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Abstract
Measurement of anatomical structures from ultrasound images requires the expertise of experienced clinicians. Moreover,
there are artificial factors that make an automatic measurement complicated. In this paper, we aim to present a novel end-
to-end deep learning network to automatically measure the fetal head circumference (HC), biparietal diameter (BPD), and
occipitofrontal diameter (OFD) length from 2D ultrasound images. Fully convolutional neural networks (FCNNs) have
shown significant improvement in natural image segmentation. Therefore, to overcome the potential difficulties in automated
segmentation, we present a novelty FCNN and add a regression branch for predicting OFD and BPD in parallel. In the
segmentation branch, a feature pyramid inside our network is built from low-level feature layers for a variety of fetal head in
ultrasound images, which is different from traditional feature pyramid building methods. In order to select the most useful
scale and reduce scale noise, attention mechanism is taken for the feature’s filter. In the regression branch, for the accurate
estimation of OFD and BPD length, a new region of interest (ROI) pooling layer is proposed to extract the elliptic feature
map. We also evaluate the performance of our method on large dataset: HC18. Our experimental results show that our
method can achieve better performance than the existing fetal head measurement methods.

Keywords Fetal head measurement · Ultrasound image segmentation · Fully convolutional networks · Feature pyramid ·
ROI pooling

1 Introduction

Ultrasonic imaging is widely used in clinical examination
since it does not use ionizing radiation and more low-
costing compared with computed tomography (CT) and
magnetic resonance imaging (MRI), which make it to be
the first choice of prenatal care. A clear and accurate
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anatomical structure measurement is required in many
clinical ultrasound diagnoses. In particular, the fetal
head measurement can be used to estimate gestational
age and monitor growth patterns [1]. In general, these
measurements are performed by experienced clinical
sonographers on account of ultrasound images, which are
operator-dependent and machine-specific [2] leading to
inter- and intra-observer variability. The automatic method
of fetal biometric measurement can reduce the variability
and doctors’ workloads with no intra-observer variability
[3]. Furthermore, there is still a severe shortage of well-
trained sonographers in many countries, so an automated
system may assist inexperienced clinicians to obtain an
accurate measurement.

Typically, three standard fetal head biometric parame-
ters were considered by using two-dimensional ultrasound
measurements: head circumference (HC), biparietal diame-
ter (BPD), occipitofrontal diameter (OFD). The guidelines
state that BPD and HC are measured in the transaxial plane
at the widest portion of the skull at the level of the thalami.
When measuring BPD, the vernier is placed from the outer
margin of the proximal skull to the inner margin of the distal
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skull and perpendicular to the cerebral line. OFD overlaps as
much as possible with the middle cerebral. The HC parame-
ter is calculated by drawing an ellipse around the outline of
the skull [4]. It is beyond the scope of this paper to detail the
measurement, and more details can be found in references
[3, 4].

Due to the attenuation of ultrasonic transmission
and acquisition characteristics of ultrasonic equipment,
ultrasound images may contain speckle noise, discontinuous
or ambiguous anatomical boundaries, and shadows, which
make ultrasound image measurement become one of the
most difficult medical imaging tasks [5]. Examples of some
artifacts are shown in Fig. 1, where fetal head ultrasound
images from the first to the third trimesters are shown in
the top row, and the corresponding manually labeled images
are shown in the bottom. It can be seen that the boundary
of the fetal head structures is mostly incomplete or not
obvious, and there are a lot of speckle noises, which makes
it ambiguous with the surrounding tissue.

The previous methods can be mainly divided into two
categories: one is to fit the ellipse equation by segmentation
of the region of interest [6, 7], the other is to fit
ellipse equation directly from the original image [8–11].
Whereas they all obtain the BPD and OFD by measuring
the length of the minor axis and the major axis, these
methods, which make no distinction between geometric
and biological lengths, will lead to errors in the final
measurement. Moreover, in spite of the great effort did in
many fields, traditional machine learning approaches based
on hand-crafted feature limit to develop more complex
application scenarios. Recently, deep convolutional neural
networks (CNNs) have become the dominant approach
in different vision challenges by automatically extracting
useful features. Wu et al. first brought the CNN to the fetal
head’ region segmentation by cascading three variants of the
FCN [7]. However, using single scale information can cause

incomplete boundary prediction ambiguity because a fixed
receptive field of a neural network can only infer boundary
with a fixed region. As the red bounding box shown in
Fig. 1, the small receptive fields obtain a good prediction,
while the fixed receptive fields in the large incomplete areas
result in fuzzy boundary prediction.

In this work, we propose a novel automated measurement
system based on a deep neural network. First, we propose
a fetal head segmentation network, which considers the
very deep CNN with the large receptive field to extract
the main areas of the head and then utilize the layers
corresponding to different receptive fields to speculate the
discontinuous areas in different sizes of a skull. Instead
of simple average fusion, we propose a scale attention-
based multi-scale module to fuse the different scales of
information. After segmenting the region of the fetal head
from the ultrasound image, the ellipse closest to the skull
can be fitted by the least square error method. As mentioned
earlier, most of these current methods treat geometric
lengths as biological length, which results in measurement
errors. After fitting the ellipse, we propose a regression
network to correct this error by predicting the residual angle
between the major and minor axis of the ellipse and the
true OFD and BPD. We modify RoIAlign [12] to present
an ellipse pooling module that directly obtains the elliptic
feature and send it into the fully connected layers for angle
prediction. The ellipse pooling module is efficient for the
reason that it avoids re-extracting features from the original
image.

In summary, the contributions of this paper are in four
aspects:

1. The fetal head ultrasound images have speckle noise,
boundary occlusion, and other artifacts, so the segmen-
tation algorithm must be able to segment complete and
occlusive region in a lot of noise. We propose that the

Fig. 1 Example of fetal head
ultrasound images: without
annotation and with annotation
in blue from top to bottom. The
first trimester, the second
trimester, and the third trimester
from left to right. Note that there
are speckle noise, incomplete
anatomical boundaries and other
artifacts. The boundary in the
red bounding box is relatively
clear, while the boundary in the
green box cannot be inferred
from local brightness very well
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multi-scale method can be used for targeted boundary
recognition and fitting.

2. We propose to build a scale attention-based feature
pyramid to fuse the information of different receptive
field layers.

3. We design a regression network for BPD and OFD
prediction. In the proposed network, we design an
ellipse pooling module to share the feature map which
allows the regression network to reuse low feature
layers in order to reduce time consumption.

4. We build a complete fetal head automatic measurement
system that can be used to measure head circumference,
OFD and BPD.

2 Related work

Fetal head measurement. Foi et al. presented a fully
automatic method for fetal head measurement using signal
processing and minimizing a cost function to directly
fit an ellipse [8]. Ciurte et al. used a semi-supervised
approach, which interpreted ultrasound segmentation to a
graph cutting problem and solved it via min-cut and fast
minimization algorithm [6]. Stebbing et al. first calculated
the position and direction of the fetal head boundary, then
used the random forest to find the inner and outer contour
of the skull, and finally used it to fit the two ellipses [9].
Lu and Satwika et al. used different hough transform
approaches to directly estimate the parameters of ellipse
function [10, 11]. Ponomarev et al. distinguished skull
from the background by multilevel threshold and recognized
the segmented objects by using two introduced shape-based
descriptor. [13]. Machine learning techniques are potentially
included in fetal head measurement, such as [14–18]used
Haar-Like features to detect the position of the skull, of
which [18] first trained a random forest classifier with
Haar-Like features to locate the fetal head and the ellipse
parameters are fitted by dynamic programming and hough
transform.

Deep learning-based segmentation network. Recent seg-
mentation algorithms often convert an existing CNN struc-
ture to a FCNN such as AlexNet [19], VGGNet [20], and
ResNet [21]. They use 1 × 1 convolution instead of fully
connected layers to generate heatmap and perform some
deconvolution layers for pixel-wise labeling [22]. Further-
more, intra-skipping connections are included to improve
performance [23]. These networks have shown excellent
performance in natural image understanding, maintaining
the best records on many datasets. In the field of medi-
cal image, the FCNN is designed to a U shape structure
as a state-of-the-art model [23]. These encoder-decoder
architecture combined fine-grained and coarse-grained

features have been proved effective at a satisfactory level
in CT or MRI images [24–26]. Wu et al. first introduce
the CNN to fetal head segmentation in ultrasound images
[7]. They show that FCNN can filter out most of the
speckle noise and non-skull regions by cascading three vari-
ants of the FCN. They utilize the single scale information,
which can cause incomplete boundary prediction ambigu-
ity because a fixed receptive field of a neural network can
only infer boundary with a fixed region; meanwhile, they
also make no discrimination on biometric and geometric
length.

3 Proposedmethodology

The whole automatic measurement system can be seen
in Fig. 2, which is mainly composed of three parts: (1)
scale attention pyramid deep neural network (SAPNet)
for head region segmentation; (2) regression network for
OFD and BPD prediction; (3) the fusion module which
takes advantage of the results of the two network to
output the final result. Our approach achieves state-of-
the-art performance in the available dataset HC18 [18]
and estimates the total runtime of the system on NVIDIA
1080TI GPU to about 30 FPS. In the rest of this section, we
will detail our system.

3.1 Dataset

The proposed method is based on deep learning which
is very dependent on the amount and quality of data.
Therefore, we will first detail the dataset. A total of
1334 two-dimensional fetal head ultrasound images were
collected from the challenge of HC18, which were
acquired from 551 pregnant women who received a routine
ultrasound screening exam between May 2014 and May
2015. It should be noted that these fetuses are clinically
healthy, which is very important to use this dataset to
evaluate fetal development. These images were collected by
experienced sonographers who went through the Voluson
E8 and Vouson 730 ultrasound machine. The pixel size
of each image is 800 × 540, and the distance between
pixels corresponds to the real distance in the range of
0.052 to 0.326 mm. We can obtain 999 ground truth of
1334 images, and the remaining 335 results are submitted
to the HC18 challenge website to evaluate algorithm
rankings1. The ground truth is annotated manually by the
sonographers, this was done by drawing an ellipse best
fitting the circumference of the head skull, as shown in
Fig. 3.

1https://hc18.grand-challenge.org/
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Fig. 2 Complete automatic system for fetal head measurement. An
ultrasound image is an input from the left side and a mask bitmap of
the head region is provided by the segmentation network. This mask
is subsequently fitted to an ellipse by the least square error method.

The angle of occipitofrontal diameter is obtained by the input regres-
sion network after ellipse pooling. Finally, the ellipse equation and
occipitofrontal diameter angle are fused to obtain the final output

We express the ellipse parametric equation as:

Axy + By2 + Cy + Dx + x2 + E = 0,

A = b2 − a2

a2 sin2 θ + b2 cos2 θ
,

B = a2 cos2 θ + b2 sin2 θ

a2 sin2 θ + b2 cos2 θ
,

C = −2cyB − cxA,

D = −2cx − cyA,

E = c2x + c2yB + cxcyA − a2b2

a2 sin2 θ + b2 cos2 θ
. (1)

Datasets are collected from fetuses of different gestation
ages, as shown in Fig. 1. For these images of different
ages varies greatly, our algorithm also tests the images in

( , )

(0,0)

Fig. 3 The parameterized ground truth: a and b are the major and
minor axes of the ellipse respectively. cx, cy are the center of the
ellipse. θ is the rotation angle in degrees

different gestation ages to better evaluate the quality. Table 1
shows the distribution of entire datasets from the first to the
third trimester.

3.2 Data augmentation

The data augmentation scheme is a common approach to
increase the amount of training data and tech the network
desired invariance and robustness properties [23]. In the
case of the fetal ultrasound image, we primarily need gray
value, chrominance, contrast and sharpness invariance as
well as the robustness of gaussian blurring in different
window sizes. Especially, the random horizontal flipping of
the training image seems to be the key augmentation to learn
a segmentation network with very little ground truth. We
randomly perturb an image within a specified range during
each training session, detailed in Table 2.

3.3 SAPNet architecture

The SAPNet, illustrated in Fig. 4, is a segmentation model
that can combines different scale information in feature
level. Our network is based on the U-Net [23] structure
which is a standard medical image segmentation network.

Table 1 The distribution of dataset

Gestation period Training set Test set

First trimester 165 55

Second trimester 693 233

Third trimester 141 47

Total number 999 335
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Table 2 Data enhancement methods and their range

Method Brightness Contrast Sharpness Gaussian blur

Range 0.4–1.8 0.3–1.8 0.3–2 2–9

In order to get a scale pyramid module with different
receptivity, we modify the convolution layer of the encoding
layer of U-Net [23] structure to dilated convolution. The
dilated convolution introduces a new parameter called the
expansion rate of the convolutional layer which defines
the spacing of the values when the convolution kernel
processes the data. This convolution method can discard
the pooling layer to output the full-resolution feature map
while still obtaining a large receptive field. Meanwhile, we
use the output of the different encoder layers to form the
feature pyramid layer. The high-level feature layer of the
feature pyramid has a larger receptive field, while the lower-
level feature layer has a smaller receptive field. Feature
layers with small receptive fields perform well on the more
continuous parts of the skull, while feature layers with larger
receptive fields perform well on the skull that appeared to
be discontinuous on the ultrasound images.

To generate pixel-wise segmentation, one can make use
of attention mechanism to generate a mask on the feature

map [27], which enables a scale-level weight matrix by
convolution to indicate which scale should be noticed.
Inspired by [28], we propose a scale attention module
(SAM) that provides attention of a global context prior
to select scale-wise features. Scale attention module fuses
three different scale context information by providing a
scale-level attention value. To build the scale attention
module, we first use a dilated U-Net model to extract
the feature pyramid. As shown in Fig. 4, similar to the
U-Net, the encoding network of SAPNet also consists of
five large blocks. To better extract context from different
layers, we use the feature map of the last three large blocks
after convoluting different dilated rates to build the feature
pyramid. The size of the feature maps in the scale pyramid
module is 1/4 of the input size.

As shown in Fig. 5, the bottleneck layer of dilated
U-Net generates an attention feature layer after global
average pooling convolution. This global pooling method
provides a global context as guidance of the feature pyramid
to select scale attention. We get attention feature from
global average pooling after 1 × 1 convolution with batch
normalization and sigmoid activation function. The final
attention value is obtained by averaging the weight of
feature maps according to the number of each layer in the
feature pyramid. The attention value multiplies the attention

Fig. 4 Overview of the scale attention feature pyramid network. We
use U-Net based on dilated convolution to extract features. Then, the
scale attention module is applied to harvest different scale representa-
tions, followed by upsampling, concatenation, and 3 × 3 convolution

to form final module representation, which contains information about
the different receptive fields. Finally, the pixel-wise prediction is got
by connecting fine-grained layers

Med Biol Eng Comput (2020) 58:2879–2892 2883



Fig. 5 Scale attention module:
The multi-scale pyramid is
achieved by connecting the
feature maps of different
receptive fields. The weight of
each feature map can be
obtained through the global
average pooling and 1 × 1
convolution. The weight of a
pyramid layer can be calculated
by averaging the weight of
corresponding feature maps

feature map and adds the original input to get the final
output.

3.4 Ellipse fitting

We use the least square error method to fit the elliptical
boundary of the segmentation according to Eq. 1. For the N

points on the edge of the segmentation result, we can get the
minimum target as:

Q =
N∑

i=1

(x2
i + By2

i + Axiyi + Dxi + Cyi + E)2 (2)

where (xi, yi) indicates the coordinates of the detected
edge points. We can get the minimum value by:

∂Q

∂A
= ∂Q

∂B
= ∂Q

∂C
= ∂Q

∂D
= ∂Q

∂E
= 0 (3)

This minimization problem can be converted into matrix
equations following:

⎡
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3.5 BPD and OFD prediction

The first step in the prediction of the BPD and OFD, as
shown in the guideline, is to find the middle cerebral.
In fact, the major and minor axis of the ellipse fitted by

the segmentation results is very close to OFD and BPD.
Therefore, we obtain OFD in predicting the increment of the
major axis by adding the branch of regression network in
our SAPNet, as shown in Fig. 4. Our experiment shows that
regression increment work is better than a direct prediction
absolute angle. Regression networks only predict the angle
of OFD because BPD is orthogonal to OFD. After knowing
the angle of OFD, it is not difficult to obtain the angle of
BPD. In order to eliminate the influence of areas outside
the fetal head on the prediction of middle cerebral, we
design an ellipse pooling layer to accurately locate the
features inside the skull, as shown in Fig. 6. After founding
the bounding box of the ellipse, it is projected onto the
convolution layer of feature extraction by RoIAlign [12].
RoIAlign is an operation widely used in object detection
tasks, which convert proposals of different shapes to fix
shape as required by fully connected layers. The product
of the feature map and the head mask can eliminate the
impact of the area except for the head in the bounding
box. OFD angle regression network consists of three fully
connected layers whose final output passes through the
activation function of σ × tanh. σ are the maximum values
of clockwise or counterclockwise increment of the long
axis and we set it as 5 for the experiment. As shown in
Fig. 7, after rotating the OFD angle of the original image
coordinate system, a new coordinate system with the X-axis
parallel to the middle cerebral is obtained. At this point,
the binary image obtained by the segmentation network is
projected to the new coordinate system, in which the highest
point corresponding to the X-axis is BPD, and the highest
point corresponding to the Y-axis is OFD.

3.6 Network training

The network performance is optimized using the Adam [29].
We set base learning to 0.0001 and reduce by a factor of
0.8 at training error saltation. The momentum and weight
decay are set to 0.9 and 0.0001. Due to the limitation of our
computer hardware, we have adjusted the original 800×540
pixel image to 480 × 320 and set the batch size to 10
during training. In the validation set, 100 epochs are used
to train all networks and after the final comparison in the
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Fig. 6 An overview of the occipitofrontal diameter angle prediction
module. The ellipse pooling layer uses max pooling to convert the fea-
ture inside any bounding box of the ellipse into a small feature map
with a fixed spatial extent of H × W (e.g, 7 × 7), where H and W are
layer hyper-parameters that are independent of any particular ROI. In
order to obtain the elliptic region more accurately, we first multiplied

the head mask before sampling the feature map. The occipitofrontal
diameter angle regression network sends the output of the ellipse pool-
ing layer into a regression network composed of three fully connected
layers. The final output of the full connection layer finally obtains
the increment value of the long axis of the ellipse through σ × tanh
activation function

test set, we have trained 700 epochs. It is worth noting that
our two network performances are improved by increasing
the epoch number. We train our SAPNet by minimizing a
cross-entropy loss:

L(�θθθ (X), Ytruth) = 1

m

m∑

i=1

(
−Y i

truth log(P (�i
θθθ (X) = 1|θθθ))

−(1 − Y i
truth) log(P (�i

θθθ (X) = 0|θθθ))
)

+ λR(θθθ) (5)

where the �(X) indicates the output network and the inputs
are X and Ytruth represents the ground-truth image. The
θθθ denotes the network model parameters that need to be
obtained through training. R(θθθ) is the regularization term
where we use L2 norm of the network weights. As in Mask
R-CNN, the segmentation region is considered positive
if it has IoU with the ground truth of at least 0.5 and
negative otherwise. When one is the positive sample, the
segmentation result is fitted to the ellipse and the regression
network is trained. The L1 loss function is adopted in the
regression network.

4 Experimental results

We perform four quantitative experiments to evaluate
the performance of our approach on the HC18 dataset.
Firstly, we compare our system to U-Net baseline [23]
in segmentation evaluation metrics and fit segmentation
images boundary to ellipses in the least square method for
HC, BPD, and OFD comparison. Secondly, we compare the
effects of different components on automated measurement.
Finally, we compare results with the best performers on
the HC18 leader board. In the first three experiments, we
divided annotated images into 80% training sets and 20%
test sets as shown in Table 3 according to the number of
images in the three pregnancy stages as shown in Table 1.

4.1 Evaluationmetrics

The performance of the segmentation experiment is
evaluated with three metrics in the mean pixel accuracy
(mPA), the mean Intersection over Union (mIoU) and the
Dice similarity coefficient (DSC).

Fig. 7 The binary mask image
is projected to the coordinate
system aligned with the middle
cerebral, and the maximum
projection values corresponding
to each axis are biparietal
diameter and the occipitofrontal
diameter
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Table 3 The distribution of experimental dataset

Gestation period Training set Test set

First trimester 132 33

Second trimester 555 138

Third trimester 113 28

Total number 800 199

The mAP is used to evaluate the accuracy of an image
that is correctly labeled with pixels.

mPA = NTP + NTN

NTP + NTN + NFP + NFN
, (6)

where NTP is true positive which represents the number of
pixels correctly classified by the fetal head, NTN is true
negative which represents the number of pixels correctly
classified as background, and NFP and NFN are the number
of the fetal head and background incorrectly annotated.

The mIoU is a common metric that calculates the ratio of
intersection and union between two segmentation sets.

mIoU = IoUfh + IoUbg

2
,

IoUfh = NTP

NTP + NFN + NFP
,

IoUbg = NTN

NTN + NFN + NFP

(7)

where IoUfh and IoUbg represent the mean Intersection
over Union of the fetal head and background annotated
collection, respectively.

It is similar to the IoU metric the DSC gives an indication
of overlapping area between our segmentation method and
the ground truth.

DSC = |AreaM ∩ AreaGT|
|AreaM| + |AreaGT| , (8)

where AreaM denotes the segmentation area in using our
method and AreaGT is the area of annotation of the ground
truth.

The final result is the ellipse fitted by least squares
after segmentation, and then we evaluate the metric of the
Hausdorff distance (HD), the difference head circumference
(DF), and the absolute difference head circumference
(ADF).

The Hausdorff distance is a measure of the degree of
similarity between two sets of points: Let PGT and POM

be the boundary points of the ground truth and proposed
methods. pGT denotes a point of PGT and pOM a point of
POM. The minimum measurement distance of a point p to
PGT is defined as:

dmin(p, PGT) = min
pGT∈PGT

||p − pGT||, (9)

where ||.|| denotes the Euclidean distance. The HD can then
be expressed as:

HD(PGT, POM) = max

(
max

pGT∈PGT
dmin(pGT, POM)

max
pOM∈POM

dmin(pOM, PGT)

)
. (10)

The DF was defined as:

DF = HCGT − HCOM, (11)

where HCOM is the head circumference measured by ellipse
proposed method and HCGT by the ground truth.

The ADF was defined as:

DF = |HCGT − HCOM|. (12)

In order to evaluate the performance of the regression
network, RMSE (root mean square error) was used to
calculate the error between the predicted value and the true
OFD angle or length.

4.2 U-Net baseline comparison

In order to evaluate our proposed segmentation network,
we conduct a series of experiments for segmentation
performance comparison between the U-Net baseline and
the proposed network with our best settings. We use
qualitative and quantitative results to compare algorithms.
The qualitative comparisons of results allow us to know
where the algorithm has been improved, and the quantitative
comparisons allow us to know how much the algorithm has
improved. Since most of the baby fetal head segmentation
is to predict fetal development, we need to know not only
the average of the segmentation metric but also the worst
and best conditions of our segmentation network. So we
count all the prediction data of our segmentation algorithm
to provide the performance of our system.

The qualitative comparisons in the proposed networks
with the U-Net baseline can be seen in Fig. 8. The
qualitative results show the superior ability of the proposed
network to deal with the incomplete regions of the skull
while producing a smooth segmentation in the complete
regions of the skull. In the first trimester, the ultrasound
image has many noises, uncertain areas, and unclear skull
boundaries. U-Net can get lost in these areas, and even
other contours may be identified as skulls. In the second
pregnancy, there is a sudden saltus in the fetal skull border,
which confuses the U-Net segmentation path. In the third
trimester, the skull in the ultrasound image itself has large
discontinuous areas, and the black template coverage of
other information on the fetus in the dataset makes the
discontinuous area increase and irregular, which results in
the use of only a single scale U-Net often recognizes errors.
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Fig. 8 Qualitative comparison of segmentation performance of net-
works on the fetal head ultrasound image. The original image and
ground-truth region boundaries are shown in the first, second row,

respectively. The outputs obtained using the U-Net baseline and pro-
posed SAPNet are shown in the last row. The best results are shown by
the SAPNet

To quantitatively demonstrate the performance of the U-
Net and our proposed networks, we compare the results
of two segmentation network without any post-processing.
The output sizes of these three networks are adjusted
to 320 × 480 and compared with the ground truth in
the same size. Three assessment metrics of mIoU, mPA,

and DSC are adopted for quantitative comparison. The
performance between the ground truth and the results
of the two networks is shown in Table 4. In our
proposed SAPNet, we notice that a relatively greater
improvement is performed by 3.05/1.83/2.57 and reaching
96.46%/98.02%/97.26%.

Table 4 Quantitative comparison of segmentation results for the U-Net baseline, proposed SAPNet from first trimester to third trimester

Method U-Net Our SAPNet

Metric mIoU (%) ± std mAP (%) ± std DSC (%) ± std mIoU (%) ± std mAP (%) ± std DSC (%) ± std

First trimester 92.68 ± 7.98 94.40 ± 4.15 93.29 ± 10.03 95.06 ± 2.13 97.73 ± 1.44 95.57 ± 2.28

Second trimester 94.03 ± 2.64 97.62 ± 1.68 96.34 ± 1.99 96.82 ± 0.91 98.79 ± 0.52 97.57 ± 0.74

Third trimester 93.85 ± 6.53 95.20 ± 3.67 95.61 ± 3.81 96.06 ± 2.74 98.06 ± 1.48 97.39 ± 1.31

Average 93.81 ± 5.48 96.19 ± 2.96 95.69 ± 5.72 96.46 ± 1.77 98.02 ± 0.98 97.26 ± 1.50
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Table 5 Comparison of the metric for ellipse after segmentation contours fitting

Metric Period U-Net U-Net (EF) Our SAPNet Our SAPNet (EF)

DF (mm) ± std First trimester −1.85 ± 7.43 1.20 ± 7.33 0.77 ± 2.83 −0.16 ± 2.24

Second trimester −1.29 ± 2.26 −0.71 ± 2.61 0.29 ± 2.30 0.27 ± 2.31

Third trimester −1.16 ± 10.28 −1.03 ± 8.28 0.88 ± 5.98 0.30 ± 5.26

Average −1.30 ± 7.76 −1.28 ± 5.54 0.41 ± 3.17 −0.28 ± 2.95

ADF (mm) ± std First trimester 5.23 ± 7.91 4.22 ± 6.06 2.22 ± 1.87 1.63 ± 1.52

Second trimester 2.57 ± 6.91 2.00 ± 2.61 1.72 ± 1.55 1.78 ± 1.48

Third trimester 7.65 ± 9.18 6.95 ± 8.88 4.69 ± 3.70 4.31 ± 2.91

Average 3.28 ± 6.03 3.12 ± 4.75 2.23 ± 2.28 2.03 ± 2.13

DSC (%) ± std First trimester 93.29 ± 10.03 93.60 ± 6.95 95.57 ± 2.28 95.51 ± 1.61

Second trimester 96.34 ± 1.99 97.59 ± 1.28 97.57 ± 0.74 98.22 ± 0.75

Third trimester 95.61 ± 3.81 95.62 ± 3.03 97.39 ± 1.31 97.46 ± 0.86

Average 95.69 ± 5.72 96.23 ± 4.45 97.26 ± 1.50 97.72 ± 1.61

HD (mm) ± std First trimester 1.95 ± 1.93 1.15 ± 1.47 0.59 ± 0.51 0.46 ± 0.36

Second trimester 0.82 ± 3.18 0.55 ± 0.56 0.41 ± 0.38 0.40 ± 0.39

Third trimester 2.43 ± 2.71 2.41 ± 2.71 0.85 ± 0.72 1.02 ± 0.78

Average 1.28 ± 6.16 0.87 ± 1.38 0.50 ± 0.48 0.47 ± 0.46

“EF” denotes ellipse fitting for the segmentation network

In order to get the ellipse closest to the fetal head,
we fit the segmentation results of the U-Net and SAPNet
by least squares, illustrated in Section 3.4 in details. The
fitted ellipses are compared by three assessment metrics:
DF, ADF, DSC, and HD. All the evaluation metric values
are listed in Table 5. In Table 6, we compare our OFD
angle regression network to another network with ellipse
fitting. It can be seen that the direct fitting ellipse using the

segmentation network can only be similar in circumference,
but its OFD and BPD have a large error. The performance of
the regression network during the first and second trimester
was absolutely superior to other methods. However, the
performance of the regression network in the third trimester
was almost the same as that of other methods, which we
believe is related to the fact that the middle cerebral in this
stage is not obvious in most ultrasound images.

Table 6 Comparison of OFD, BPD, and OFD angle prediction of different networks

Metric Period U-Net (EF) SAPNet (EF) SAPNet (AR)

OFD length (mm) ± std First trimester 2.23 ± 4.09 1.24 ± 2.94 0.83 ± 2.93

Second trimester 2.39 ± 3.22 0.87 ± 2.18 0.34 ± 1.76

Third trimester 3.14 ± 3.82 2.12 ± 3.49 2.08 ± 3.43

Average 2.51 ± 3.78 1.07 ± 3.43 0.52 ± 2.74

BPD length (mm) ± std First trimester 1.33 ± 2.91 1.04 ± 2.45 0.46 ± 2.07

Second trimester 1.07 ± 1.81 0.57 ± 1.49 0.41 ± 1.35

Third trimester 1.83 ± 2.48 1.36 ± 2.28 1.40 ± 2.50

Average 1.29 ± 2.45 0.82 ± 2.21 0.57 ± 1.83

Angle OFD (mm) ± std First trimester 4.06 ± 4.23 3.99 ± 4.66 1.34 ± 2.91

Second trimester 3.60 ± 4.23 3.34 ± 4.10 1.01 ± 2.23

Third trimester 4.88 ± 4.91 4.71 ± 4.83 4.02 ± 3.91

Average 3.86 ± 4.82 3.61 ± 4.34 1.67 ± 3.05

“EF” represents the measurement on the ellipse after fitting the output of the segmentation network. The length of OFD is the long axis of the
ellipse, the length of BPD is the short axis, and the angle of OFD is the included angle between the long axis and the X-axis of the image. “AR”
represents the measurement after the fusion angle of the regression network
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Table 7 Ablation analysis of our proposed SAPNet with different
settings

Network mIoU (%)± std mPA (%)± std DSC(%)± std

SAPNet (DC) 95.16 ± 3.07 96.51 ± 1.89 95.58 ± 2.11

SAPNet (FP) 96.32 ± 2.14 97.67 ± 1.66 96.24 ± 2.08

SAPNet (SAM) 96.46 ± 1.77 98.02 ± 0.98 97.26 ± 1.50

“DC” denotes dilated convolution. “FP” denotes feature pyramid
without scale attention. “SAM” means our scale attention module

4.3 Ablation experiments

To show the effectiveness of different components in our
SAPNet, we present an ablation experiment to quantitative
analysis of the following components: dilated convolution,
feature pyramid, and scale attention module, as described
before. As listed in Table 7, these experiments show that
different factors have an effect on the final result.

Ablation study for segmentation network: As shown in
Table 8, we first test the effect of different layers of feature
pyramids on the final result, and the input feature map of
each pyramid layer is adjusted to the same size. Finally,
we find that the best results are achieved in three layers. In
order to reduce the detail loss caused by upsampling on the
small feature map of the feature pyramid layer, we replace
the last two layers of the encoding network with dilated
convolution. we notice that dilated convolution works are
better than ordinary convolution, as shown in Table 7.
Furthermore, when we replace the scale attention module
to the feature pyramid, the performance of the network is
further improved.

Ablation study for regression network: As shown in
Table 9, we test the difference between the absolute and
incremental OFD angle of regression network prediction.
The absolute angle is the angle between OFD and the X-axis
of the image, and the incremental angle is the intersection
angle between the long axis of the ellipse after fitting and
the real OFD. The activation function σ of the last layer of
the regression network that predicts the absolute angle is set

Table 8 Detailed analysis of our proposed SAPNet with different
layers of feature pyramids

Network mIoU (%) mPA (%) DSC (%)

± std ± std ± std

Feature pyramid (2) 94.72 ± 3.98 95.67 ± 2.16 94.81 ± 3.22

Feature pyramid (3) 95.16 ± 3.07 96.51 ± 1.89 95.58 ± 2.11

Feature pyramid (4) 95.12 ± 3.14 96.46 ± 1.66 95.24 ± 2.18

Table 9 Comparison of OFD angle with different prediction methods

Network OFD (mm) BPD (mm) Angle (◦)
± std ± std ± std

Absolute angle 1.01 ± 3.01 0.66 ± 1.45 2.78 ± 2.82

Incremental angle 0.52 ± 2.74 0.57 ± 1.83 1.67 ± 3.05

All network parameters are the same except for the last layer activation
function

to 180. Compared with absolute angle prediction, the incre-
mental angle is equivalent to σ reduction, and the search
space of deep neural network is also reduced.

To verify the performance of the ellipse pooling module,
we add a new feature extraction layer with the same
encoding structure as SAPNet, followed by the OFD Angle
regression network. The feature extraction structure runs
in parallel with SAPNet, relying on the back-propagation
gradient of the regression network. The results are shown in
Table 10.

4.4 Results in test set

Combining our best setting in the deep neural network, we
experiment with the automated measurement system of fetal
head on the HC18 test set. In evaluation, we use these best
settings to train 700 epochs with the Adam optimizer, so the
result would be better than our validation set. The final out-
put of the entire system comes in the 1st place in the HC18
leader board (December 23, 2018, account name: shen-
zexu). Without adding the regression network, the result of
using only the output of the segmentation network with fit-
ting ellipse ranks the fourth. In order to ensure the authority
of the evaluation, we only selected published paper results
for comparison, as shown in Table 11. Our best result with
the SAPNet achieves a score 1.81±1.69/97.94±1.34/0.59±
2.41/1.22 ± 0.77 in terms of ADF, DSC, DF, and HD.

5 Discussion

The most important observation in our experiment is that we
use multi-scale information to synthesize local and global
context to identify the edge information of the skull, while

Table 10 Comparison of the results of both ellipse pooling and none
ellipse pooling

Network OFD (mm) BPD (mm) Angle (◦)
± std ± std ± std

None ellipse pooling 2.34 ± 2.89 1.09 ± 2.08 3.38 ± 3.27

Ellipse pooling 0.52 ± 2.74 0.57 ± 1.83 1.67 ± 3.05
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Table 11 Results of the HC18 challenge

Method Rank Period ADF (mm) ± std DSC (%) ± std DF (mm) ± std HD (mm) ± std

SAPNet (DC+SAM+AR) 1 First trimester 1.37 ± 1.25 96.96 ± 2.43 0.38 ± 1.82 0.80 ± 0.63

Second trimester 1.67 ± 1.47 98.16 ± 0.92 0.49 ± 2.17 1.15 ± 0.68

Third trimester 3.02 ± 2.47 98.03 ± 0.71 1.31 ± 3.69 2.06 ± 0.71

Average 1.81 ± 1.69 97.94 ± 1.34 0.59 ± 2.41 1.22 ± 0.77

SAPNet 4 First trimester 1.63 ± 1.76 96.69 ± 3.00 0.69 ± 2.31 0.88 ± 0.66

Second trimester 1.78 ± 1.61 98.10 ± 0.97 0.76 ± 2.28 1.19 ± 0.68

Third trimester 3.06 ± 2.52 98.07 ± 0.71 1.47 ± 3.70 2.07 ± 0.78

Average 1.93 ± 1.84 97.86 ± 1.57 0.85 ± 2.53 1.26 ± 0.77

Wu et al. [7] 9 First trimester 2.00 ± 2.45 93.65 ± 5.15 1.40 ± 2.84 1.54 ± 1.15

Second trimester 2.07 ± 1.76 92.94 ± 6.55 1.22 ± 2.43 3.65 ± 3.18

Third trimester 2.95 ± 2.48 93.52 ± 6.86 1.93 ± 3.35 5.74 ± 5.48

Average 2.18 ± 2.01 93.14 ± 6.38 1.35 ± 2.64 3.60 ± 3.56

Thomas et al. [18] 25 First trimester 3.06 ± 4.83 94.65 ± 5.43 −0.32 ± 5.72 1.69 ± 2.28

Second trimester 2.38 ± 2.38 97.63 ± 1.37 0.77 ± 3.28 1.62 ± 1.27

Third trimester 4.79 ± 3.43 97.37 ± 1.17 0.56 ± 5.91 3.07 ± 1.60

Average 2.83 ± 3.16 97.10 ± 2.73 0.56 ± 4.21 1.83 ± 1.60

The results of the published papers are listed. The final ranking is based on absolute head circumference. The results are evaluated on the testing
set with no annotated information

the regression network can correct the elliptic geometric
axes into biological OFD and BPD. A feature pyramid is
established at the feature level to utilize local and global
information corresponding to different sizes of receptive
fields in the feature layer. Our network structure is quite
different from the previous network that used a single
scale to segment the head region of a fetus. Furthermore,
we proposed a scale attention module for multi-scale
information fusion, which yielded better performance in our
experiments.

On the other hand, in different previous approaches that
treat biological and geometric lengths equally, we add a
regression network to obtain OFD and BPD by modifying
the major and minor axes of the ellipse. In our regression
network, the ellipse pooling module plays an important role,
because it can combine ellipse parameters fitted by results
of the segmentation network and visual feature to modify
geometric lengths. Our experiments also demonstrate the
effectiveness of our regression network.

There are also some problems with our proposed network
and U-Net: as shown in Table 5, these networks perform
worse in the first trimester compared with the second
and third trimesters. This is because the fetus in the first
gestation period has a softer skull tissue, which is very
similar to the tissue inside the skull, so there is no obvious
characteristic change between the skull and the inside of the
fetal head in the ultrasound images. This can serve as an
open question to further advance the measurement of the

fetal head. One of the simplest treatments is to design a
network structure for the first trimester.

6 Conclusion

In this work, we proposed a novel deep neural network that
uses multi-scale information for fetal head segmentation
and accurate BPD, OFD prediction in ultrasound images,
and design an automatic measurement system based on the
network structures. We design the SAPNet that establishes
feature pyramids and uses attention mechanism to select
feature layers. The SAPNet that uses scale information can
fuse local and global information to infer skull boundaries
that contain speckle noise or discontinuities. Based on
the segmentation results of SAPNet, we obtain the head
circumference by performing ellipse fitting in the least
squares method. Ellipse pooling is used to project the ellipse
parameters to the encoding feature layer of the segmentation
network, and the elliptic geometric axes are modified by
the regression network to obtain more accurate BPD and
OFD. Our experimental results show that the proposed
approach can achieve comparable performance with other
models on the HC18 dataset. However, our results were only
significant in ultrasound images of a single target. Future
work should include multi-order data so that they be able
to evaluate the performance on the fetal heads’ regions of
twins.
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