN (i and j). The figure
shows the boxplots of the accuracy values with a vertical orange line that is

representing the mean and standard deviation. The Tukey multiple pairwise
comparisons of the differences between means are also presented. Red and
green colors highlight significant differences, whereas the blue non-significant

210 Med Biol Eng Comput (2021) 59:195–214



significant difference between M6 (sinusoidal drawing model
related to data collected in the sessions 1 and 2) andM1 (spiral
drawings model of session 1) in Fig. 11b.

The application of ANOVA to the results of KNN showed
significant differences between means of the models M6 and
M1, as shown in Fig. 11d; between M6 and M2 (the spiral
drawing model related to data collected in session 2), and
between M4 (the sinusoidal drawing model related to data
collected in session 1) and M2. These results reinforce that
the sinusoidal waveform can be more suitable than spiral
drawings to evaluate the hand tremor symptom.

Results of SVM ANOVA showed more evidence of sig-
nificant differences between M6 and M1, M6 and M2, and M6

andM3, as shown in Fig. 11f. Besides that, 1D CNNANOVA
also yielded a stronger significant difference between M6 and
M2. All differences are related to spiral against sinusoidal-
waveform subset models. ANOVA and Tukey tests could
confirm similar significant differences between the means of
spiral and sinusoidal drawing models. Despite the visual dif-
ferences between the accuracy mean of the models, shown in
Fig. 11j, the Tukey test applied to the 2D CNNmodels did not
show any statistically significant difference, and this was con-
firmed in Table 7 that shows results of the ANOVA test with
the null hypothesis accepted (p value > 0.05). On the other
hand, the motor fluctuation could not be observed once there
were no significant differences in the same type of drawing in
distinct experimental sessions.

The literature reveals a lack of studies related to the significant
differences between types of drawings. Smits et al. [5] used a
tablet and pen to record the movement dynamics from circle,

stars, spirals, and letters, and they were able to distinguish be-
tween PD from CG. However, the authors did not have the
objective to present a statistical comparison between the shapes.
Pereira et al. [14, 21] also did not aim to present a statistical
comparison between means of spirals and meanders. Passos
et al. [22] described that they had not observed any significant
difference in recognition rates between meanders and spirals.

Furthermore, in Fig. 11f, the spiral models presented the
differences close to zero compared to each other (M2 − M1,
M3 −M1, and M3 −M2), and the sinusoidal models presented
their differences between means close to 0.05 (M6−M4 and
M6−M5). New possible research could investigate if the SVM
sinusoidal model is capable of assessing motor fluctuation
between different experimental sessions of data collecting,
which could help understanding of drug effects to patients
with PD.

In the proposed experimental conditions, sinusoidal pat-
terns are more appropriate for the detection of tremor. This
may be explained by the fact that the sinusoidal drawing re-
quires different skills from the participant when he has to slide
the hand from one point to another on the paper sheet.

Another important point is that this approach does not re-
quire the attachment of sensors to the body of the participant.
This may be relevant to the prevention of skin irritation, espe-
cially in the elderly, and also does not need equipment to
perform the online evaluation.

Future work could be related to the development of a prac-
tical mobile application. The app can capture pictures from
sinusoidal drawings and present quantitative tremor measure-
ments to the clinician responsible for the follow-up of people

Table 8 Performance comparison of classifiers reported in different studies

Study Drawing Features Classifier Balanced
groups

Results UPDRS evaluation
of hand tremor

[11] Spiral Online spatial, temporal, and pressure
features using tablet-based

Logistic
regression

No AUC 83.7%, ACC - Yes

[12] Spiral Online writing dynamics by pen and
tablet-based

CNN No ACC 88% No

[13] Spiral CNN features extracted from images
produced from online coordinates

SVM Yes ACC 83% No *

[20] Spiral Mean relative tremor and spatial features
for spirals

Naïve Bayes No ACC 78.9% No

[21] Spiral, meander Features extracted from digitized images CNN No ACC meander 79.62%,
ACC spiral 89.5%

No

[22] Spiral, meander Image features estimated from ResNet-50 (
DNN)

OPF No ACC spiral 96.7%,
ACC meander 96.3%

No *

[23] Spiral Fourier transform-based distance feature,
tremor estimating distance-based feature

SVM No ACC 81.6% No

This
research

Sinusoidal,
spiral

Histogram of oriented gradients (HOG) 1D CNN Yes ACC sinusoid 83.1%,
ACC spiral 75%

Yes

The evaluation of results from sinusoidal handwritten drawings has only been reported in this research

CNN convolutional neural network, SVM support vectormachine,DNN deep neural network,OPF optimum-path forest,AUC area under the curve,ACC
accuracy

*It was applied the modified Hoehn and Yahr staging of severity
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with PD. Due to the simplicity of the data collection proce-
dure, this strategy could be used tomonitor the patient at home
without the need to care about controlling the equipment pa-
rameters such as speed, time, and pressure as needed in studies
that use a tablet, digitizer pen, or inertial sensors.

5 Conclusion

The results of this research showed that HOG features extract-
ed from sinusoidal handwriting drawings allow for better de-
tection of tremor in people with PD. The highest results were
obtained from the 1DCNN using HOG features (ACC 83.1%,
SEN 85.4%, and SPE 80.8%, AUC 91%).

The methods described in this research were applied to a
balanced dataset, and the feature extraction was based on a
computer-vision technique, which was able to detect the trem-
or on the images. In addition, ANOVA and Tukey analysis
evidenced the models from sinusoidal drawing obtained better
results when compared with the models from spiral drawings,
which is the most employed pattern in the clinical evaluation
of tremor in people with PD.

All these results point that a sinusoidal pattern should be
considered in the routine of clinical evaluations. Besides, the
HOG descriptor can be applied with any drawing pattern other
than the spiral and sinusoidal enhancing its use in assessing trem-
or in people with PD, unlike most studies that have been using
specific features only for the drawings of Archimedean spiral.
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