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Abstract
Modelling the electrical activity of the heart is an important tool for understanding electrical function in various diseases
and conduction disorders. Clearly, for model results to be useful, it is necessary to have accurate inputs for the models,
in particular the commonly used bidomain model. However, there are only three sets of four experimentally determined
conductivity values for cardiac ventricular tissue and these are inconsistent, were measured around 40 years ago, often
produce different results in simulations and do not fully represent the three-dimensional anisotropic nature of cardiac tissue.
Despite efforts in the intervening years, difficulties associated with making the measurements and also determining the
conductivities from the experimental data have not yet been overcome. In this review, we summarise what is known about the
conductivity values, as well as progress to date in meeting the challenges associated with both the mathematical modelling
and the experimental techniques.
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1 Introduction

In 2014, Henriquez [29] commented, in relation to the
conductivities that are necessary inputs to models of cardiac
electrical behaviour, that “Understanding all the factors that
affect the microscopic and macroscopic electrical properties
and performing the measurements in vivo over a range of
conditions remains an open challenge to the field”. This is
still true today and it provides the impetus for this review
to discuss what these challenges are and why it is essential
for models to use accurate values for the cardiac electrical
conductivities, as well as to gather together the information
that is currently known about the conductivities. The state
of the art in terms of measuring the conductivities will also
be presented, in addition to suggestions about the way the
field might move forward in the future.

It has been shown that values for the bidomain conductiv-
ities play a significant role in the modelling and simulation
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of many bioelectric phenomena and that differences in pub-
lished conductivity values can lead to divergent predictions
from mathematical models utilising such values [16, 34, 41,
55, 60, 84]. Hence, an accurate determination of conduc-
tivity values is of fundamental importance to researchers
who undertake electrophysiological simulations with the
aim of understanding aspects of cardiac electrophysiology
that are not amenable to experimental study. Such studies
include models of ST segment deviation, electrical conduc-
tion defects and cardiac defibrillation.

At present, only three fully experimentally derived
sets of four bidomain conductivities for ventricular tissue
are available in the literature [13, 86, 87] and these
are inconsistent [89] and produce different results in
simulations [41, 55]. They also do not fully represent the
three dimensional anisotropy that has been shown [11, 32] to
exist in cardiac tissue, as there are no separate values for the
two directions that are orthogonal to the cardiac fibres. In
addition, they were found in different types of animal tissue,
with different experimental (in vitro and in vivo) conditions,
using different mathematical assumptions.

Ideally, what is required is sets of six bidomain
conductivities (two domains, three directions) found in
human ventricular tissue in vivo, for different positions
in the ventricle, in different subjects and for different
diseases and conditions. Even more ambitiously, Sadleir
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and Henriquez [93] suggest that a “method of continuously
monitoring cardiac properties over time, would be of great
benefit in monitoring interventions such as ablation and
cellular therapies ... [and] may also lead to a deeper
understanding of the role of tissue structure in the initiation
and maintenance of cardiac arrhythmias”.

The accurate determination of the six conductivity values
presents a considerable challenge both from experimental
and computational points of view. Firstly, the measurements
must be made using very small electrode spacings [74],
around the size of the space constant of the tissue, which is
of the order of 500 μm [50]. This introduces considerable
technical challenges, both in constructing the electrode
array and in deploying it [77]. Secondly, a method for
determining the conductivities from the measurements must
be designed. This relies on a mathematical model, a
solution technique for this model and, generally, an inverse
method for retrieving the conductivities, a mathematically
ill-posed problem that involves considerable computational
difficulties [93].

Efforts, in the 40 years since the four conductivity sets
[13, 86, 87] mentioned above were found, have produced
experimental and computer modelling methods that have
been able to find the bulk conductivities (monodomain) in
three directions [11, 30], theoretical methods that have been
able to estimate the six conductivities from cell properties
[9, 26, 96] and experimental plus mathematical methods that
have been shown, in silico, to be able to retrieve the six
conductivities [43].

The structure of this paper is as follows. Section 2
presents an overview of cardiac tissue microstructure and
how it is modelled using the bidomain model. Then,
Section 3 presents literature values for conductivities.
In Section 4, two modelling studies examine the effect
of differing conductivity values on simulation outputs.
Experimental techniques for determining conductivities are
reviewed in Section 5, and challenges and future work are
discussed in the final section.

2Modelling

2.1 Cardiac tissuemicrostructure

The microstructure of cardiac tissue is composed of cells
that are, by volume, predominantly myocytes. See Fig. 1
for a confocal microscopic image of rabbit left ventricular
tissue [26], showing myocytes (black) with their nuclei
(blue), and extracellular space and cell membranes (green).

Cardiac tissue also contains large numbers of fibroblasts,
as well as fluids [12]. Fibroblasts are not modelled explicitly
in the standard bidomain model (Section 2.2). They perform
an important role in the maintenance of the extracellular

Fig. 1 Confocal microscopic image of left ventricular myocardium
from rabbit. Nuclei are labelled in blue. The extracellular space and
cell membranes including the transverse tubular system are labelled in
green. The majority of the tissue is occupied by myocytes. The image
describes an area of 204 × 204 μm2. Pixel sizes are 0.2 × 0.2 μm2

(image data from [26])

matrix that supports the cardiac tissue, but their role in
electrical conduction is not well-understood [92].

Experimental studies have shown that myocytes have an
approximate length of 100 μm and are arranged in fibres
in a laminar structure that consists of branching layers or
sheets that are around four myocardial cells thick [68, 69].
Although these sheets of cardiac fibres connect with one
another, there are cleavage planes between them, stopping
direct coupling of myocytes [32]. The sheets of fibres also
rotate relative to one another between the epicardium and
the endocardium [71, 103]. In addition, it is known [96] that
the electrical connection between cardiac cells occurs via
low-resistance gap junction channels.

Based on these structural differences in cardiac tissue,
LeGrice et al. [68] suggested that conduction would not be
isotropic in all directions transverse to the cardiac fibres, and
in fact would be less in the direction normal to the sheets.
This was later established to be correct by the work of
Hooks et al. [32] and Caldwell et al. [11], who showed that
cardiac tissue is orthotropic and it is necessary to use three
different values (corresponding to three mutually orthogo-
nal directions) at any point to describe the conductivity.

The following papers can be consulted for a more
comprehensive description of cardiac tissue microstructure
and electrical properties [12, 32, 68, 69], including
differences in tissue properties by type (e.g. atrial,
ventricular, Purkinje). In addition, the following excellent
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reviews [12, 29] give a more detailed description of the
bidomain model than the one that will be given in the next
section, since the main focus of this review is the cardiac
conductivities themselves.

2.2 Bidomainmodel

In 1969, Otto Schmitt [95] proposed a continuum model of
cardiac tissue, based on the idea of representing the tissue
as two spatially interpenetrating domains. One domain
consists of the space within the cardiac cells, the so-called
intracellular space, and the other consists of the interstitial
space outside of the cells, but within the tissue, the so-
called extracellular space. The two spaces are everywhere
separated by the cell membrane. These ideas were then
formulated into partial differential equation models by
Arthur and Geselowitz [1] and Tung [107], becoming
known as the bidomain equations. The basic idea is that, at
each point in the domain of the model, the potentials in the
intracellular space and the extracellular space are governed
by Ohm’s law and that the current that leaves one space
must enter the other space. Mathematically, these ideas can
be formulated as:

∇ · Mi∇φi = −Im

∇ · Me∇φe = Im (1)

where φp (p = i or e) is the potential, (i=intracellular,
e=extracellular), the conductivity tensors Mp are discussed
below, and Im = β

R
(φi − φe) is the transmembrane current

per unit volume. Here, β is the surface to volume ratio of
the cells and R is the membrane resistance.

The fact that cardiac tissue consists of sheets of fibres of
cardiac cells results in current flowing along the direction
of the fibres (longitudinal, l) more easily than it can across
the sheets of fibres (transverse, t) or between the sheets
(normal, n) [32]. So, in general, the conductivity tensors can
be written as:

Mp = AGpAT (2)

where A represents the local direction of the fibres and
Gp is a diagonal matrix, containing the longitudinal (gpl),
transverse (gpt ), and normal tissue conductivities (gpn)
along the diagonal.

If it is assumed that the electrical potentials do not
change with time, for example, during the ST segment of
the electrocardiogram (ECG), it is possible to simplify Eq. 1
by introducing the transmembrane potential φm = φi − φe

and combining Eq. 1 into the so-called passive bidomain
equation [34]:

∇ · (Mi + Me)∇φe = −∇ · Mi∇φm. (3)

This generalised Poisson equation governs the extracellular
potential distribution that is induced by the spatial distri-
bution in transmembrane potentials. This transmembrane
potential distribution arises due to the differences in plateau
potentials between normal and ischaemic tissue [107].

On the other hand, if we wish to model the propagation
of the wavefront through the cardiac tissue, then some
form of time dependence must be introduced into Eq. 1.
This is generally achieved by assuming a time-varying
transmembrane current of the form:

Im = β

(
Cm

∂φm

∂t
+ Iion

)
(4)

where Cm is the membrane capacitance and Iion is the ionic
current, as modelled via an individual cell model of the
electric current. After some manipulation of Eq. 1, it can be
shown that:

∇ · Mi∇φm + ∇ · Mi∇φe = β

(
Cm

∂φm

∂t
+ Iion

)
, (5)

which along with Eq. 3 represents the active bidomain
model.

3 Literature values for conductivities

3.1 Four conductivity sets

As mentioned in “Introduction”, only three fully experimen-
tally determined datasets for four bidomain conductivities
in ventricular tissue exist; that is, values for {gpq, p =
i, e, q = l, t}. These are the values given in Table 1
for Clerc [13], Roberts and Scher [87] and Roberts et al.
[86]; hereafter, these three sets will be referred to as the
Clerc and Roberts sets of conductivity values. These val-
ues are sometimes used in modelling studies, or in lieu
of accurate conductivity values researchers sometimes tune
the conductivities to ensure that the conduction velocities
are in the range 30–80 cm/s [12, 29]. When the Clerc and
Roberts values are used in modelling studies, it is customary
[32] to set the normal conductivities equal to the transverse
conductivities; that is, gin = git and gen = get .

In addition to these studies, Table 1 lists eight other
conductivity sets that are either experimentally (E) or
theoretically (T) determined, along with a selection of
studies that used (U) particular values. Where known, the
tissue type is listed. Two of these studies, those by Kleber
and Riegger [61] and Weidmann [110], list values for gil

and gel only, while the studies by Le Guyader et al. [65, 66]
use atrial tissue.

It can be seen that, even within the E group at the
top of the table, there is a wide range of values for a
particular conductivity, with variations in the ranges (in
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Table 1 Bidomain four conductivity data (in mS/cm) found in (E experimental or T theoretical) studies or used (U) in the indicated studies

Study Type Tissue type gil gel git get gil/git gel/get α ε

Clerc [13] E Calf RV 1.7 6.3 0.19 2.4 8.9 2.6 0.3 0.7

Kleber and Riegger∗ [61] E Rabbit RV 4.5 4.0 − − − − 1.1 −
Roberts and Scher [87] E Canine LV 3.4 1.2 0.6 0.8 5.7 1.5 2.8 0.7

Roberts et al. [86] E Canine LV 2.8 2.2 0.26 1.3 10.8 1.7 1.3 0.8

Weidmann∗ [110] E Sheep/calf RV 1.6 5.3 − − − − 0.3 −
Le Guyader et al. [65] E Canine A 2.0 2.9 0.23 1.9 8.4 1.5 0.7 0.8

Le Guyader et al. [66] E Canine A 0.6 1.3 0.39 1.3 1.5 1.0 0.5 0.3

Hand et al. [28] T Murine V 1.0 3.0 0.03 1.6 33 1.9 0.3 0.9

Hand et al. [28] T Murine V 1.4 3.0 0.03 1.6 47 1.9 0.3 1.0

Krassowska and Neu [62] T Canine 0.7 3.0 0.003 1.5 233 2.0 0.2 1.0

Stinstra et al. [101] T 1.6 2.1 0.05 0.6 32 3.5 0.8 0.9

Austin et al. [2] U 3.8 3.8 0.38 2.1 10 1.8 1.0 0.8

Barone et al. [6] U 2.8 2.2 0.26 1.3 10.8 1.7 1.3 0.8

Colli Franzone and Guerri [14] U 2.0 2.5 0.42 1.3 4.8 2.0 0.8 0.6

Colli Franzone et al. [15] U 3.0 2.0 0.32 1.4 9.4 1.4 1.5 0.9

Le Guyader et al. [67] U 1.7 3.9 0.19 2.0 8.9 2.0 0.4 0.8

Plonsey and Barr [74] U 3.4 6.3 0.6 1.1 5.7 2.7 0.5 0

Pollard and Barr [76] U 4.8 3.2 0.51 1.2 9.4 2.7 1.5 0.7

Roth [88] U 3.5 3.0 0.3 1.8 11.7 1.7 1.2 0.9

Roth [90] U 1.9 1.9 0.2 0.9 9.5 2.1 1.0 0.8

Trayanova et al. [105] U 2.0 3.0 0.14 0.32 14.3 9.4 0.7 0.3

Yang and Veneziani [111] U 2.6 3.2 0.35 1.5 7.4 2.1 0.8 0.7

Results marked with an asterisk are reported in Hand [28]. Where known, the type of tissue (LV left ventricle, RV right ventricle, A atrium) is
specified. Dashes in the table indicate that the values were not found or cannot be calculated. Definitions are α = gil

gel
and ε = 1 − gel/get

gil /git

mS/cm), gil 1.6–4.5, gel 1.2–6.3, git 0.19–0.6 and get 0.8–
2.4. Explanations for this variation [102] include the fact
that different animal species were used, as well as different
experimental techniques and mathematical models. For
example, Clerc [13] used in vitro calf trabecula bundles,
injected current longitudinally and transversely, measured
extracellular and intracellular potentials and then used
1D cable theory to derive the conductivities. Roberts and
Scher [87] and Roberts et al. [86] used a completely
different approach that involved mapping the propagation
of the wavefront in vivo in canine hearts after epicardial
stimulation. The two Roberts studies then used different
assumptions to find the conductivities.

The second group of conductivities, marked T in Table 1,
come from theoretical geometrical models of cardiac tis-
sue, where the researchers extrapolate from models of cell-
ular processes to produce estimates of tissue scale properties
such as conductivities. Of note among this group are the
values for git that are one or two orders of magnitude
smaller than the other git values in the table. Explanations
for this from the authors include the gap junction
conductivities are higher than those used in the model [62,

101]; the gap junctions may be located more towards the
sides of the cells [101], or the model may neglect to include
a cellular mechanism that enhances the conductivity in the
transverse direction [28]. Another possibility is that the
other literature values for git are too high, perhaps, in the
case of Clerc’s [13] study, due to the non-alignment of the
probe with the transverse direction, or in general, due to the
influence of the measuring conditions [62].

3.2 Six conductivity sets

Although no one has yet been able to directly measure all
six bidomain conductivity values, a few datasets do exist in
the literature and these are listed in Table 2. The first group
is marked as partly experimental (PE) and the tissue type
is given. However, out of the five PE studies, only two [30,
106] list all six conductivities, with the other three listing
either the three intracellular conductivities [9] or the three
extracellular conductivities [26, 96]. The latter three studies
used confocal microscopy image data of rabbit ventricular
tissue to obtain conductivity data for normal and (in two
cases [26, 96]) infarcted tissue.
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In two of these studies [26, 96], the authors constructed
conductivity models based on the 3D reconstructions of the
microstructure of the tissue, from which they calculated ele-
ctric fields under the assumption that the only current flow-
ing was in the extracellular space. The extracellular conduc-
tivity tensors were computed based on the image intensities.

The values of Hooks [30] are based on suggestions that
are made in [31], with relative intracellular longitudinal
and transverse values derived from heart surface potential
measurements made in a rat left ventricle. The set of six
conductivity values of Trew et al. [106] was found in vivo
for porcine free wall tissue, which may explain why the
values are generally higher than others in Table 2 [106].

The middle group, marked T in Table 2, are theoretical
in a different way from those marked T in Table 1. Those
by Johnston [39] are based on the experimental results
of Hooks et al. [32] that found that the ratio of the bulk
conductivities gil + gel : git + get : gin + gen was
approximately 4:2:1, as well as the result of Caldwell et al.
[11] that suggested that the same is true for the conduction
velocities. Mathematical manipulations then produced a set
of conductivities that is dependent on the value of the ratio
gil/gel and the value of git (which was taken to be the mean
of the Clerc and Roberts set of git values). Taking gil/gel =
0.6, 1 and 1.6 then led to three sets of conductivities [41].
The other set by Johnston et al. [42] in Table 2 comes from
a survey of the literature. The final set in the T category
in Table 2 are those used by MacLachlan et al. [72], which
were based on the theoretical work by Foster and Schwan
[22]. The fact that there is only one set of six conductivities
marked U (used) in Table 2 is probably indicative of the
fact that the majority of studies use the four conductivity
sets with the normal conductivities taken to be equal to the
transverse conductivities.

As with the values in Table 1, there is no real consistency
among the values listed for each of the six conductivities.
However, the ranges for gil, gel and get are much smaller
in this case, and the values for gen are reasonably similar.
The least consistent values are git and gin. Finally, based
on Tables 1 and 2, it would seem to be the case that, in
each domain (p = i, e), gpl > gpt > gpn, consistent
with information that is known about cardiac electrical
conduction [32].

3.3 Possible reasons for differences in conductivity
values

As mentioned above, possible reasons for the discrepancies
between sets of conductivity values could be experimental
conditions (including in vitro and in vivo), mathematical
models and methods used to determine the conductivities
from data, and different assumptions for theoretical studies.
Another reason might be intrinsic biological variability.
The final reason may be related to tissue type—firstly, the
tissue position within the atria or ventricle, and secondly,
the animal species used. From Tables 1 and 2, it can be
seen that the conductivities listed pertain to a range of
animals—calf, rabbit, mouse, rat, sheep, pig and dog. Given
that there are structural differences between the species,
as well as differences in action potentials [18, 21, 36,
108], it is perhaps not surprising that different values for
conductivities might be found, irrespective of other factors.

3.4 Conductivity ratios

Quite a number of studies [39, 44, 56, 57, 89] have exam-
ined ratios of conductivities, rather than their individual
values. One reason for this is because the form of the passive

Table 2 Bidomain six conductivity data (in mS/cm) found in (PE partly experimental or T theoretical) studies or used (U) in the indicated studies

Study Type Tissue gil gel git get gin gen gil/git git /gin gel/get get /gen

Bauer et al. [9] PE rabbit LV 0.65 − 0.042 − 0.033 − 15.5 1.3 − −
Greiner et al. [26] PE rabbit LV − 3.6 − 1.7 − 1.0 − − 2.1 1.7

Hooks [30] PE rat LV 2.6 2.6 0.26 2.5 0.08 1.1 10 3.3 1 2.3

Schwab et al.∗ [96] PE rabbit LV − 2.6 − 2.2 − 1.3 − − 1.2 1.7

Trew et al. [106] PE porcine LV 3.5 3.5 0.4 3.1 0.1 1.4 8.8 4 1.1 2.2

Johnston et al. [41] T porcine LV 1.9 3.2 0.35 2.2 0.08 1.2 5.4 4.4 1.5 1.8

Johnston [39] T porcine LV 2.4 2.4 0.35 2.0 0.08 1.1 6.9 4.4 1.2 1.8

Johnston et al. [41] T porcine LV 3.1 2.0 0.35 2.2 0.08 1.2 8.9 4.4 0.9 1.8

Johnston et al. [42] T porcine LV 2.4 2.4 0.24 1.6 0.1 1.0 10 2.4 1.5 1.6

MacLachlan et al. [72] T canine 3.0 2.0 1.0 1.7 0.32 1.4 3 3.1 1.2 1.2

Colli-Franzone et al. [17] U 3.0 2.0 0.32 1.4 0.03 0.7 9.4 10 1.4 2.1

Results marked with an asterisk are reported in Greiner [26]. Where known, the type of tissue is specified. Dashes in the table indicate that the
values were not found or cannot be calculated
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bidomain Eq. 3 means that it is the ratio of the conductiv-
ities, and not the individual conductivities, that affects the
potentials that are produced. The other reason is to attempt
to find a parameter that is consistent between the three Clerc
and Roberts sets of conductivities.

One study of this type is the study by Roth [89], which
considered space constants in the q = l, t directions:

λq =
√

R

β

(
giqgeq

giq + geq

)
, (6)

as well as two parameters α and ε, defined as:

α = gil

gel

, ε = 1 − gel/get

gil/git

. (7)

Roth found [89] that for each of the Clerc and Roberts
studies the value of ε was in the range 0.7–0.8. After
non-dimensionalising the conductivities relative to gil , Roth
was able to suggest a “nominal” set of relative bidomain
conductivities, using ε = 0.75, α = 1 and λl/λt = 2.5,
giving g′

il = 1, g′
el = 1, g′

it = 0.1, g′
et = 0.4, where the

prime indicates non-dimensionalisation with respect to gil .
Values for α and ε, for the various studies, are listed in the

right-hand columns of Table 1. It can be seen that α varies
from 0.3–2.8, whereas ε is generally in the range 0.6–0.9,
except for two studies [66, 105] where it is 0.3, one where
it is 0 [74] and two where it is almost 1 [28, 62]. Values for
the gil/git and gel/get ratios are also given in Tables 1 and
2. Almost all of these studies are consistent with previous
work using a geometrical model [33, 102] that has suggested
that gil/git > gel/get , which then leads to ε > 0 as:

gil

git

>
gel

get

⇒ gel/get

gil/git

< 1 ⇒ ε > 0. (8)

Given that there are six conductivities in Table 2, the
additional ratios git /gin and get/gen are also listed. The
results indicate that git /gin > get/gen. In other words, it
appears that the intracellular domain is more anisotropic
than the extracellular domain. This is consistent with
theoretical work [39] that found git /gin ≈ 4 and get/gen ≈
2. The same study also suggests that gen/gin ≈ 14 and
get/git ≈ 6, indicating that the ratio of extra- to intracellular
conductivity is much greater in the normal direction than in
the transverse direction.

3.5 Conductivity changes in disease

The conductivities that are presented in Tables 1 and 2 are
for normal cardiac tissue; however, a number of studies
have shown [34, 61, 99, 101] that the conductivities are
sensitive to ischaemia, hypoxia, myocardial perfusion and
blood volume [100].

3.5.1 Conductivity changes in ischaemia

There are physical changes that take place during ischaemia
that are likely to impact the conductivity values [101] and
these changes can be grouped into three main phases. There
is an initial phase, which is then followed by an early phase
(approximately 5–20 min after onset). In both these phases,
there is a reduction in gel [101]. There is also a reduction
in get in the early phase [33]. Finally, in the late phase
(approximately 15–30 min after onset), there is a sharp
reduction in intracellular conductivity due to the closing of
the gap junctions [99].

There is some debate about the mechanism for the initial
drop in gel : either the collapse of capillaries because of
reduced blood flow [61], or decreased hydrostatic pressure
leading to increased flow of fluid into the capillaries from
the extracellular space. On the other hand, it is generally
agreed that the effects on gel and get in the early phase are
caused by fluid moving from the extracellular space into the
myocytes [33].

It is difficult to quantify these reductions in the
various domains and directions and this has been done
somewhat differently for the l and t directions in a few
studies (Table 3). Given the lack of any literature on
reductions in the normal direction, Johnston and Johnston
[48] simply set the normal reductions to be the same as
the transverse reductions, and based their reductions on
those of Hopenfeld et al. [34]. In the summary table for
the various approaches (Table 3), the values given for
early- and late-stage ischaemia are fractional reductions in
the corresponding bidomain conductivities and these are
applied in the ischaemic region, while the normal bidomain
conductivities are used in the remainder of the tissue.

3.5.2 Conductivity changes in infarcted tissue

The study by Schwab et al. [96], discussed in Section 3.2,
also used confocal microscopy and modelling to look at
changes in conductivities adjacent to an infarct, and it was
found that there was an increase in the volume fraction
of fibroblasts, along with a corresponding decrease in the
myocyte volume fraction. An increase in the density of

Table 3 Fractional reductions fpq, p = i, e, q = l, t, n for bidomain
conductivities in ischaemic tissue, corresponding to conductivities gpq

in the remainder of the tissue. A value of 0 indicates no change in the
conductivity

Phase Study fil fel fit fet fin fen

Early [34, 47] 0 0.5 0 0.25 0 0.25

Late [34, 47] 0.9 0.5 0.98 0.25 0.98 0.25

Late [10] 0.5 0.4 0.5 0.4 0.5 0.4

Late [3] 0.9 0.4 0 0 0 0
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gap junctions proximal to the fibroblasts and myocytes
was also found in the infarcted tissue, leading to an
increase in gel and a decrease in the anisotropy ratio.
A later microscopy study [26], which considered three
regions within 200 μm, 250–750 μm and 1000–1250 μm
of the infarction border, found marked increases in the
three intracellular conductivities, in the range 42–171%,
compared with normal tissue.

4 The effect of conductivities onmodel
output

There are a number of aspects associated with the
conductivity values that can affect simulation results.
Firstly, there is the choice of whether a bidomain or a mono-
domain model, in which the intra- and extracellular conduc-
tivities are equal, is used. Then, it is sometimes assumed that
the tissue is isotropic, that is the conductivities are the same
in all directions, or that there are equal anisotropy ratios
(gil/gel = git /get ). In addition to these, the assumption
is often made that the transverse and normal conductivity
values are equal [32]. Some studies have examined the effect
of these assumptions on the output of models of cardiac
ischaemia [53, 59, 72], for example, and demonstrated that
the conclusions that would be drawn from the results are
different, depending on the assumptions that are made.

Apart from these assumptions, there is the fact that
groups of researchers use different sets of conductivities
(Tables 1 and 2). Some studies [41, 55, 58] have compared
the output of simulations for various conductivity sets
from these tables and again showed that the choice of
conductivity set can have a significant effect on the
conclusions that may be drawn.

This will be demonstrated in this section by comparing
the output produced by six different conductivity sets, in
three different simulation studies, ischaemia, activation and
defibrillation. The six conductivity sets used include the
three Clerc and Roberts sets, as well as those of Stinstra
et al. [101], MacLachlan et al. [72] and Hooks [30]. In
the first four studies, normal direction conductivities are
not available, so it will be assumed that conductivities
in the normal and transverse directions are equal. Other
parameters used in these studies are β = 2000 cm−1 [74],
R=9100 Ω cm2 [110] and Cm = 1μF cm−2 [81].

4.1 ST segment shifts due to subendocardial
ischaemia

During the ST segment of the ECG, the cardiac tissue is
isoelectric and so the passive bidomain Eq. 3 can be used to
study the epicardial potentials. In this study, the formulation
will be presented in the context of the half-ellipsoid model

of the left ventricle, introduced in [54]. In this geometry, the
epicardium is represented by the surface:

x2

a2
+ y2

b2
+ z2

c2
= 1 (9)

for z ≥ 0, with a = b = 3 cm and c = 5 cm. The
endocardium is represented by the same surface except
a = b = 2 cm and c = 4 cm. Cardiac tissue occupies
the space between the two surfaces, with the fibres within
the tissue rotating from the epicardium to the endocardium.
The region within the inner surface is filled with blood and
the potential within the blood φb is governed by Laplace’s
equation. Boundary conditions for the governing Eq. 3 are
derived from the fact that the entire outer surface of the
geometry is insulated and that there is continuity of potential
and current between the extracellular space and the blood
at the tissue–blood interface. Further details of the model
and implementation of the finite volume method solution
are available in reference [54].

Figure 2 shows the “epicardial” potential distributions
(in mV), on the surface of the ellipsoidal model, for the
six conductivity sets considered. For these simulations, an
ischaemic region is placed on the endocardial surface that
extends for 50% of the thickness of the tissue. The region
also extends from −25◦ ≤ φ ≤ 25◦ and from 30◦ ≤
θ ≤ 60◦ in the polar and azimuthal directions, respectively.
Conductivities in the ischaemic region are assumed to be
the same as in healthy tissue and the difference in plateau
potentials is set at −30 mV. Fibre rotation is included in the
model, with the fibres rotating through 120◦ anticlockwise
moving from the epicardium to the endocardium. The fibres
on the epicardium are offset by an angle of 45◦ from the
vertical. Finally, the potential is set to 0 at the base of the
ellipse, where φ = 180◦.

The differences in the epicardial potential distributions in
Fig. 2 are quite significant. Firstly, the data of Roberts and
Scher [87] (panel (c)) shows no positive potential (except
for the region near where the potential is earthed, which is
not visible in the figure), whereas all the other datasets show
both positive and negative potentials. The data of Clerc
[13] (panel (a)) show a smaller range in potential compared
with the other datasets. The remaining four datasets (panels
(b), (d), (e) and (f)) all show similar potential distributions,
except that the magnitudes of the potentials vary, and, hence,
so do the potential gradients across the surfaces. Finally,
the path of the zero contour line (shown in white) exhibits
a significantly different behaviour in panels (a), (b) and (f)
compared with panels (d) and (e).

4.2 Activation timemaps

Activation time maps are commonly used to describe
the propagation of the depolarisation wave front through
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Fig. 2 Epicardial surface potential distributions (in mV), arising from a region of subendocardial ischaemia, using the indicated conductivity data.
All plots use the same scale, indicated at the top of the figure. The black contour lines are spaced at 0.1 mV and the white contour line is the zero
potential line contour

cardiac tissue. This is modelled using the active bidomain
Eq. 5 in the same geometry as described in the previous
section for the ischaemia study, with the addition of a simple
Purkinje fibre system, with ten evenly spaced strands,
running from the apex of the endocardial surface to the
base of the ventricle. Boundary conditions are also the same
as those of the previous section, with the addition of a
stimulating current. At t = 0, a stimulus is applied to the
model at the apex of the endocardium. This model is also
solved using the finite volume method and full details of its
implementation are available elsewhere [4, 5].

Figure 3 shows the activation times (in ms) and, here, the
different conductivity sets fall into two distinct categories
of activation time maps. Panels (a), (b), (c) and (f) all show
an epicardial breakthrough on the apex of the ventricle,
whereas panels (d) and (e) show epicardial breakthrough
along a ring around the ventricle at about the height of
the endocardial apex. The data of Roberts and Scher [87]
(panel (c)) give rise to the fastest activation times (less
than 100 ms) and the greatest amplitude of the waves in
the contour lines, starting from the apex and progressing
towards the base. Panels (f), (b) and (a) then follow in
overall activation times. In panels (d) and (e), propagation

continues after the initial breakthrough around the ring,
towards the apex and the base. In both cases, the total
activation time exceeds 200 ms, with the data of Stinstra et al.
[101] taking the longest time to complete the activation.

4.3 A simple defibrillationmodel

A simple model for defibrillation of the heart can be created
by considering a heart situated in a fluid bath with electrode
paddles attached to opposite sides of the bath, as shown in
Fig. 4. The heart has a realistic canine geometry, obtained
fromMRI data, and includes realistic fibre orientation taken
from diffusion weighted images (SCIRun Tutorial, http://
www.scirun.org). The bath and ventricles are filled with a
fluid having the same electrical properties as blood. The
governing equations are Eq. 1 and Laplace’s equation in the
blood, and these are solved using the finite element method
as implemented in SCIRun (http://www.scirun.org). The
boundary conditions are that the outside of the bath, apart
from the electrodes, is insulated, and there is continuity
of potential and current between the tissue and the bath.
The two electrodes are set at fixed potentials, one of
which is 0.
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Fig. 3 Activation time maps (in ms) on the epicardial surface, arising from a point stimulation at the apex of the endocardium, using the indicated
conductivity data. All plots use the same contour scale, indicated at the top of the figure. The black contour lines are spaced at 10 ms

Fig. 4 Model geometry used for the defibrillation study. The heart (red
surface) is contained in a bath (blue boundary) with electrodes (green)
positioned as shown

Finally, Table 4 shows the necessary potential differences
to be applied between the two electrodes in Fig. 4 to
obtain the defibrillation threshold of subjecting 95% of the
extracellular tissue to a potential gradient of 6 V/cm or
greater [35]. The values range from 171 V for the data
of Roberts and Scher [87] up to 214 V for the data of
Clerc [13]. This gives a range of 43 V, or approximately
20% of the upper potential difference. This is a significant
difference since the results from this type of simulation
can be used in the design of defibrillators and changes
in potential difference can affect the longevity or power
requirements of implantable defibrillators.

Table 4 Voltages (V) required to obtain the defibrillation threshold,
using conductivity data from the indicated studies

Study Potential (V)

Clerc [13] 214

Hooks et al. [30] 186

MacLachlan et al. [72] 177

Roberts et al. [86] 179

Roberts and Scher [87] 171

Stinstra et al. [101] 194
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4.4 Quantifying the effect of conductivity variations

Until recently, most studies that have attempted to quantify
the effect of uncertainty in the bidomain conductivities, on
the outputs of simulations, have done so by varying one
conductivity value at a time [6, 38, 60, 94]. For example,
Keller et al. [60] showed that the cardiac conductivities have
a significant effect on forward-calculated ECGs, and Barone
et al. [6] performed a sensitivity study on the placement and
number of measurement sites that are required to determine
the monodomain conductivities. Johnston [38] used the
technique in the design of an electrode array to measure
cardiac conductivities (Section 5.1.6). Sanchez et al. [94]
showed that left ventricle activation and the ECG were
sensitive to some of the cardiac conductivities in a realistic
anatomical–physiological model of the heart used to study
cardiac resynchronisation therapy.

A number of authors have used this approach to examine
the effect that variations in the conductivity values can have
on simulations of ischaemia [33, 34, 84, 85, 97]. These
studies have shown that the occurrence of epicardial ST
depression or elevation is affected by the anisotropy ratio of
the cardiac conductivity values, among other factors.

In later work in slab and half-ellipsoidal models of
the ventricle, Johnston and colleagues [42, 47, 48, 52]
were able to simultaneously quantify the effect of all
six of the conductivity values on the epicardial potentials
during the ST segment of the ECG, produced by non-
transmural ischaemic regions. The studies used uncertainty
quantification and sensitivity analysis techniques, such as
Gaussian Process emulators and Partial Least Squares. This
work found that the model outputs were most consistently
sensitive to the value of the intracellular longitudinal
conductivity gil and are not sensitive to the transverse
conductivities. This result is in accord with earlier work
[44], using a different approach, which concluded that it
is the ratio gil/git that is the key parameter for explaining
the effect of different conductivity sets on epicardial
potential distributions that are generated by subendocardial
ischaemia.

5 Experimental techniques for determining
conductivities

A number of different approaches have been proposed
for determining the bidomain conductivity values from
experimental measurements; these will be summarised in
this section. There are two main types of challenges
associated with this work: one is related to the precision
of the experimental measurements, and the other concerns
the mathematical models and methods that are required
to retrieve the conductivity values from the experimental

measurements [93]. A majority of the proposed techniques
are for determining the four longitudinal and transverse
conductivities {gil, gel, git , get }, which for the remainder of
the manuscript will be referred to as the four conductivities.

None of the following methods has yet been used to
fully experimentally determine either a set of four or
six conductivity values in ventricular tissue (Le Guyader
et al. [65, 66] use atrial tissue). In many cases, the methods
are only validated using synthetic data. In others, only
bulk conductivities are found, and in some cases, bidomain
conductivities are found from these under various different
assumptions.

5.1 Methods for retrieving the four conductivities

5.1.1 Graham and Kilpatrick

The approach proposed by Graham and Kilpatrick [25]
uses point stimulation and maps the propagation of
electrical activity across the tissue. An array with electrode
separations of around 1.5 mm is used and a 2D simulation
using the active bidomain model (Eq. 5) is performed,
with the conductivities found by minimising the difference
between the measured potentials and the model output. The
approach was validated using synthetic data to which noise
was added.

5.1.2 Barone, Veneziani, Yang and colleagues

More recently, Yang et al. [111, 112] have analysed a
numerical approach that is similar to that of Graham and
Kilpatrick [25], but applied to different data. In this case,
the data are potential measurements produced by multiple
stimuli, using the monodomain model in a real ventricle
geometry or the bidomain model in 2D. The transmembrane
potential is measured directly using optical mapping and
microelectrodes are used to measure the extracellular
potentials. Then, the variational data assimilation method
minimises the difference between the model output and
measurements. The technique is validated using noisy
potentials and it is demonstrated that the method is able
to retrieve monodomain conductivities [6]. This study also
examines the number of measurement sites that would be
required as well as their positions. Later work [7] uses
a similar approach to estimate space-dependent cardiac
monodomain conductivities; in this study, the approach is
validated using experimental imaging data.

5.1.3 Barr and Plonsey

Most of the other proposed methods are based on the
four-electrode technique [73]; that is, a probe with four
co-linear equally spaced electrodes is used, current is
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applied to the outer electrodes and potential is measured
at the inner electrodes (Fig. 5). Plonsey and Barr [74]
showed that, under the assumption of equal anisotropy ratios
(gil/gel = git /get ), it is theoretically possible to retrieve the
four conductivities, provided the measurements are made
with the electrodes aligned along the cardiac fibres and
then at right angles to them, and made with particular
electrode spacings. The requirements are that the electrode
spacing is small (around the size of the space constant -
Eq. 6) to extract the extracellular conductivities, and much
larger than that to find the intracellular conductivities. The
rationale for this two-phase protocol is that, for the larger
electrode spacing, some of the current is diverted from the
extracellular space into the intracellular space [74].

Barr and Plonsey [8] also proposed a variant of this
approach, a single vertical probe that contains a mixture of
extracellular electrodes and optical transmembrane sensors,
some of which are only 50 μm apart. The analysis
showed that it is theoretically possible to retrieve the four
conductivities, provided that it is assumed that there are
equal anisotropy ratios and a two-phase protocol similar
to that above is used. This work did not need to take into
account the effect of fibre rotation, as a single vertical probe
forms an axis of rotation for the cardiac fibres [73]. This is
not the case, however, for a multi-probe electrode array that
is inserted into the tissue [51].

5.1.4 Le Guyader, Savard and Trelles

Le Guyader, Savard and Trelles performed two experimen-
tal studies in atrial tissue [65, 66] using another variant
of the four-electrode technique, with electrode spacings of
around the size of the space constant. Instead of changing
the orientation of the probe, their method used an eight-
electrode probe with two sets of four electrodes at right
angles to one another and an AC current with low and

higher frequencies to re-direct some of the current into
the intracellular domain. They then used a minimisation
technique, along with a first pass at low frequency to fit
the extracellular conductivities, and then a second pass at
higher frequencies, to fit the remainder of the parameters.
These studies [65, 66] were able to retrieve two sets of four
conductivities for canine atrial tissue (see Table 1).

Their later work [67] presented two different models that
could be used to analyse the experimental potentials. The
first was the standard bidomain model with a membrane
capacitance and the second had an added intracellular
capacitance to represent the intercalated discs. The models
were solved over the full domain using a fast Fourier
transform technique.

5.1.5 Henriquez and Sadleir

In 2006, Sadleir and Henriquez [93] published an extension
of the four-electrode technique, which used two different
sized 5×5 square electrode arrays placed on the tissue
surface. In this case, the two-phase approach was to be
implemented by using one array with 5- or 10-μm electrode
spacings, as well as one with 2.5-mm spacings. In silico
simulations with added noise, using a 2D model solved in
CardioWave [83], demonstrated that the method was able
to retrieve the four bidomain conductivities as well as the
angle of the array to the fibre direction. It is worth noting
that 5–10-μm electrode spacings are smaller than the size of
the cardiac myocytes and so a continuum description of the
tissue, such as the bidomain model, may not be valid.

5.1.6 Johnston, Johnston and Kilpatrick

In the same year as Sadleir and Henriquez’ paper [93]
appeared, Johnston et al. [50, 51] published two papers
with a related four-electrode approach for finding the

Fig. 5 Schematic diagram for
the four-electrode probe
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Fig. 6 Two-layer multi-electrode array used to retrieve four conduc-
tivity values [50]. Subsets of the electrodes are used in the two-pass
protocol

four conductivities, as well as the fibre rotation angle
through the tissue. The first paper [51] presented a new 3D
mathematical model and solution technique for finding the
electric potential in a slab of cardiac tissue. An advantage
of this solution technique is that it is not necessary for the
potential to be calculated over the whole domain, as it could
just be calculated at the required points (for example, at the
electrodes).

The second paper [50] again proposed the use of a
5×5 electrode array, except in this case each needle con-
tained two electrodes and the array was to be inserted into
the tissue (Fig. 6). The electrode spacing was 500 μm bet-
ween probes and 300 μm between electrodes on a probe,
and different subsets of the electrodes were to be used in
a two-pass approach. These sets were “closely spaced” and
“widely spaced” and were to be used to retrieve the extra-
cellular conductivities, and the intracellular conductivities
plus fibre rotation angle, respectively. Using sets of in sil-
ico simulations with added noise, with an iterative inversion
technique involving Tikhonov regularisation [104] and a
modified Shor’s algorithm solver [98], it was demonstrated
that it is possible to retrieve the four conductivities and the
fibre rotation angle.

5.2 Methods for retrieving the six conductivities

5.2.1 Caldwell, Hooks, Trew and colleagues

The work of Caldwell, Hooks, Trew and colleagues has been
instrumental in establishing that cardiac tissue is electrically
orthotropic (anisotropic), with three distinct propagation
directions, through their experimental work using in vivo
porcine ventricular tissue [11, 30, 32]. In the first study [31],
tissue was reconstructed using confocal microscopy and
simulations were performed using finite element modelling,
whereas later work [11, 30, 32, 106] used intramural
mapping and a matching computer model. An 11-needle
array of plunge needles with 1–4-mm electrode spacings
and 137 recording sites was designed, fabricated and then
used.

In addition to confirming the anisotropic nature of the
tissue, it was established that the bulk conductivities in the
l : t : n directions were approximately in the ratio 4:2:1 [11,
32]. However, the method was not able to separate the six
bidomain conductivities from the bulk conductivities.

Trew et al. [106] used a 4 mm × 4 mm × 1 mm electrode
array of plunge needles of 400-μm diameter with 325 elec-
trodes to again record intramural electrograms in the porcine
LV free wall. The tissue was imaged and a computer model
was constructed using the three intracellular conductivities
that produced conduction velocities that best matched the
recorded values. The three extracellular conductivities were
then found using the previous experimental results for the
sums of the bulk conductivities [32].

5.2.2 Costa, Frank and colleagues

Costa et al. [19] have proposed a method that is
designed to iteratively retrieve all three bulk conductivities
from 1D cable simulations, by tuning them to match
conduction velocities. Once these conductivities are found,
the bidomain conductivities are calculated using fixed
values for gil and the anisotropy ratios, and the fact that the
monodomain conductivities are taken to be 0.5 times the
harmonic mean of the intra- and extracellular conductivities.

5.2.3 Johnston and Johnston

In 2013, Johnston and Johnston presented [37, 38, 43] a
new approach to find all six bidomain conductivities, along
with the fibre rotation angle. The mathematical model and
inversion technique were extensions of their previous work
[51] (Section 5.1.6). The new multi-electrode array was
again based on a 5×5 grid, this time with three electrodes
per needle and a 500-μm electrode spacing (Fig. 7). New
subsets of electrodes, corresponding to closely spaced sets
of electrodes for the first pass to find the extracellular
conductivities and widely spaced sets of electrodes for
the second pass to find the intracellular conductivities and
fibre rotation angle, were investigated. The accuracy of
retrieval for various simulated noise levels was presented
[40, 45, 46], and it was found that the three extracellular
conductivities could be retrieved extremely accurately; even
with added noise of up to 40%, relative errors are around
2% on average. The fibre rotation angle and gil can also
be retrieved quite accurately, with around 8% error for 40%
noise. Both git and gin are more challenging to retrieve, with
errors that are generally less than twice the added noise.

It is worth noting that it is assumed, in this modelling,
that the electrode array is aligned with the cardiac fibres,
which may present practical challenges, although there
are techniques that can be used to deal with this [75]
or histology can be used. Another associated challenge is
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Fig. 7 The
2 mm × 2 mm × 2 mm
multi-electrode array of
Johnston and Johnston [46],
comprised three electrodes per
needle, which is used for making
the potential measurements.
Source and sink electrodes are
red and are marked with an “S”.
The spacing between the
electrodes and also between the
needles is 500 μm. a The
“closely spaced” electrodes on
the needles in the inner square
(green plus red) are used in the
first pass. b All the electrodes
are used in the second pass

related to the manufacture of the electrode array, which is of
overall size 2 mm × 2 mm × 2 mm, with 500-μm spacing
between the electrodes. Another potential limitation relates
to the mathematical model, which assumes that the cardiac
tissue is a flat slab; however, this may not be a problem
because of the small volume of tissue that is considered.
One final assumption is that the array can be inserted into
the tissue without causing significant injury currents [70].

5.2.4 Barr, Pollard and Smith

A group of manuscripts by Barr, Pollard and Smith [76,
77, 80, 82] has presented a new plan for direct conductivity
measurements in vivo. The approach uses multi-site
interstitial stimulation, at multiple frequencies, using very
small stimulating electrodes and electrode spacings with
micro-electrical-mechanical systems (MEMS) fabricated
blocks. They demonstrate theoretically that a set of eight
equally spaced electrodes with 25-μm gaps, which are
stimulated by pairs of electrodes that are separated by 75,
125 and 175 μm, is sufficient to retrieve the six resistivities
(inverses of conductivities). A two-pass approach is again
used, with frequencies below 100 Hz used to retrieve the
extracellular resistivities and frequencies between 200 and
4000 Hz are used to retrieve the intracellular resistivities.
The resistivities are found using a look-up table, where
the resistivities are varied until the best match with

the measured potentials is found. Simulations, under the
assumption of equal normal and transverse resistivities,
indicate that 10% fluctuations in voltage readings lead to
errors of less than 5% in resistivity values. Fibre rotation
was ignored in these simulations as the effective penetration
depth associated with the array was only 25–50 μm [77].
Another assumption that was made was that the MEMS
array was aligned with the fibre direction on the tissue
surface.

5.3 Recent work

5.3.1 Barr, Pollard andWaits

A relatively recent series of manuscripts by Barr, Pollard
and Waits [78, 79, 109] analyses experiments with a four-
electrode probe that is stimulated at multiple frequencies,
with wide (1 mm) and fine (250 μm) electrode separation
and examines the complex spectra (resistivity and reactivity)
that are produced. Pollard and Barr [79] suggest that spectra
resolution using finely spaced electrodes may provide
a way of separating the extracellular and intracellular
contributions to the resistivity because the current is
unable to cross the membrane at low frequencies. This
work considers the considerable technical challenges that
are associated with small electrode spacings and high
impedances and also measures the total tissue resistivity
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for rabbit ventricular epicardium. Practical issues include
[23, 78] temperature maintenance, calibration, water vapour
saturation of tissue, time limits on protocols, tissue
conditioning and methods for positioning the array.

5.3.2 Kwon, Sanchez and colleagues

Recent modelling and experimental work, using ovine
skeletal muscle, by Kwon, Sanchez and colleagues [63, 64],
is worthy of note despite its application being to progression
of neuromuscular diseases. In these models, the object is to
allow for anisotropy in both the resistivity and reactivity of
the tissue. The approach uses a variant of the four-electrode
technique that does not require the alignment of the array
with the fibres and it has been validated using numerical
simulations and in situ experiments. In the first study [64],
a printed circuit board containing two concentric circles of
monopolar electrodes was used. Then, the number of needle
insertions required was reduced from 12 to 6 in the second
study [63] by using multipolar needles. At present, this
approach is applicable to measuring materials with different
anisotropies in two dimensions only.

6 Challenges and future work

One thing to bear in mind in relation to the bidomain
model is that the six conductivities are not the only inputs
to the model. For example, depending on what is being
modelled, it is necessary to have values for β, R, Cm,
the blood conductivity gb and the fibre rotation angle
(Section 2.2). Commonly used values for these appear to be
gb = 6.7 mS/cm [91], β = 2000 cm−1 [74], R = 9100 Ω

cm2 [110], Cm = 1 μF cm−2 [27] and a fibre rotation
angle of 120◦ [71]. However, a range of other values is used
in the literature; for example, Clayton et al. [12] state that
typical values for β used in tissue models are in the range
1000–5000 cm−1 and for Cm 1–10 μF cm−2.

In addition to finding accurate conductivity values, it is
obviously necessary to find accurate values for the above
parameters as well. The method of Johnston and Johnston
(Section 5.2.3) is able to retrieve the fibre rotation angle
as well as the conductivities (under the assumption that
there is a linear change in fibre rotation through the tissue,
which seems to be consistent with experimental data [71]).
It would also be informative to perform sensitivity analyses
and quantify the effect of the above parameters on model
outputs, as has been already done for the fibre rotation angle
in models of ischaemia [47, 49].

The methods presented in Section 5 use the standard
bidomain model (or sometimes the monodomain model),
but a number of extensions to this have been developed,
particularly to model diseased and damaged tissue. One

reason that this is necessary is that it has been shown,
using confocal microscopy, that the volume fractions of
myocytes and fibroblasts change in infarcted hearts [96] and
the conductivity values change near the boundary of the
infarcted tissue (Section 3.5.2).

One method to deal with this is the extended bidomain
model [92], which includes electrical coupling between
fibroblasts and also between fibroblasts and myocytes. A
variant on this approach is the modified bidomain model
[20], which alternates healthy and fibrotic tissue at the
microscopic scale and then homogenises this to produce a
macroscopic scale model with altered conductivities. See
[24] for a comparison of re-entrant behaviour in fibrotic
tissue, using continuous models, discrete microstructural
models and hybrid models.

In recent years, more complex models are being
introduced to try to more faithfully represent various cardiac
electrophysiological diseases and disorders. However, for
precision medicine, these models are only useful if their
inputs are accurate, or, at least, the degree of uncertainty can
be quantified. This review has presented the state of the art
in relation to the six bidomain conductivity values that are
required in the standard bidomain model (Section 2.2) and
highlighted the significant challenges for the scientific and
engineering communities that determining them presents.

However, it is not just a matter of determining one
consistent set of six conductivity values. The fact that
changes in conductivity values can make significant
differences to the outputs of simulations and hence to
conclusions that might be drawn from them, as shown in
simulations here (Section 4), means that it is necessary
to establish whether the bidomain conductivity values are
dependent on the position in the heart, or on tissue type, and
how they change in disease.

Finally, if personalised medicine is being considered, it is
also necessary to establish whether the conductivities vary
between subjects. If so, it is important to determine how that
may affect simulations that are used for clinical decisions,
or, as suggested by Sadleir and Henriquez [93] and quoted in
Section 1, how these changes may be harnessed to monitor
clinical interventions.

Funding We acknowledge funding from the National Institute of
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36. Janse MJ, Opthof T, Kléber AG (1998) Animal models of cardiac
arrhythmias. Cardiovasc Res 39:165–177

37. Johnston BM (2013) Design of a multi–electrode array to
measure cardiac conductivities. ANZIAM J 54:C271–C290

38. Johnston BM (2013) Using a sensitivity study to facilitate
the design of a multi–electrode array to measure six cardiac
conductivity values. Math Biosci 244:40–46

39. Johnston BM (2016) Six conductivity values to use in the
bidomain model of cardiac tissue. IEEE Trans Biomed Eng
63(7):1525–1531

40. Johnston BM, Barnes JP (2014) Exploiting GPUs to investigate
an inversion method that retrieves cardiac conductivities from
potential measurements. ANZIAM J 55:C17–C31

41. Johnston BM, Barnes JP, Johnston PR, Murray A (2016) The
effect of conductivity values on activation times and defibrillation
thresholds. In: Computing in cardiology, vol 43, pp 161–164

42. Johnston BM, Coveney S, Chang ETY, Johnston PR, Clayton RH
(2018) Quantifying the effect of uncertainty in input parameters
in a simplified bidomain model of partial thickness ischaemia.
Med Biol Eng Comput 56:761–780

2933Med Biol Eng Comput (2020) 58:2919–2935



43. Johnston BM, Johnston PR (2013) A multi-electrode array and
inversion technique for retrieving six conductivities from heart
potential measurements. Med Biol Eng Comput 51(12):1295–
1303

44. Johnston BM, Johnston PR (2013) The sensitivity of the passive
bidomain equation to variations in six conductivity values. In:
Boccaccini A (ed) Proceedings of the IASTED international
conference biomedical engineering (BioMed 2013). IASTED,
ACTA Press, Calgary, pp 538-545

45. Johnston BM, Johnston PR (2014) How accurately can
cardiac conductivity values be determined from heart potential
measurements?. In: Murray A (ed) Computing in cardiology, vol
41. IEEE, pp 533–536

46. Johnston BM, Johnston PR (2015) Determining six cardiac
conductivities from realistically large datasets. Math Biosci
266:15–22

47. Johnston BM, Johnston PR (2018) Determining the most
significant input parameters in models of subendocardial
ischaemia and their effect on ST segment epicardial potential
distributions. Comput Biol Med 95:75–89

48. Johnston BM, Johnston PR (2018) Sensitivity analysis of ST-
segment epicardial potentials arising from changes in ischaemic
region conductivities in early and late stage ischaemia. Comput
Biol Med 102:288–299

49. Johnston BM, Johnston PR (2019) Differences between models
of partial thickness ischaemia and subendocardial ischaemia in
terms of sensitivity analyses of ST-segment epcicardial potential
distributions. Math Biosci 318:108,273

50. Johnston BM, Johnston PR, Kilpatrick D (2006) Analysis of
electrode configurations for measuring cardiac tissue conductiv-
ities and fibre rotation. Ann Biomed Eng 34(6):986–996

51. Johnston BM, Johnston PR, Kilpatrick D (2006) A new approach
to the determinination of cardiac potential distributions: appli-
cation to the analysis of electrode configurations. Math Biosci
202(2):288–309

52. Johnston BM, Narayan A, Johnston PR (2020) A comparison
of methods for examining the effect of uncertainty in the
conductivities in a model of partial thickness ischaemia. In:
Pickett C (ed) Computing in cardiology, vol 46, pp 1–4

53. Johnston PR (2005) The effect of simplifying assumptions in
the bidomain model of cardiac tissue: application to ST-segment
shifts during partial ischaemia. Math Biosci 198(1):97–118

54. Johnston PR (2010) A finite volume method solution for the bi-
domain equations and their application to modelling cardiac isch-
aemia. Comput Methods Biomech Biomed Eng 13(2):157–170

55. Johnston PR (2011) Cardiac conductivity values — a challenge
for experimentalists? Noninvasive Functional Source Imaging of
the Brain and Heart & 2011 8th International Conference on
Bioelectromagnetism (NFSI & ICBEM), 39–43

56. Johnston PR (2011) A non-dimensional formulation of the
passive bidomain equation. J Electrocardiol 44(2):184–188

57. Johnston PR (2011) A sensitivity study of conductivity values in
the passive bidomain equation. Math Biosci 232(2):142–150

58. Johnston PR, Kilpatrick D (2003) The effect of conductivity
values on ST segment shift in subendocardial ischaemia. IEEE
Trans Biomed Eng 50(2):150–158

59. Johnston PR, Kilpatrick D, Li CY (2001) The importance of
anisotropy in modelling ST segment shift in subendocardial
ischaemia. IEEE Trans Biomed Eng 48(12):1366–1376

60. Keller DUJ, Webster FM, Seemann G, Dössel O. (2010) Ranking
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