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Acoustic characterization of upper airway variations
from wakefulness to sleep with respect to obstructive sleep apnea
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Abstract
The upper airway (UA) is in general thicker and narrower in obstructive sleep apnea (OSA) population than in normal.
Additionally, the UA changes during sleep are much more in the OSA population. The UA changes can alter the tracheal
breathing sound (TBS) characteristics. Therefore, we hypothesize the TBS changes from wakefulness to sleep are significantly
correlated to the OSA severity; thus, they may represent the physiological characteristics of the UA. To investigate our hypoth-
esis, we recorded TBS of 18 mild-OSA (AHI < 15) and 22 moderate/severe-OSA (AHI > 15) during daytime (wakefulness) and
then during sleep. The power spectral density (PSD) of the TBS was calculated and compared within the two OSA groups and
betweenwakefulness and sleep. The average PSD of the mild-OSA group in the low-frequency range (< 280 Hz) was found to be
decreased significantly from wakefulness to sleep (p-value < 10−4). On the other hand, the average PSD of the moderate/severe-
OSA group in the high-frequency range (> 900 Hz) increased marginally significantly from wakefulness to sleep (p-value < 9 ×
10−3).Our findings show that the changes in spectral characteristics of TBS fromwakefulness to sleep correlate with the severity
of OSA and can represent physiological variations of UA. Therefore, TBS analysis has the potentials to assist with diagnosis and
clinical management decisions in OSA patients based on their OSA severity stratification; thus, obviating the need for more
expensive and time-consuming sleep studies.
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Abbreviations
AHI Apnea/hypopnea index
ANOVA analysis of variance
BMI Body mass index
HSS Home sleep study
MRI Magnetic resonance imaging
NC Neck circumference
OSA Obstructive sleep apnea
PSD Power spectrum density
PSDavg Average power spectrum density
PSG Polysomnography

SE Standard error
SVM Support vector machine
TBS Tracheal breathing sounds
UA Upper airway

1 Introduction

The upper airway (UA) is a collapsible structure; it dynam-
ically changes from wakefulness to sleep, and also between
the sleep stages [1]. The patency of the UA is suggested to
be dependent on the equilibrium between the dilating forces
generated by the UA dilator muscles and the pressure
exerted by the heterogeneous surrounding soft tissue [2].
The complete or partial collapse of the UA during sleep
could lead to apnea, a cessation of airflow for ≥10 s, or
hypopnea, a reduction of the peak airflow by ≥30% from
pre-event baseline if it lasts ≥ 10 s, and is associated with a
≥3% oxygen desaturation [3].

Obstructive sleep apnea (OSA) is characterized by re-
petitive episodes of apnea and/or hypopnea during sleep
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[4]. OSA is a relatively common disorder that can affect
the health of all age groups [5]. Between 9 and 38% of the
general adult population suffer from OSA [5]. As OSA is
still underdiagnosed, these values are believed to underes-
timate the actual numbers [6]. Untreated OSA is associat-
ed with many deficits including excessive daytime sleep-
iness, increased risk of motor vehicle accidents, memory
impairment, and stroke [2, 7]. Untreated moderate/severe
OSA is also associated with increased morbidity and mor-
tality [7].

Currently, diagnosis of OSA is based on the full-night
polysomnography (PSG) assessment, as the gold standard,
and to some extent by home sleep study (HSS) systems.
PSG measures the apnea-hypopnea index (AHI), which re-
ports the average number of apneic events per hour of sleep
[8]. However, full PSG studies are time-consuming, laborious,
expensive, and usually, have a long waiting time. HSS helps
with cost-effectiveness and waiting-time of PSG, yet it re-
mains as an overnight test that still requires considerable re-
sources for reliable outcomes [9]. Therefore, developing an
alternative technology to overcome these difficulties is
momentous.

Tracheal breathing sounds (TBS) are a measure of tra-
cheal wall vibration set into motion by the passage of tur-
bulent airflow from the UA including trachea and pharynx
[10]. Structural and physiological properties of the UA af-
fect the resonance frequency of the UA that is detected by
TBS analysis [11, 12]. It is known that physiological prop-
erties of the UA, its patency, and its resistance change dy-
namically, but with different degrees with respect to the
sleep/wakefulness status (different sleep stages/wakeful-
ness) and OSA severity [13–18]. Accordingly, our team
and a few others around the world are using TBS as a quick,
inexpensive, and reliable technology with comparable out-
comes with that of PSG or HSS for OSA screening [19–23].
However, the changes of TBS from wakefulness to sleep in
relationship to the severity of OSA and whether those
changes have a classification power to identify the moder-
ate and severe OSA from others have not been investigated
adequately that is the goal of this study.

In a study by Yadollahi et al. [23], a fully automatic acous-
tic technology was introduced to estimate AHI during sleep
using pulse oximetry and TBS. The detected apnea-hypopnea
events were highly correlated to those detected using PSG.
Although that study reduced the number of required signals
to only two, however, it was still a full overnight test. In a
study by Hajipour et al. [22], contrarily, a set of TBS charac-
teristics were used to separate OSA individuals from non-
OSA individuals during wakefulness. The results showed an
average area under the receiver operated characteristic curve
(AUC) of 89.9 ± 1.7%. Although the selected features in that
study were correlated to AHI, it was not investigated whether
those features were robust enough to reflect the changes of the

UA during sleep in relation to OSA severity that is one goal of
this study.

On the other hand, according to tube law, maximum air-
flow (Vmax) in collapsible tubes is determined by

Vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where A is the cross-section area of the tube, ρ is the gas
density, and (ΔA/ΔP) is the pharyngeal airway compliance;
a measure of distensibility of the tube. According to Eq. 1,
Vmax has a direct relationship to the cross-section area of the
tube while it is inverse for the tube’s compliance [24]. By
this analogy, the changes in the cross-section area and
compliance/collapsibility of the UA are important factors
in the pathophysiology of OSA [25] and are potential fac-
tors to modify the TBS of OSA compared with that of non-
OSA individuals. If TBS analysis can reveal these
anatomical/physiological characteristics of the UA, it will
be an excellent non-invasive, quick, and cost-effective al-
ternative tool for OSA management, and it can lead to more
appropriate therapeutic decisions [26].

In our previous and relevant study [27], we recorded
TBS of 30 OSA participants during sleep and in two ma-
neuvers of mouth and nasal breathing during wakefulness.
Next, we compared the spectral and higher-order statisti-
cal characteristics of their TBS during stage 2 of sleep and
then during wakefulness. The results showed a significant
difference between the TBS characteristics of these two
OSA groups during ei ther wakefulness or s leep.
However, in that study, we did not investigate the pattern
of changes from wakefulness to sleep in each of the two
groups, nor investigated whether those changes have any
classification power for identifying the severity of OSA.
We hypothesize the changes in acoustic properties of TBS
from wakefulness to sleep are highly correlated with the
severity of OSA; thus, they are useful in OSA screening
and classification, and may reveal the changes in physio-
logical characteristics of the UA (including narrowing,
thickness, and resistance) due to OSA in a detailed but
straightforward manner. Therefore, in this study using a
larger database, our primary goal was to investigate TBS
changes from wakefulness to sleep in individuals with
different levels of OSA severity and to explore whether
these changes are correlated with their OSA severity. We
also assessed the classification power of these acoustic
features to separate the two OSA groups for screening
purposes. To achieve our goal, we analyzed and compared
spectral characteristics of TBS recorded during wakeful-
ness (a combination of mouth and nasal TBS) to those
during sleep. We discuss the physiological interpretation
of our findings and describe their ability to show the UA
characteristic changes regarding OSA.
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2 Methods

2.1 Participants

Sixty individuals referred for PSG assessment at Sleep
Disorder Center of Misericordia Health Center (Winnipeg,
Canada) participated in this study. The Biomedical Research
Ethics Board of the University of Manitoba approved the
study. All participants signed an informed consent before data
collection. We excluded data of 20 participants from the study
due to frequent noises (including vocal and blanket, audible
alarms, and air conditioner noises) or the need of patients for a
titration that the sleep technician disconnected our acoustic
device.

2.2 Sound recording procedure

The TBS during both wakefulness and sleep were collected by
a miniature microphone (Sony ECM-77B) inserted into a
small chamber, allowing 2 mm cone-shaped space with skin.
The chamber was mounted over the suprasternal notch of the
trachea with double-sided adhesive tape. To ensure the micro-
phone would not be misplaced during the night, we used a soft
neckband, which was sealed softly around the patient’s neck
to sustain microphone and chamber in site (Fig. 1). The
sounds were band-pass filtered in the range of (0.05–
5000 Hz), amplified by a Biopac (DA100C) Amplifier, and
digitized at 10240 Hz sampling rate.

TBS during wakefulness was recorded before PSG assess-
ment. We recorded 5 cycles of normal TBS through the nose
with mouth closed, followed by 5 cycles of normal TBS
through the mouth with a nose clip in place. We choose to
record 5 breaths to be a representative of steady-state pattern
of breathing without acceleration/deceleration of respiratory
rate. After wakefulness recording, participants were prepared
for PSG assessment. TBS during sleep were recorded simul-
taneously with the PSG assessment; they were real-time with
the snoring sounds and respiratory events as appearing in the
PSG. TBS segments for analysis were extracted from stable
sleep periods in stage 2, void of snoring sounds or artifacts and

in the supine position (determined using the PSG score sheet).
Using the AHI outcome of the PSG assessment, we grouped
the participants into mild-OSA (AHI < 15, N = 18) and
moderate/severe-OSA (AHI > 15,N = 22) groups. The thresh-
old of AHI = 15 has been traditionally used in many studies to
identify OSA patients who might have increased cardiovascu-
lar or mortality risks and are in need of treatment [7].
Therefore, this threshold could potentially require more focus
and earlier assessment for treatment. Anthropometric informa-
tion of the 40 individuals, whose data were analyzed in this
study, is presented in Table 1.

2.3 Pre-processing and signal analysis

In this study, we did not record the respiratory flow of partic-
ipants; however, to ensure the respiratory phases, all recording
procedures during wakefulness started at the inspiration and
marked by the voice of the experimenter. Using that auditory
marker, the inspiratory/expiratory phases during wakefulness
were separated manually. For the TBS of sleep, however, we
used our semi-manual technique, elaborated in [28], to iden-
tify the inspiratory/expiratory phases of breathing. In this
study, we aimed to compare TBS during wakefulness with
those during sleep. As there are no snoring sounds during
wakefulness, to have a fair comparison between wakefulness
and sleep, we examined all the recorded TBS data by audio
and visual means in the time-and-frequency domain to ex-
clude TBS with snoring sounds and noisy signals (including
artifacts, vocal noises, and swallowing).

The majority of the moderate/severe-OSA participants of
this study snoredmost of the time in the supine position. Since
snoring usually occurs in the inspiration, because the UA col-
lapse typically occurs at the end of expiration [14], the major-
ity of the inspiratory phases of moderate/severe-OSA group
have been eliminated. Therefore, we decided to remove the
inspiratory phases of breathing for all participants to have a
fair comparison between mild and moderate/severe OSA in-
dividuals. Furthermore, since there is no apneic event during
wakefulness for even the moderate/severe OSA individuals
[24], we also excluded sleep data with respiratory apneic
events. Consequently, from the recorded sounds during sleep,
we selected 5 normal (free of any apneic events including flow
limitation), noise- and snore-free expiratory sounds in supine
position and sleep stage 2 for further analysis. Data in stage 2
of sleep was selected because that was the most common (i.e.,
the highest number of individuals’ data) sleep stage in our
dataset. We were also interested only in the supine position
to match with position of data collection during wakefulness.
From data recorded during wakefulness, we also selected 5
noise-free expiratory sounds for comparison with those ex-
tracted from data during sleep.

In this study, similar to our previous research [22], each
selected sound was first passed through a 5th-order

Fig. 1 a The microphone within our custom-made chamber with 2 mm
cone-shaped space with skin. b The microphone and chamber that sealed
around the suprasternal notch of the trachea of patients using neckband
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Butterworth band-pass filter in the range of (75–2500 Hz) to
eliminate the effect of low- and high-frequency noises (includ-
ing ambient noises, the highest amplitude component of the
heartbeats (which is less than 75 Hz [29]), fundamental fre-
quency of the power line (60 Hz in Canada), and muscle
sounds) while keeping the primary frequency component of
the sound. Next, each filtered sound signal was normalized by
its variance envelope (a smoothed version of itself using the
moving average method with 64 sample sequence ~ 6 ms)
[30] to remove its extra fluctuations, and then by its standard
deviation to compensate for plausible different flow rates be-
tween breathing cycles. Then, the logarithm of the variance of
each TBS was calculated to acoustically estimate its respira-
tory flow. Afterward, the 50% duration around the maximum
of the estimated flow signal was considered the stationary
portion of that sound signal [30]. Finally, usingWelch’s meth-
od, the power spectrum density (PSD) of the stationary por-
tion of sound signals was estimated in segments of 20 ms with
50% overlapping windows to successive segments. Figure 2
outlines the abovementioned pre-processing.

As mentioned in Section 2.2, during wakefulness, we re-
corded TBS in two maneuvers of nose and mouth breathing.
During sleep, however, one could be breathing through either
nose or mouth, but without a video recording, we could not
identify nose or mouth breathing. Thus, to have a fair com-
parison of wakefulness and sleep data, for each participant, we
selected 3 breaths from mouth breathing and 2 breaths from
nasal breathing of the wakefulness. Next, we considered the
average of the estimated PSD of these signals and the average
of the estimated PSD of the five TBS recorded during sleep as
the representative data of wakefulness and sleep of each indi-
vidual, respectively.

For feature extraction with the purpose of investigating TBS
variations from wakefulness to sleep, within each OSA groups,
we averaged the PSD signals during wakefulness and sleep and
calculated their standard error (SE). We also assessed the dif-
ference between the average PSD (PSDavg) of TBS during
wakefulness and sleep in two groups of mild (mild-
Difference) and moderate/severe OSA (m/s-Difference). The
regions with no overlap between the mild-Difference and the
m/s-Difference were considered characteristic regions for
extracting features for further statistical investigations. These
regions reflect the frequency bands that the spectral character-
istics of TBS change the most from wakefulness to sleep and
are introduced in the Results section. Similar to our previous
studies during wakefulness [22, 31], we considered the mean of
these areas as characteristic features to be selected for classifi-
cation. TBS features representing changes from wakefulness to
sleep were the mean of the mild-Difference and m/s-Difference
in the ranges mentioned above. TBS features during wakeful-
ness and sleep were the mean of the PSDavg in the pre-
mentioned regions for the two OSA groups during wakefulness
and sleep, respectively. To be clearer, Fig. 3 shows the mild-

Difference and m/s-Difference as well as the PSDavg during
wakefulness and sleep for both mild and moderate/severe
OSA groups. TBS features were extracted from the regions
between the solid lines and the region between the dotted lines.

In addition to studying changes of TBS characteristics from
wakefulness to sleep, we also studied and compared the clas-
sification ability of the TBS features reflecting changes from
wakefulness to sleep (Fig. 3c) with those extracted during
only wakefulness or only sleep (Fig. 3a and b). To perform
classification, we used 10 ensembles of 2-class linear kernel
support vector machine (SVM) classifiers, obtained from
bootstrap samples of our data. Bootstrapping consists of re-
peatedly drawing samples of the same size, with replacement,
from our original dataset. We trained our SVM classifier with
the bootstrap samples. The remaining data (samples that were
not selected in the bootstrapping procedure) were considered
testing data and used to evaluate the performance of the SVM
classifiers. We repeated this procedure 10 times and reported
the average classification results.

2.4 Statistical analysis

Our hypotheses of this study were the spectral characteristics
of TBS change from wakefulness to sleep, and these varia-
tions are different in OSA and non-OSA populations. As we
have measured the TBS characteristics over two time-points
(wakefulness and sleep), also our participants have been
assigned in two groups (mild and moderate/severe OSA), we
applied a multivariate two way mixed analysis of covariance
(mixed ANCOVA) multifactorial statistical test to compare
the within-groups’ changes (from wakefulness to sleep) and
the between-groups’ changes (between mild and moderate/
severe OSA groups), while considering the neck circumfer-
ence (NC) as covariate. We included the NC as covariate in
ANCOVA model to ensure that our TBS features are not just
measuring the differences in NC between the two OSA
groups. A p-value of 0.05 was considered significant. Next,
we used simple effect post hoc analysis with p-value of 0.0064
to determine the effect of sleep/wakefulness status on OSA
severity, and vice versa. The reason for choosing this p-value
is explained in Results Section. Pearson’s correlation was
used to determine the correlations among the TBS features
and AHI. Independent unpaired t-test with p-value of 0.05
was also used to compare the anthropometric information
and the differences of PSDavgof wakefulness and sleep in
mild-OSA and moderate/severe-OSA groups.

3 Results

Table 1 shows the average and standard deviations of the
anthropometric information of the mild and moderate/severe
OSA groups, as well as their basic statistical comparisons.
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There was no significant difference between the two groups in
terms of age, height, and sex. The participants with moderate/
severe-OSA had a significantly higher weight, AHI, body
mass index (BMI), and NC values than did those of mild-
OSA individuals.

To predict OSA and its pathology by breathing sounds
analysis, in this study, we focused on acoustical changes from
wake to sleep. In general, in our studies, we aim to have a
reliable acoustic OSA prediction by having breathing sounds
of a short period of time. From the sleep data, as mentioned in
Methods, we decided to select stage 2 of sleep data. On aver-
age, our participants spent 106.36 min before reaching stage 2
of sleep in supine position; this average time was 114.1 and
98.6 min for mild-OSA and moderate/severe-OSA partici-
pants, respectively. During these times, the participants slept
either on other postural positions or at stage 1 of sleep. Stage 1
data was not selected because the majority of our participants
snored and/or had several episodes of hypopneas. The average
time to reach REM or stage 3 and 4 of sleep was longer than
that of stage 2. It is worth to mention that not all of our par-
ticipants reached REM or deep sleep stages.

Figure 3a and b shows the PSDavg and SE intervals during
wakefulness and sleep for mild and moderate/severe OSA par-
ticipants, respectively. These figures depict clear differences in
low- and high-frequency ranges between PSDavg of TBS record-
ed during wakefulness and sleep and within two OSA groups.
Figure 3c demonstrates the mild-Difference and m/s-Difference,
in addition to their SE intervals. As Fig. 3c shows, among the
regions with no overlap between the two OSA groups, at lower
frequencies (150–280 Hz), themild-Differencewere significant-
ly higher than m/s-Difference, (p-value < 0.03, Table 2).
Contrarily, at higher frequencies (950–1150 Hz), the m/s-
Difference values were significantly higher compared with those
of mild-Difference (p-value < 0.04, Table 2).

Based on the aforementioned observations, we considered
the PSDavg in the low-frequency range of (150–280 Hz) (F1)
and the PSDavg in the high-frequency range of (950–1150 Hz)
(F2) as the two potential features representing the most chang-
es from wakefulness to sleep for further analysis. Since we
compared the changes of F1 and F2 fromwakefulness to sleep
and also between the two OSA groups, we had 8 different
statistical comparisons. Therefore, to satisfy the statistical sig-
nificance of 95% for the overall post hoc tests, the significance
level of the p-value of each post hoc test was considered 1
− (1 − 0.05)1/8 ≅ 0.0064 [32].

The mixed ANCOVA multifactorial test result showed a
highly significant main effect of sleep/wakefulness status (be-
ing asleep or awake) on the TBS features, (p-value < 10−4,
Table 3). This test also showed a significant interaction be-
tween the sleep/wakefulness status and the OSA severity level
of participants (p-value < 2 × 10−2, Table 4).

Our results on the investigation of F1 depict both a highly
significant main effect of sleep/wakefulness status (p-value <
10−4, Table 3) and a significant interaction effect of sleep/
wakefulness status and OSA severity level on this feature (p-
value < 8 ×10−3,Table 4). The simple effect post-hoc analysis
showed a strongly significant decrease in F1 from wakeful-
ness to sleep within the mild group (p-value < 3 × 10−5, Fig.
3a, Tables 2 and 5). A decrease was also observed in
moderate/severe-OSA groups, but it was not significant (p-
value = 0.2, Fig. 3b, Tables 2 and 5).

Our results on the investigation of F2 depict a significant
main effect of sleep/wakefulness status (p-value < 10−3,
Table 3), but no significant interaction effect of sleep/
wakefulness status and OSA severity level was observed (p--
value = 0.6, Table 4). The simple effect post-hoc analysis
showed a marginally significant increase in this feature from
wakefulness to sleep in moderate/severe OSA group (p-value
< 9 ×10−3, Fig. 3b, Tables 2 and 5). Nevertheless, no signifi-
cant change was observed for the mild group (p-value = 0.2,
Fig. 3a, Tables 2 and 5).

Table 6 shows the Pearson correlation coefficients between
the AHI and the spectral TBS features. AHI was correlated
with F1 during wakefulness (− 0.42, p-value < 0.01), with F2
during sleep (0.36, p-value < 0.05) and with the change of F2
from wakefulness to sleep (− 0.39, p-value < 0.05).

Table 7 reports the percentage of the participants that their
F1 and F2 decreased or increased from wakefulness to sleep
within the two OSA groups and for the total participants of
this study. Overall, F1 decreased from wakefulness to sleep in
77.5% of participants, and F2 increased from wakefulness to
sleep in 67.5% of participants.

Table 8 reports the classification results of the SVM clas-
sifiers using TBS features’ changes fromwakefulness to sleep,
TBS features during wakefulness, and TBS features during
sleep. The SVM classifier using the F1 and F2 changes from
wakefulness to sleep (i.e., F1wakefulness-F1sleep, and

Table 1 Anthropometric information’s mean and standard deviations
(SD) and basic statistical comparisons between mild and moderate/severe
obstructive sleep apnea (OSA) groups. The data of moderate/severe-OSA
group was compared with the mild-OSA group with independent sample
t-test and Chi square test. (*) shows p-value < 0.05 that considered sig-
nificant. BMI, body mass index; NC, neck circumference; AHI, apnea-
hypopnea index

Mild-OSA
(N = 18)
Mean ± SD

Moderate/severe-OSA
(N = 22)
Mean ± SD

p-value

Age (year) 41.7 ± 14.4 49.5 ± 11.2 0.07

Weight (kg) 87.5 ± 16.6 99.5 ± 17 0.03*

Sex (male:
female)

14:4 20:2 0.47

Height (cm) 173.5 ± 7.8 174.8 ± 6.5 0.59

BMI (kg/m2) 29.1 ± 5.4 32.6 ± 5.4 0.046*

NC (cm) 40.9 ± 3.7 44.7 ± 2.8 0.002*

AHI 4.1 ± 4.5 60.3 ± 32.5 5.8×10−8*
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F2wakefulness-F2sleep) resulted in 87.5±4.5% accuracy with the
sensitivity (specificity) of 87.5 ±6.9% (87.5 ±13%). On the
other hand, the SVM classifier using F1 and F2 extracted from
wakefulness resulted in 78.8±4.2% accuracy with the sensi-
tivity (specificity) of 85.7 ±1.7% (70.8 ±6.3%), and using F1
and F2 extracted from sleep data resulted in 70.1 ±6.5% ac-
curacy with the sensitivity (specificity) of 75.7 ±16.6%
(63.3 ±8.5%).

4 Discussion

TBS are affected by structural and physiological properties of
the UA and contain rich information of the airway structure
[11]. We hypothesize the TBS changes from wakefulness to
sleep are highly correlated to the severity of OSA; thus, they
may reveal UA structural and physiological characteristics
and their variations due to OSA. Thus, they may be used as
a screening/diagnostic tool to identify the severity of OSA.
While there have been many investigations to examine TBS
concerning OSA including our team’s previous studies [22,
23, 31, 33, 34], to the best of our knowledge, this study is the
first to explore the potential role of TBS analysis in assessing

UA changes from wakefulness to sleep with respect to OSA
and its severity.

The findings of our TBS investigations manifested a sig-
nificant main effect of sleep/wakefulness status on the TBS
spectral characteristics and a significant interaction between
the sleep/wakefulness conditions and the OSA severity level
of participants. These results imply that the TBS spectral fea-
tures change significantly, when one sleeps, and these changes
are clearly different within mild and moderate/severe OSA
groups. In addition, our results have shown that these spectral
features are correlated to the OSA severity level of the partic-
ipants (Table 6).

One of this study’s objectives was to investigate whether
TBS characteristics have the potential to reveal the physiolog-
ical and structural changes of UA regarding OSA and its se-
verity. Imaging studies during wakefulness have reported in-
dividuals with OSA compared with non-OSA individuals
have thicker velum, thicker pharyngeal wall, a reduced pha-
ryngeal cross-sectional area, and a narrower pharyngeal lumen
[15, 16]. According to the Hagen-Poiseuille’s law, a narrower
UA implies more resistance to airflow. Higher resistance ab-
sorbs more energy, indicating lower average PSD at low fre-
quencies (F1) for the generated TBS of the moderate/severe-
OSA group compared with that of the mild-OSA group during

Fig. 2 Pre-processing and signal analysis framework. Wakefulness TBS
were recorded in two maneuvers of mouth and nasal breathing. The sleep

data were recorded in > 6 h of sleep. The sleep file in this figure is a
random 3 min of sleep out of the total sleep time of a participant
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wakefulness. This phenomenon can be seen clearly by com-
paring the wakefulness PSDavg of mild and moderate/severe
OSA groups in Fig. 3a and b. The predominant energy absor-
bency at low frequencies is related to the higher net parallel
impedance of the UA at lower frequencies. According to the
cascade T circuits modeling of UA proposed in the study by
Harper et al. [35], the net impedance of the UA is due to the
UA wall tissues’ capacitance effect in parallel to the UA re-
sistance. These findings might also conclude a thicker UA for
moderate/severe OSA group compared with the mild-OSA
group during wakefulness. This inference is based on findings
of an acoustic study that shows the low-frequency sound

absorbency of materials is directly related to the materials’
thickness [36]. Therefore, the lower the F1 of moderate/
severe OSA group during wakefulness (Table 2), the higher
their UA sound absorbency, and therefore the thicker their
UA.

On the other hand, studies that investigated UA during
sleep have been shown that the sleep would lead to a decrease
in the airway caliber and an increase in the UA resistance [12].
As we mentioned earlier, higher resistance absorbs more en-
ergy at lower frequencies. Therefore, we expect a reduction in
the F1 of both mild and moderate/severe OSA groups from
wakefulness to sleep, as seen in (Fig. 3a and b). As Fig. 3c
shows, the intensity of change from wakefulness to sleep is
different in the two OSA groups. In moderate/severe-OSA
group, the changes of the low-frequency PSD from wakeful-
ness to sleep were much less pronounced compared with that
of the mild-OSA group. We speculate this might be related to
the narrower UA of moderate/severe OSA groups compared
with that of mild group during wakefulness [15, 16].

Moreover, it has been shown that the UA collapse during
sleep does not happen in the entire pharynx, but it is non-
homogeneous and may narrow regionally at multiple anatom-
ic locations with various degrees [16]. Tortuosity and flow

Table 2 The average of the spectral features in association with their
standard deviations (std) for the mild and moderate/severe obstructive
sleep apnea (OSA) groups. PSDavg: average power spectra; F1: PSDavg

in the low-frequency range of (150–280 Hz); F2: PSDavg in the high-
frequency range of (950–1150 Hz)

Features (watt) Mild
OSA ± std

Moderate/severe
OSA ± std

Differences of F1 of wakefulness
and sleep

3.1±0.65 0.97±0.72

Differences of F2 of wakefulness
and sleep

− 0.25±0.2 − 1.1±0.36

F1 during wakefulness 10.8±0.48 8.6±0.6

F1 during sleep 7.7±0.49 7.6±0.6

F2 during wakefulness 0.55±0.13 0.54±0.06

F2 during sleep 0.8±0.19 1.7±0.36

Table 3 The score of the main effect of sleep/wakefulness status over
features extracted from average power spectra (PSDavg), using tracheal
breathing sounds (TBS) during sleep and combination of mouth and nasal
TBS during wakefulness. The neck circumference considered covariate
variable in the Mixed ANCOVA test. (*) shows p-value < 0.05 that con-
sidered significant. F1: the PSDavg in the low-frequency range of (150–
280 Hz); F2: the PSDavg in the high-frequency range of (950–1150 Hz)

Main effect (p-value)

Sleep/wakefulness status on TBS features F (2, 36) = 11.7, (<10−4) *

Sleep/wakefulness status on F1 F (1, 37) = 18.6,(<10−4) *

Sleep/wakefulness status on F2 F (1, 37) = 11.9,(<10−3) *

Fig. 3 Average power spectra (PSDavg) of the combination of mouth and
nasal tracheal breathing sounds (TBS) during wakefulness and sleep with
their standard error intervals (shadows). a Averaged among participants
of mild-OSA group during wakefulness (green) and sleep (black), b av-
eraged among participants of moderate/severe-OSA group during wake-
fulness (green) and sleep (black), c difference of the PSDavg during wake-
fulness and sleep for mild-OSA (blue) and moderate/severe-OSA (red)
groups. The areas between solid lines and dotted lines show the regions
where the features were extracted
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resistivity are reasons for a drop of high-frequency sound ab-
sorbency [36], indicating an increase in the energy. Therefore,
we expect to see an increase in high-frequency power (F2) of
moderate/severe participants from wakefulness to sleep, as
seen in Fig. 3b. Another reason for observing a higher F2
during sleep and a marginally significant increase of F2 from
wakefulness to sleep for moderate/severe OSA group com-
pared with those of mild-OSA is the increased stiffness of
their UA [37]. Stiffness effect is reflected at higher frequencies
as it increases the wave velocity [38]. Interestingly, this higher
stiffness of the UA of the moderate/severe-OSA group shows
itself more during sleep than wakefulness (Fig. 3b); it is in

keeping with the rational expectation that as the airway caliber
decreases during sleep, its stiffness is increased [12].

It is worth mentioning that the findings of the present study
are congruent with our previous study results using different
datasets [22]. In that study, we used TBS data of many more
participants than this current study; data were recorded only
during wakefulness, and we considered 80% of data for train-
ing and 20% of data as blind testing for evaluation. Using the
training data, we considered the non-overlapped regions be-
tween the averaged PSD of the mild and moderate/severe
OSA participants as potential areas for feature extraction. To
eliminate the bias, we repeated this procedure 10 times and
selected the common non-overlapped regions between various
training sets. The non-overlapped regions of that study were
common with the selected regions of this current study. Thus,
the findings of that study, congruent with results of this current
study, indicate a lower average power at lower frequencies
and higher average power at higher frequencies for
moderate/severe OSA individuals during wakefulness com-
pared with those of non-OSA.

TBS power spectra do have variability from person to per-
son. We speculate PSD analysis of the TBS and how its pat-
tern changes (low versus high frequencies) from wakefulness
to sleep may be representative of the shape of the individual’s
velopharyngeal narrowing. For example, in a study by
Finkelstein et al. [14], it was shown that the majority (85%)

Table 4 The score of the interaction effect of sleep/wakefulness status
and OSA severity level over features extracted from average power spec-
tra (PSDavg), using tracheal breathing sounds (TBS) during sleep and
combination of mouth and nasal TBS during wakefulness. The neck
circumference considered covariate variable in theMixed ANCOVA test.
(*) shows p-value < 0.05 that considered significant. F1: the PSDavg in the
low-frequency range of (150–280 Hz); F2: the PSDavg in the high-
frequency range of (950–1150 Hz)

Interaction effect (p-value)

Sleep/wakefulness status and OSA
severity level

F (2, 36) = 4.7, (<2 × 10−2)*

Sleep/wakefulness status and OSA
severity level for F1

F (1, 37) = 7.9,(<8 × 10−3)*

Sleep/wakefulness status and OSA
severity level for F2

F (1, 37) = 0.2(<0.6)

Table 5 The p-values of the simple effect post-hoc analysis for features
extracted from average power spectra (PSDavg), using breathing sounds
during sleep and combination of mouth and nasal breathing sounds dur-
ing wakefulness. The neck circumference considered covariate variable in
the Mixed ANCOVA test. (*) shows p-value < 0.0064 that considered
significant. F1: the PSDavg in the low-frequency range of (150–280 Hz);
F2: the PSDavg in the high-frequency range of (950–1150 Hz)

The simple effect post hoc
analysis p-value

Change of F1 from wakefulness to sleep in
mild group

<3 × 10−5*

Change of F1 from wakefulness to sleep in
moderate/severe group

>0.0064

Change of F2 from wakefulness to sleep in
mild group

>0.0064

Change of F2 from wakefulness to sleep in
moderate/severe group

<9 × 10−3

F1 during wakefulness between mild and
moderate/severe groups

< 0.07

F1 during sleep between mild and
moderate/severe groups

>0.0064

F2 during wakefulness between mild and
moderate/severe groups

>0.0064

F2 during sleep between mild and
moderate/severe groups

>0.0064

Table 6 Pearson correlation between the AHI and features extracted
from the average power spectra (PSDavg), using breathing sounds
during sleep and combination of mouth and nasal breathing sounds
during wakefulness. r is the correlation coefficient. (*) shows p-value <
0.05 that considered significant. F1: the PSDavg in the low-frequency
range of (150–280 Hz); F2: the PSDavg in the high-frequency range of
(950–1150 Hz)

Features r (p-value)

F1 during wakefulness −0.42(<0.01) *
F1 during sleep −0.29(>0.05)
F2 during wakefulness −0.09(>0.05)
F2 during sleep 0.36(<0.05) *

Change of F1 from wakefulness to sleep −0.12(>0.05)
Change of F2 from wakefulness to sleep −0.39 (<0.05) *

Table 7 Number and percentage (%) of mild-OSA, moderate/severe-
OSA, and overall participants that their spectral characteristics decreased/
increased fromwakefulness to sleep. F1: the PSDavg in the low-frequency
range of (150–280 Hz); F2: the PSDavg in the high-frequency range of
(950–1150 Hz)

Decrease in F1 (%) Increase in F2 (%)

Mild-OSA (n = 18) 16 (89.9%) 12 (66.7%)

Moderate/severe-OSA (n = 22) 15 (68.2%) 15 (68.2%)

Overall (n = 40) 31 (77.5%) 27 (67.5%)
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of the OSA participants had a predominantly velopharyngeal
narrowing, while that narrowing was observed only in 12.5%
of the control group. Narrowing of the pharyngeal area results
in higher compliance leading to more collapsibility in the
OSA population. In [14], it was also found that the shape of
the narrowed airway in OSA subjects was predominantly
bottle-shaped due to the increase in dilator-muscle activities
that work on maintaining airway patency during wakefulness.
That finding suggests regional stiffening and more compli-
ance in the UA of the OSA group. Accordingly, the UA of
OSA individuals may show both more stiffness and compli-
ance compared with non-OSA individuals. Higher compli-
ance is represented by a decrease in F1 (low-frequencies
decreased power) from wakefulness to sleep that was ob-
served in 89.9% of mild and 68.2% of moderate/severe-
OSA (Table 7, Fig. 3). Higher stiffness in the UA due to
narrowing is represented by an increase in F2 (high-
frequency increased power) from wakefulness to sleep that
was observed in 66.7% of mild and 68.2% of moderate/
severe OSA (Table 7, Fig. 3). To prove this directly though,
we will need simultaneous recording of TBS with UA imag-
ing and pressure measurements.

In the classification point of view, we used an ensemble of
linear kernel SVM classifiers to classify the participants as
either mild or moderate/severe OSA (Table 8). The classifica-
tion results of these classifiers over F1wakefulness-F1sleep and
F2wakefulness-F2sleep resulted in the average accuracy of
87.5 ±4.5%. This classification result was higher than the
average accuracy associated to the SVM classifiers over F1
and F2 during only wakefulness (78.8 ±4.2%) and only sleep
(70.1 ±6.5%). These findings indicate the superiority of inves-
tigating the TBS changes from wakefulness to sleep rather
than only sleep or wakefulness for OSA screening and differ-
entiating between the two OSA groups. According to the men-
tioned points, one reason for the better classification results of
the features reflecting changes from wake to sleep is the in-
creased stiffness and thickness of the UA of moderate/severe-
OSA group fromwakefulness to sleep compared with those of

mild group; such increased stiffness and thickness manifest
themselves in the acoustical properties of TBS more signifi-
cantly. The selected features of this study are following the
features of our previous study during wakefulness [22]; there-
fore, confirm the robustness of those characteristics for OSA
screening during wakefulness. In addition, it should be note
that the sleep data in our study requires only a few breaths
during sleep. Therefore, even with a short period of sleep, our
proposed TBS analysis during both wakefulness and sleep can
be useful for differentiating the two OSA severity groups ac-
curately and reliably; thus, reducing the need for the entire
night sleep study.

The results of this study also showed a significantly higher
weight, BMI, and NC for the moderate/severe-OSA group
compared with those of the mild-OSA group (Table 1).
These observations are in accordance with the studies that
suggest OSA might be a partial indication of the effect of
general processes like increase in BMI on the UA [15].
These findings support our team’s previous study that used
the anthropometric information as characteristic features for
OSA screening during wakefulness, and achieved the test ac-
curacy of more than 76% [31].

Lastly, in this study, we used data of the subjects who were
referred for PSG assessment in a hospital. Therefore, it may be
thought that the findings presented here may not be reproduc-
ible at other hospitals/institutions or homes with different level
of ambient noise compared with the sleep labs. However, as we
used a firm preprocessing step to eliminate the effect of noises
and artifacts, the different noise level would not be a limitation
factor; hence, the result of this study could be generalizable in
other sleep lab environments and home sleep studies.

4.1 Limitations of the study

Themain limitation of this study is the lack of a direct measure
of the UA collapsibility of the study participants. Therefore,
we compared our results with the general finding of the imag-
ing studies. Another limitation of this study was related to
investigating the TBS in only stage 2 of sleep. It was because
not all of our study participants had enough data in other sleep
stages that were also in supine position. Furthermore, we only
had high-quality sounds recorded for a few hours and not the
entire night data. In future studies, we will investigate TBS in
various sleep stages in relation to OSA severity. It would also
be interesting to analyze the transition period of wakefulness
to sleep (stage 1) as that may show the dynamic of the UA
changes better that is a goal of our future studies. Another
limitation is related to the identification of mouth-nose breath-
ing during sleep. It would be beneficial to record the respira-
tory flow of individuals using a nasal cannula to help in auto-
matic mouth-nose breathing identification. It is true that nasal
cannula does not register mouth breathing and it may look like
an apnea episode; however, it is possible to distinguish mouth

Table 8 The classification results of the SVM classifiers over the
tracheal breathing sounds (TBS) features using TBS during sleep, and
the combination of mouth and nasal TBS during wakefulness. From
wakefulness to sleep features are the difference between F1 during wake-
fulness and sleep and the difference between F2 during wakefulness and
sleep. In the wakefulness feature are F1 and F2 during wakefulness. In the
sleep feature are F1 and F2 during sleep. F1: the PSDavg in the low-
frequency range of (150–280 Hz); F2: the PSDavg in the high-frequency
range of (950–1150 Hz)

Specificity (%) Sensitivity (%) Accuracy (%)

From wakefulness
to sleep

87.5±13 87.5±6.9 87.5 ±4.5

Wakefulness 70.8±6.3 85.7±1.7 78.8 ± 4.2

Sleep 63.3±8.5 75.7±16.6 70.1± 6.5
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breathing from apnea mouth-breathing by sound analysis. The
other limitation of the study is the limited number of partici-
pants. With more participants, it would be desirable to inves-
tigate the potential of TBS analysis to differentiate severe and
moderate groups of OSA.

5 Conclusion

In this study, we investigated the application of spectral char-
acteristics of TBS to reveal the pathophysiology of the UA
and their change due to OSA.We also studied the relationship
of the changes of these characteristics in correlation with the
severity of OSA. Our results show significant differences in
spectral characteristics of TBS between the mild- and
moderate/severe-OSA groups during wakefulness, sleep, and
from wakefulness to sleep; congruently indicative of changes
in UA thickness and regional collapsibility. Consequently,
spectral characteristics of the high sampling rate TBS during
wakefulness, sleep, and their changes from wakefulness to
sleep have potential to reveal the pathophysiology of the UA
in relation to OSA. The findings of this study are especially
useful to find the TBS characteristics that indirectly and non-
invasively reveal the structural changes of the UA in relation
to OSA. They are also beneficial to enhance the current OSA
diagnosis methods to stratify the severity of OSA patients in a
non-laborious, non-time-consuming, and less expensive man-
ner using a short period of sleep instead of full overnight sleep
study. From sleep data, we only considered a few normal
breathing sounds at stage 2 of sleep. Since stage 2 is among
the first sleep stages to reach when one sleeps, the proposed
technology does not have to be run overnight; it can be during
any short nap during daytime as well. Running a short-time
sleep study during daytime will reduce healthcare cost signif-
icantly by reducing the need to expensive full overnight PSG
study. Moreover, having a short sleep study during daytime is
much more convenient for people, which is particularly im-
portant for dementia population that are usually reluctant to
sleep the night in an unfamiliar environment away from their
spouse/caregiver. Overall, the proposed technology will assist
the sleep clinicians in the appropriate therapeutic decisions
and focusing on the investment of resources to optimize com-
pliance to treatment, particularly in the moderate/severe-OSA
group. Further studies in larger sample size are needed to
assess the efficacy of adding our proposed TBS analysis in
diagnostic and therapeutic tools of sleep study centers.
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