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Abstract
In this study, we propose a computational characterization technique for obtaining the material properties of axons and extra-
cellular matrix (ECM) in human brain white matter. To account for the dynamic behavior of the brain tissue, data from time-
dependent relaxation tests of human brain white matter in different strain rates are extracted and formulated by a visco-
hyperelastic constitutive model consisting of the Ogden hyperelastic model and the Prony series expansion. Through
micromechanical finite element simulation, a derivative-free optimization framework designed to minimize the difference
between the numerical and experimental data is used to identify the material properties of the axons and ECM. The Prony series
expansion parameters of axons and ECM are found to be highly affected by the Prony series expansion coefficients of the brain
white matter. The optimal parameters of axons and ECM are verified through micromechanical simulation by comparing the
averaged numerical response with that of the experimental data. Moreover, the initial shear modulus and the reduced shear
modulus of the axons are found for different strain rates of 0.0001, 0.01, and 1 s−1. Consequently, first- and second-order
regressions are used to find relations for the prediction of the shear modulus at the intermediate strain rates.
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1 Introduction

Traumatic brain injury (TBI) is a common pathology and a
major health problem worldwide. Each year, an average of 1.4
million cases of TBI are reported in the USA [1]. TBI may
happen due to the sudden movement of the head, impact,
shock waves due to a blast, and generally any mechanical load
applied to the head. State of the art research suggests that the
primary reason for TBI is the deformation and mechanical
strain happening in the brain [2]. Common symptoms associ-
ated with TBI include dizziness, headaches, and loss of mem-
ory which studies have shown that diffuse axonal injury (DAI)
is its primary cause [3]. DAI which is characterized by the
formation of contusions and lesions in the brain white matter
happens due to the shear deformation of axons in brain white

matter. Corpus callosum and corona radiata are parts of the
brain white matter which are known to be commonly affected
by the DAI [4]. Understanding the extent of DAI severity and
its mechanism can be helpful in preventing such a pathology.

Due to the infeasibility and risks associated with experi-
mental tests, computational techniques are suitable procedures
for the simulation of the incidents leading to TBI. In this
respect, different scenarios such as coup and contrecoup inju-
ries in impact-induced TBIs [5, 6], ballistic impacts [7–9], and
blast-induced injury [10–12] have been simulated through nu-
merical modeling to find the stress and strain distribution of
the brain at the moment of the incident. Different factors and
parameters lend help to make those simulations more accurate
among which, geometrical model exactness, inclusion of dif-
ferent organs of the head and brain in the model, and choice of
material properties can be mentioned. As such, extensive ef-
forts have beenmade to characterize the brain tissue properties
and biomedical materials in general [13–18]. Brain tissue is an
ultra-soft, strain rate sensitive material which shows a nonlin-
ear behavior under loading. Hyperelastic models have been
used in numerous studies to model such a behavior. Mihai
et al. [19] introduced several hyperelastic models for brain
tissue modeling. They focused on development of an
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appropriate strain energy function that can predict behavior of
human brain tissue in mixed loadings of shear, compression,
and tension. They found that Ogden model provides a better
solution compared to other hyperelastic models such as
Mooney-Rivlin, Neo-Hookean, Gent, and Fung in the case
of multiaxial loading. Budday et al. [20] tested the human
brain tissue in tension, compression, and shear and the me-
chanical response of the tissue was fitted with several
hyperelastic constitutive models. They found that the material
property parameters for a specific loading mode cannot be
used for other loading modes. In order to obtain one set of
material property parameters to be used for general loading
cases, they calibrated the material properties for being used in
all the three mentioned loading modes. They also found that
the Ogden model outperforms other hyperelastic models in
describing the mechanical behavior of brain in all three load-
ing modes by one set of parameters. Another category of
commonly used technique for brain tissue characterization is
the indentation test. Feng et al. and Qiu et al. [21, 22] used this
test for characterization of injured brain tissue using elastic
and viscoelastic constitutive models respectively. Budday
et al. [23] performed long-range and short-range flat punch
indentation tests on different parts of the bovine brain tissue.
They found out that the white matter was approximately 40%
stiffer compared to gray matter. Feng et al. [24] used inverse
finite element modeling in conjunction with experimental
asymmetrical indentation tests to find the hyperelastic trans-
versely isotropic parameters of the porcine brain white matter
under large strain deformation. Moreover, by performing the
indentation tests parallel and perpendicular to the brain axonal
fiber direction, the orientational dependency of the material
parameters were investigated as well.

The study of TBI is usually associated with evaluating the
dynamic response of the brain. Brain as a soft material shows a
time-dependent behavior where hyperelastic models are not
able to capture it. The time-varying stiffness of the solids and
specifically soft materials are referred to as viscosity and should
be addressed in studying the dynamic behavior of the brain.
Hosseini-Farid et al. [25] investigated the dynamic response
of brain tissue by measuring the instantaneous and equilibrium
response of the brain tissue in different strain rates. The instan-
taneous response was calculated using quasi-linear viscoelas-
ticity theory and the equilibrium response was measured
through equilibrium stress evaluation. Rashid et al. [26] per-
formed relaxation compression tests on brain in different strain
rates with the strain values of 0.3 and characterized its response
by using hyper-viscoelastic model. The Ogden-based hyper-
viscoelastic model which its relaxation time-dependent part is
based on Prony series expansion was used for this purpose. The
strain energy function was derived in the form of convolution
integral. Hyper-viscoelastic models have also been proposed
for describing the behavior of other soft biological tissues such
as ligaments [27].

Micromechanical analysis has been used to find the me-
chanical response of the brain white matter and its constitu-
ents. The studies in this area were inspired by the
micromechanical study of composite materials [28, 29].
Abolfathi et al. [30] found the linear anisotropic properties
of brain white matter through micromechanical analysis. A
viscoelastic constitutive model which is appropriate for small
deformation was used with Prony series expansion to account
for time-dependent properties of both axons and extracellular
matrix (ECM) as the constituents of the brain white matter. To
obtain all the anisotropic coefficients of the linear viscoelastic
model, six different simulations including three uniaxial ten-
sile loading in three different direction and three simple shear
tests were performed by the means of finite element simula-
tions. In their study, the material properties of axons and ECM
were obtained from another published paper [31]. Moreover,
the effects of axons undulation and volume fraction on the
overall properties of brainstem were studied as well.
Nonlinear modeling of brain white matter was the target of a
study in the paper of Karami et al. [32]. Using the mechanical
properties of axons and ECM from [33], the mechanical re-
sponse of brain white matter was found for large deformation
cases by the assumption of isotropic behavior of brain white
matter.

The aforementioned studies in the area of the
micromechanical analysis were aimed at finding the mechan-
ical response of the homogenous brain white matter by know-
ing the mechanical properties of heterogeneous representative
volume element (RVE) consisted of the constituents.
However, the availability of the experimental data to calculate
the properties of micro-level constituents is a point of chal-
lenge since experimental techniques such as nano-indentation
[34] and atomic force microscopy (AFM) [35] can be quite
complex and laborious in terms of design of experiments and
sample preparation for soft biological tissues. On the contrary,
the macro-level tests such as uniaxial loading tests can be done
with much lower cost and with higher availability and acces-
sibility. Therefore, several studies were aimed at finding the
mechanical properties of brain white matter micro-level con-
stituents (including axons and ECM) by using the experimen-
tal data from macro-level tests performed on brain white mat-
ter. Javid et al. [36] tried to find the mechanical properties of
axons and ECM of the porcine brainstem through relaxation
tensile tests for up to 5% of deformation. The viscoelastic
constitutive model was used for both axons and ECM in
micromechanical simulations. Applying the averaging tech-
nique for homogenization, they minimized the difference be-
tween micromechanical simulations and experimental results
through conducting iterative finite element simulations.
Moreover, the effect of different types of RVE including hex-
agonal, square, and randomly distributed were studied as well.
The obtained results showed good agreements between
micromechanical simulation and experimental data. While
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the viscoelastic model can only be used in the cases associated
with small deformation, it still captures the time-dependent
response of the brain. Yousefsani et al. [37] used an embedded
element technique to perform transverse-plane hyperelastic
micromechanical simulation of brain white matter. The RVE
used in their study was formed by probabilistic distribution of
axons embedded in ECM. Directional dependency was ob-
served in transverse plane loading mode.

2 Materials and methods

2.1 Material constitutive modeling

The Ogden hyperelastic model has been extensively used for
describing the behavior of rubber-like materials and soft tis-
sues including brain. The Ogden strain energy function can be
written as the following:

WOgden ¼ ∑
N

i¼1

2μ0i

α2
i

λαi
1 þ λαi

2 þ λαi
3 −3

� � ð1Þ

where λ1, λ2, and λ3 denote the principal stretch values, μ0i
and αi are the Ogden model parameters with the μ0 known as
the initial shear modulus, andN is the number of terms used in
the Ogden model. As expected, increasing the number of
terms N in the Ogden model will consequently increase the
accuracy of curve fitting to the experimental data. However,
as demonstrated in various studies, using one term will be
sufficient most of the time, which is the case in our study as
well.

Relaxation test is one of the most common types of tests
used for characterizing the time-dependent behavior of soft
materials [38–40]. Soft materials such as brain exhibit time-
varying stiffness when being held under specific deformation
for a period of time. As brain is subjected to constant defor-
mation, the induced stress value drops over time. As a result, a
time-dependent model is required to express such a behavior.
Miller et al. [41] proposed the following strain energy function
for soft biological tissues. While this strain energy function
was originally used to describe the behavior of brain tissue in
tension, there is no inherent loading mode specific constraint
involved and it has been utilized successfully for the compres-
sion mode as well [26, 42].

W ¼ 2

α2
∫
t

0
μ t−τð Þ d

dτ
λα
1 þ λα

2 þ λα
3−3

� �� �
dτ ð2Þ

As stated in Eq. (2), convolution integral is employed for
formulation of the strain energy function. The term μ which
represents the relaxed shear modulus, is calculated based on
the following equation:

μ ¼ μ0 1− ∑
n

i¼1
gi
�
1−exp −

t
τ i

� �� �
ð3Þ

where μ0 is the instantaneous shear modulus, gi is the relaxa-
tion coefficient, t denotes the time, and τi is the characteristic
time coefficient. n is the number of terms utilized in the Prony
series expansion and usually two terms (n = 2) can provide a
good approximation.

2.2 Micromechanical modeling

Micromechanical modeling studies the materials at the scale
of their constituents by using a heterogeneous RVE, hence,
providing an insight into stress and strain distribution at the
micro-level. The key idea behind micromechanical modeling
is to find the heterogeneous RVE that can represent the whole
structure of macro-level homogenousmaterial. The concept of
the micromechanical modeling has been tested in the analysis
of composite materials [43–47]. Brain white matter has a fi-
brous structure with the axons highly oriented and dispersed
in the ECM material. The axons stem surrounded by myelin,
also known as nerve fibers, are highly oriented. Therefore,
attempts have been made to model the brain white matter as
a fibrous composite structure. From one point of view, the
research in this area can be divided into two separate catego-
ries. One contains the studies that are aimed at finding the
material properties of brain white matter when the properties
of its constituents are known [30, 32]. Second category in-
cludes those studies conducted to find properties of brain
white matter constituents from known response and mechan-
ical properties of the brain white matter [36, 48] through mac-
ro tests.

The first step toward micromechanical analysis is to
identify the appropriate RVE. This is usually done
through microscopic images of materials, which shows
the micro-level structure, the volume fraction of each con-
stituent, and geometrical shape of them. The scanning
electron microscopy (SEM) images of porcine brainstem
[36] and histology slide of guinea pig optic nerve [33] can
be seen in Fig. 1 a and b. These figures can be used for
estimating the volume fraction of axons and verifying
their orientation in the matrix. As it can be seen in
Fig. 1a, the axons vary in diameter size, and show random
distribution. While it seems that the most realistic repre-
sentation of RVE can be created by considering this ran-
domness, different independent studies [36, 48] confirmed
that simplified representation of RVE with uniform diam-
eter of axons and organized dispersion structure can lead
to results just as accurate as the more complicated ran-
domly dispersed RVE. Moreover, using random RVE has
its own challenges, since the meshing in RVE must be
completely symmetrical with respect to all coordinate
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axis, which would be almost impossible for random
RVEs. In this study, we use the square RVE as shown
in Fig. 1c. To make representation of a whole brain white
matter possible, certain equations need to be applied on
the meshed RVE. These equations that ensure the repeti-
tion of RVE in all directions are known as the periodic
boundary conditions (PBC) and must be applied as con-
straints to the meshed RVE in the finite element simula-
tions, for which the readers are referred to [14, 28].

As mentioned, applying PBC makes RVE to repeat and
extend itself in all directions, thus the RVE represents a
small point in macro-sized material and this is the key
idea behind the micromechanical analysis. The RVE can
then be used in different finite element simulations of
interest including relaxation test which is used in this
study. For homogenization purposes, the macro-level
stress and strain will be found by volume averaging of
the micro-level stress and strain fields over the RVE,
based on the following equations:

σ ¼ 1

V
∑
m

i¼1
σivi ε ¼ 1

V
∑
m

i¼1
εivi ð4Þ

where σi, εi, and vi denote the stress, strain, and volume of
the ith element of the meshed RVE respectively, and V the
is total volume of the RVE.

2.3 A framework for the simulation-based
optimization

Time-dependent characterization of human brain white matter
has been performed for different parts of the brain [49].
However, there is no similar experimental data for dynamic
behavior of micro-level constituents of brain white matter. By
the use of derivative-free optimization methods in the context
of micromechanical finite element modeling, we aim to find
the visco-hyperelastic properties of axons and ECM. The key
idea is the fact that if right material properties are chosen for
those constituents, the overall response of brain white matter
obtained from micromechanical finite element modeling will
be close to that of the experimental relaxation tests. To this
end, an iterative optimization framework must be defined
which changes the material properties of constituents until
the desired results will be obtained. The schematic represen-
tation of the optimization framework is shown in Fig. 2.

In Fig. 2, J(p) is the objective (cost) function which is
dependent to the parameters of the visco-hyperelastic model
including μ, gi, and τi introduced in Eq. (3). These parameters
must be separately assigned to both constituents of the brain
white matter. Therefore, the number of parameters in the con-
stitutive model doubles up in the objective function to account
for the material properties of both axon and ECM.

Fig. 1 The overview of tissues with nerve fibers structure. a Porcine brain
stem scanning electron microscopy (SEM) showing dispersion of axons
in ECM [36]. b Immunohistochemistry of the guinea pig optic nerve [33].

c The square RVE for representing the patterned structure of brain white
matter and other tissues with oriented dispersion of axons and nerve fibers
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Consequently, the following cost function is defined to per-
form the optimization procedure in the context of iterative
finite element simulation.

J pð Þ ¼ ∫
t2¼500

t1¼0
σFE p; tð Þ−σexp tð Þ	 
2dt ð5Þ

in which J denotes the cost function, σFE represents the aver-
aged st ress values obta ined from the numerica l
micromechanical finite element simulation, t is the time, p
represents the independent variables on which the cost func-
tion (and hence, numerical simulated stress) is dependent on
(listed in Table 1), and σexp denotes the experimental stress
corresponding to the data presented in Figs. 3 and 4 in the
subsequent section of this paper.

As listed in Table 1, total number of 12 variables control
the finite element obtained stress values which consequently,
the cost function will be dependent on. Moreover, the follow-
ing constraints must be held between the variables for both
axons and ECM.

g1 þ g2 < 1 ð6Þ
τ1−τ2 < 0 ð7Þ

Different derivative-free optimization algorithms can be
used for the proposed optimization framework in Fig. 2
[50–52]. In this study, we will use the particle swarm optimi-
zation (PSO) algorithm. The PSO algorithm is widely used for
black box optimization problems where the function of inter-
est is not explicitly stated in terms of its independent variable
or when the function is time-consuming to be evaluated. PSO
algorithm was originally introduced by Kennedy and
Eberehart [53]. In PSO, several particles are randomly placed

in the search domain of the objective function. The search
domain is n-dimensional space where n denotes the number
of variables associated with the objective function. For the
initial iteration, each particle will be randomly located in the
search space and objective function will be evaluated at those
points. In the next iterations, the particles will displace them-
selves in the search domain by using the information from the
history of their own and the communicative information ac-
quired from other particles in the swarm. This process con-
tinues until the whole swarm is converged, i.e., gets very close
to a specific point in the search domain. This point is the
optimum solution to the objective function. The swarm parti-
cles update their trajectory based on the following equations:

v!
kþ1

i ¼ v!
k

i þ c1r1 x!
k

*i− x!
k

i

� �
þ c2r2 x!

k

g− x!
k

i

� �
ð8Þ

x!
kþ1

i ¼ x!
k

i þ vkþ1
i ð9Þ

In the above equations, k denotes the iteration number, v!k
i

represents the velocity of the ith particle, x!k
g is the global best

Fig. 2 The flowchart of the optimization framework for finding the parameters of brain white matter constituents

Table 1 List of the
arguments p in the cost
function defined in Eq.
(5) which correspond to
the constitutive model
described in Eqs. (1) to
(3)

Axon ECM

μ0, α, g1, g2, τ1, τ2 μ0, α, g1, g2, τ1, τ2
Fig. 3 The ramp part of the relaxation test at different strain rates of
0.0001, 0.01, and 1 s−1 obtained from [42]. As can be seen, the stiffness
of the tissue increases with the increase in the strain rate value
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location experienced by the whole swarm in the kth iteration,

x!k
*i denotes the best location experienced by the ith particle

up to the kth iteration, r1 and r2 are uniform random numbers,
and finally c1 and c2 are constant coefficients which can be
adjusted from problem to problem. Commonly, c1 = c2 = 2.05
is employed in this implementation of PSO. The second and
third terms on the right-hand side of Eq. (8) qualifies the
cognitive and social behavior of particles in their search pro-
cess and therefore, the choice of c1 and c2 affects the weights
of these terms in evolution of particles and balances the self-
learning and swarm-learning effects. Usually, boundaries can
be set up for the search space domain, and therefore, the ve-
locity quantity must be bounded as well. Restricting the ve-
locity of particles, however, can slow down the process of
convergence, but it helps to avoid the divergence of particles.
It should be noted that while mostly in the literature and par-
ticle swarm optimization terminology, the term v!i is referred
to as the velocity of the particles, in fact, it corresponds to the
displacement of a particle in the two consecutive iterations.

As can be speculated from Eq. (8), all the particles are
learning from the swarm by moving toward the global
best experienced location. Therefore, there is a probabil-
ity that all or a majority of particles will be attracted to
the global best point and get stuck in the local optimum
of the objective function. Linearly decreasing weighted
PSO balances the local and global search properties of
the swarm by applying a decreasing weight on the ve-
locity of the particles from previous iteration as stated in
the following equations [54]:

v!
kþ1

i ¼ ω v!
k

i þ c1r1 x!
k

*i− x!
k

i

� �
þ c2r2 x!

k

g− x!
k

i

� �
ð10Þ

ω ¼ ωmax− ωmax−ωminð Þ k
kmax

ð11Þ

where k denotes the current iteration number, kmax is the max-
imum number of iterations, and ωmax and ωmin are the upper
and lower boundaries imposed on the ω which is the PSO
velocity relaxation coefficients. In this study, the values of
ωmax and ωmin was set to be 1.1 and 0.1, respectively. This
way, the search procedure will be more inclined to global
exploration in the initial iterations and more to the exploitation
as the number of iterations increases.

It is worthy to mention that other derivative-free algorithms
such as genetic algorithm or pattern search algorithm can be
used for optimization process as well. However, the gradient-
based optimization algorithms such as gradient descent may
fail to provide a reasonable approximation since they can get
stuck in the local minimum of the optimization problem [55].
The derivative-free optimization algorithms get around this
problem and are more likely to find the global minimum. In
this study, we stick to the PSO algorithm and will employ it in
our optimization problem by imposing the constraints stated
in Eqs. (6) and (7). For more details on how to configure PSO
for imposing the constraints of the optimization problem, and
on its modification for faster convergence, readers are referred
to [55, 56].

3 Results

3.1 Micromechanical optimization of the constituent’s
properties

The relaxation compression tests at different strain rates con-
ducted in [42] were used as the input data for the optimization
procedure. Based on [42], stress relaxation test on the brain
white matter was performed by holding the sample at the
compressive stretch value of λ = 0.7 (corresponding to the
compressive strain value of 0.3) for the duration of 500 s.
The finite element simulation of compression relaxation test
was created in ABAQUS (ABAQUS Inc., Providence, RI)
with the same deformation speed and relative sample size as
that of the [42] by use of the meshed RVE introduced in
previous sections. Figures 3 and 4 show the ramp and relaxa-
tion part of the relaxation tests performed by Forte et al. [42].

Using curve fitting techniques by the constrained particle
swarm optimization (C-PSO) algorithm [55], the visco-

Fig. 4 The compression relaxation test data of Forte et al. [42] at the
stretch value of λ = 0.7. The relaxation test is done by holding the
sample for 500 s. The points in the original paper are digitized through
image processing techniques

Table 2 Visco-hyperelastic material properties of brain white matter
using the experimental data presented in Figs. 3 and 4

Strain rate μ0 (kPa) α g1 g2 τ1 (s) τ2 (s)

0.0001 s−1 0.2751 − 3.4996 0.172 0.256 123.348 441.027

0.01 s−1 0.5669 − 4.5181 0.303 0.326 2.240 71.522

1.0 s−1 1.1783 − 4.7659 0.653 0.206 0.448 15.007
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hyperelastic material parameters of the brain white matter are
found to be as presented in Table 2.

Tables 3 and 4 list the obtained optimal material properties
for axons and ECM after conducting the optimization frame-
work using PSOmethod. These results are obtained by setting
the volume fraction of axons in RVE, equal to 0.527 and the
ratio of initial shear modulus of axon to the initial shear mod-
ulus of ECM equal to 3.0 (μ0axon/μ0ECM = 3.0). It should be
noted that it is vital to impose the ratio of the initial shear
modulus as a constraint into the optimization framework.
Otherwise, the material properties of axon and ECM will be
the same as the material properties of the brain white matter
itself and the defined cost function stated in Eq. (5) will be
exactly zero corresponding to its global minimum.

Figure 5 demonstrates the averagedmechanical response of
RVE in micromechanical finite element simulation using the
acquired optimal material properties of axons, compared with
the experimental data from the compressive relaxation test for
three different deformation strain rates. As it can be seen, good
agreement is observed which implies on the success of our
proposed optimization framework. The cost function J has the
value of 0.0248, 0.0359, and 0.0199 for three strain rates of
0.0001, 0.01, and 1 s−1, with the acquired optimal parameters
and the coefficient of determination comparing the numerical
micromechanical results with experimental result stand at high
values of R2 = 99.59%, R2 = 99.14%, and R2 = 99.45% which
again confirms the high accuracy of the resultant optimization
process and micro-level constituents characterization of hu-
man brain white matter.

Figure 6 shows the relaxed stress of axons and ECM with
respect to time. Since the obtained Prony series parameters of
axon and ECM are close to each other, the overall pattern of
Ogden shear modulus reduction for both materials seem to be
nearly identical. Both axon and ECM experience more than

50% reduction in the shear modulus compared to the initial
shear modulus expressed by Ogden constitutive model.

3.2 Strain rate dependency of the axons material
properties

In this section, we are aimed at correlating the obtained mate-
rial properties of axons with respect to the deformation strain
rate. In Fig. 7, the obtained initial shear modulus of axons is
depicted with respect to the strain rates of the compression
tests. As represented in Fig. 7, if logarithmic scale is used
for demonstration of strain rates values (), a linear relationship
is observable between the strain rate and the axons initial shear
modulus. In an attempt to predict the initial shear modulus of
axons with respect to the strain rate, a linear regression is
performed, and the predicted initial shear modulus of axons
is also represented in Fig. 7 by a solid line. The prediction line
can be stated by the following equation:

μ0 kPað Þ ¼ 0:1432ln ε̇
� �

þ 1:6432 ð12Þ

Moreover, finding the reduced shear modulus of axons can
be of interest as well. Figure 8 shows the reduced shear mod-
ulus of axons at t = 5 s. The linear pattern seen for the initial
shear modulus is not observable here anymore. The maximum
reduced shear modulus after 5 s is seen for the strain rate of
0.01 s−1.

Equations (13) and (14) state the first- and second-order
regression for predicting the reduced shear modulus of axons
for the intermediate strain rate values respectively.

μ5 kPað Þ ¼ 0:0112ln ε̇
� �

þ 0:5381 ð13Þ

μ5 ¼ −0:0053 ln ε̇
� �� �2

−0:0374ln ε̇
� �

þ 0:5008 ð14Þ

where μ5 stands for the reduced shear modulus (kPa) of axon
at t = 5 s.

Figure 9 demonstrates several micromechanical finite ele-
ment simulations with the obtained optimal parameters for the
strain rate of 1 s−1, shown at different times of 1 s, 10 s, and
25 s. These simulations can provide us with a detailed under-
standing of the stress distribution at the micro-level. In this
case, where the uniaxial compression relaxation test is per-
formed, the stress is uniformly distributed in the axon and
ECM, with the stress of axons being approximately 3 times
greater than that of the ECM. This is true for the three shown
instances, since the Prony series expansion parameters for
both of the constituents are close to each other.

Table 3 The optimal material properties for axons with respect to the
compression relaxation test

Strain rate μ (kPa) α g1 g2 τ1 (s) τ2 (s)

0.0001 s−1 0.4018 − 3.4258 0.184 0.293 121.546 438.412

0.01 s−1 0.8280 − 4.6221 0.4430 0.2431 4.2587 72.200

1.0 s−1 1.7210 − 4.7549 0.651 0.219 0.398 16.259

Table 4 The optimal material properties for ECM with respect to the
compression relaxation test

Strain rate μ0 (kPa) α g1 g2 τ1 (s) τ2 (s)

0.0001 s−1 0.1339 − 3.4346 0.176 0.285 123.530 441.235

0.01 s−1 0.2760 − 4.7330 0.310 0.335 2.539 70.326

1.0 s−1 0.5737 − 4.8021 0.634 0.219 0.463 16.008
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Fig. 5 Comparison of the experimental results of relaxation test of corona radiata [49] and the obtained numerical results of micromechanical finite
element simulation by using the acquired optimal parameters of axons and ECM presented in Table 3

Fig. 6 Relaxation stress of axon and ECM using the Ogden visco-hyperelastic constitutive model for different strain rates
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4 Discussion

In order to bridge between the micromechanical simulations
and the macro-level tests, and to plausibly find the micro-level
constituents, the micromechanical simulation, and macro-
level tests must be in high degree of resemblance to each
other. One point that may raise concerns upon the validity of
the micromechanical simulation is the orientational dependen-
cy of the brain white matter stiffness. Forte et al.’s paper [42],
from which we obtained our experimental data, does not con-
cern itself with the orientation of the axonal fibers in the brain
white matter samples for the uniaxial tests and this seems to be
a reasonable approximation and approach; since Budday et al.
[20] performed uniaxial tests in different axonal fiber orienta-
tions and they posited that there is no statistically significant
dependency between the shear modulus of axons and the ax-
onal fiber orientation. Hence, in our study, we have performed
the micromechanical simulation and uniaxial loading along
the direction of the axonal nerves while using the macro-
level compression test data from Forte et al. [42], on the pre-
mise of the conclusion asserted by Budday et al. [20], as
explained. Moreover, the no-friction boundary condition of

the uniaxial testing was considered in our micromechanical
simulations as well.

There is a wide range of reported properties for axons in
different biological tissues as can be found in the literature.
The reported initial shear modulus of axons in guinea pig optic
nerves, using the Ogden hyperelastic model by Meaney [33],
was in the range of 0.28 to 0.29 kPa. The initial shear modulus
of axons in porcine brain-stem under tensile test with the strain
rate of 5.5 s−1 was found to be approximately 12.9 kPa, as
reported by Javid et al. [36]. In this study, this value was found
to be in the range of 0.4 to 1.7 kPa for axons of human brain
white matter under compression. This variation may be orig-
inated from difference in tissues used for experimental tests,
regional variation, load dependency, strain rate dependency,
and the employed constitutive models. The degree of depen-
dency of the axons shear modulus to the strain rate of defor-
mation was found to be notable, showing 4.5 times increase as
the strain rate rise from 0.0001 to 1.0 s−1.

The quality of the first- and second-order regression for
approximating the initial and reduced shear modulus of axons
is another point which deems to be worthy of discussion.
Looking into Fig. 8, it can be elicited that the first-order re-

gression with the independent variable of ln ε̇
� �

, as reflected

in Eq. (13), could not give a good approximation of reduced
shear modulus of axons (at t = 5 s) for the intermediate range
of strain rates. Alternatively, the second-order regression as
stated in Eq. (14) can be used for approximating purposes;
however, it should be noted that we should be cautious when
using this equation for finding the reduced shear modulus in
the strain rates outside the range of 0.0001 s−1to 1 s−1. In other
words, extrapolation may lead to far inaccurate and irrational
approximations.Moreover, since the regression is built upon 3
points, the second-order regression will be identical as the
second-order interpolation and the associated error of predic-
tion will be zero, which could result in overfitting and inaccu-
rate results if used for the ranges of the strain rate beyond what
was discussed here. Therefore, a great care should be taken
upon the decision of whether using the first- or second-order
regression for approximating the reduced shear modulus of
axons in the intermediate strain rate values.

The resultant material properties for axons and ECM are
dependent to some of the assumptions made in the optimiza-
tion framework including the axons volume fraction and the
ratio of the initial shear modulus of axons to ECM. As men-
tioned earlier, there must be a fixed initial shear modulus ratio,
to carry on the optimization procedure since if the material
properties of both axons and ECM are set to equal parameters,
the RVE represents a homogenous material with the property
equivalent to that of the assigned ones. The axons volume
fraction is another factor that affects the constituent’s proper-
ties. In this paper, those parameters were assigned based on
the previous published studies [32, 36]. However, those

Fig. 7 The obtained initial shear modulus of axons in different strain rates
and the predicted initial shear modulus with respect to strain rate

Fig. 8 The obtained reduced shear modulus of axons at t = 5 s for
different strain rate values and the corresponding first and second order
regression for predicting the reduced shear modulus at intermediate strain
rate values
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values are not specifically derived for human brain white mat-
ter tissue, and hence, experimental micro-level tests on human
brain white matter could be beneficial for better approxima-
tion of that kind.

The utilization of biphasic constitutive models could open
a new line of research in the field of micromechanical charac-
terization of the brain [39, 57]. The biphasic model breaks
down the brain structure into two independent phases of solid
and fluid, as water constitutes 80% of the volume fraction of
brain. A recent study involved with macro-characterization
analysis, suggests a calibrated shear modulus of 1.8 kPa for
bovine brain tissue in three deformation speed of 10, 100, and
1000 mm/s [39]. However, to the authors’ best knowledge,
there is no reported biphasic properties for micromechanical
constituents of brain tissue as there are some limitations and
hindrances. Due to the lack of specific direct micro-level ex-
perimental tests, there are some parameters with unknown
values such as hydraulic conductivity, permeability, and water
fraction for both axons and ECM. Therefore, besides the
added computational complexity to the optimization frame-
work due to the increased number of parameters, more as-
sumptions will be required to correlate between the properties
of those microlevel constituents.

5 Conclusion

In this paper, we applied PSO as a derivative free optimization
method in conjunction with finite element micromechanical
simulation to find the visco-hyperelastic material properties of
axons and ECM as micro-level constituents of human brain
white matter. As brain white matter is a heterogeneous mate-
rial at the micro-level, consisting of axons embedded in ECM,
a sample RVE representing a smallest recognizable unit of
brain white matter was developed with the axons volume frac-
tion of 52.7% [36]. The experimental compressive relaxation
experiment performed in [42] was used as the input experi-
mental data in this study. The cost function was defined as the
sum of the square of error between the finite element and

experimental results. Thereafter, a particle swarm optimiza-
tion algorithm was used to find the optimal material properties
of axon and ECM. The Ogden hyperelastic model with Prony
time series expansion was used to account for the viscous
behavior of the brain in a relaxation test. Comparing the re-
sults of the micromechanical simulation carried on with the
obtained optimal parameters and experimental data showed a
high-quality agreement. A high coefficient of determination
and low-cost function value proves the validity of the conduct-
ed optimization framework. The Prony series expansion pa-
rameters of axons and ECM were found to be close to that of
the human brain white matter. In addition, the strain rate de-
pendency of the initial shear modulus and reduced shear mod-
ulus of axons were studied through first- and second-order
regression. It was shown that linear approximation may not
be beneficial for approximating the reduced shear modulus of
axons at the intermediate strain rate values. The results of this
study can be used for the studies focused on the diffuse axonal
injuries, drug delivery, or any other research which requires
the knowledge of the micro-level constituent properties of
human brain white matter.

References

1. Langlois JA, Rutland-BrownW,Wald MM (2006) The epidemiol-
ogy and impact of traumatic brain injury: a brief overview. J Head
Trauma Rehabil 21(5):375–378

2. Ratajczak M, Ptak M, Chybowski L, Gawdzińska K, Będziński R
(2019) Material and structural modeling aspects of brain tissue de-
formation under dynamic loads. Materials 12(2):271

3. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ,
Meyerand ME (2002) Diffusion tensor MR imaging in diffuse ax-
onal injury. Am J Neuroradiol 23(5):794–802

4. Topal NB, Hakyemez B, Erdogan C, Bulut M, Koksal O, Akkose
S, Dogan S, Parlak M, Ozguc H, Korfali E (2008) MR imaging in
the detection of diffuse axonal injury with mild traumatic brain
injury. Neurol Res 30(9):974–978

5. Ramzanpour M, Eslaminejad A, Hosseini-Farid M, Ziejewski M,
Karami G (2018) Comparative study of coup and contrecoup brain
injury in impact induced TBI. Biomed Sci Instrum 54(1):76–82

Fig. 9 The micromechanical stress distribution in the RVE used for simulating human brain white matter in unconfined compression relaxation test at a
t = 1 s, b t = 10s, and c t = 25 s

2116 Med Biol Eng Comput (2020) 58:2107–2118



6. Saboori P, Sadegh A (2014) On the properties of brain sub arach-
noid space and biomechanics of head impacts leading to traumatic
brain injury. Adv Biomech Appl 1(4):253–267

7. Hosseini-Farid M, Ramzanpour M, Eslaminejad A, Ziejewski M,
Karami G (2018) Computational simulation of brain injury by golf
ball impacts in adult and children. Biomed Sci Instrum 54(1):369–
376

8. El Sayed T, Mota A, Fraternali F, Ortiz M (2008) Biomechanics of
traumatic brain injury. Comput Methods Appl Mech Eng 197(51–
52):4692–4701

9. Farid,M. H., Eslaminejad, A., Ramzanpour, M., Ziejewski,M., and
Karami, G., The strain rates of the brain and skull under dynamic
loading, Proc. ASME 2018 International Mechanical Engineering
Congress and Exposition, American Society of Mechanical
Engineers, pp. V003T004A067-V003T004A067

10. Taylor PA, Ford CC (2009) Simulation of blast-induced early-time
intracranial wave physics leading to traumatic brain injury. J
Biomech Eng 131(6):061007

11. Hosseini-Farid M, Amiri-Tehrani-Zadeh M, Ramzanpour M,
Ziejewski M, Karami G (2020) The strain rates in the brain,
brainstem, Dura, and skull under dynamic loadings. Math
Comput Appl 25(2):21

12. Laksari K, Sadeghipour K, Darvish K (2014) Mechanical response
of brain tissue under blast loading. J Mech Behav Biomed Mater
32:132–144

13. Hosseini Farid, M., Ramzanpour, M., Ziejewski, M., and Karami,
G., A constitutive material model with strain-rate dependency for
brain tissue, Proc. ASME International Mechanical Engineering
Congress and Exposition, American Society of Mechanical
Engineers, p. V003T004A004

14. Ramzanpour, M., Hosseini-Farid, M., Ziejewski, M., and Karami,
G., Microstructural hyperelastic characterization of brain white
matter in tension, Proc. ASME International Mechanical
Engineering Congress and Exposition, American Society of
Mechanical Engineers, p. V003T004A009

15. Jahani B, Meesterb K, Wanga X, Brooksc A (2020) Biodegradable
magnesium-based alloys for bone repair applications: prospects and
challenges. Biomed Sci Instrum 56:292–304

16. Kallol K, Motalab M, Parvej M, Konari P, Barghouthi H,
Khandaker M (2019) Differences of curing effects between a hu-
man and veterinary bone cement. Materials 12(3):470

17. Entezari A, Zhang Z, Sue A, Sun G, Huo X, Chang C-C, Zhou S,
Swain MV, Li Q (2019) Nondestructive characterization of bone
tissue scaffolds for clinical scenarios. J Mech Behav Biomed Mater
89:150–161

18. Hosseini-Farid M, Ramzanpour M, Ziejewski M, Karami G (2019)
A compressible hyper-viscoelastic material constitutive model for
human brain tissue and the identification of its parameters. Int J
Non-Linear Mech 116:147–154

19. Mihai LA, Budday S, Holzapfel GA, Kuhl E, Goriely A (2017) A
family of hyperelastic models for human brain tissue. J Mech Phys
Solids 106:60–79

20. Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J,
Kohnert J, Bauer M, Paulsen F, Steinmann P, Kuhl E (2017)
Mechanical characterization of human brain tissue. Acta Biomater
48:319–340

21. Feng Y, Gao Y, Wang T, Tao L, Qiu S, Zhao X (2017) A longitu-
dinal study of the mechanical properties of injured brain tissue in a
mouse model. J Mech Behav Biomed Mater 71:407–415

22. Qiu S, JiangW, AlamMS, Chen S, Lai C,Wang T, Li X, Liu J, Gao
M, Tang Y, Li X, Zeng J, Feng Y (2020) Viscoelastic characteri-
zation of injured brain tissue after controlled cortical impact (CCI)
using a mouse model. J Neurosci Methods 330:108463

23. Budday S, Nay R, de Rooij R, Steinmann P, Wyrobek T, Ovaert
TC, Kuhl E (2015) Mechanical properties of gray and white matter

brain tissue by indentation. J Mech Behav Biomed Mater 46:318–
330

24. Feng Y, Lee C-H, Sun L, Ji S, Zhao X (2017) Characterizing white
matter tissue in large strain via asymmetric indentation and inverse
finite element modeling. J Mech Behav Biomed Mater 65:490–501

25. Hosseini-Farid, M., Rezaei, A., Eslaminejad, A., Ramzanpour, M.,
Ziejewski, M., and Karami, G., 2019 Instantaneous and equilibrium
responses of the brain tissue by stress relaxation and quasi-linear
viscoelasticity theory, Scientia Iranica, 26(issue 4: special issue
dedicated to professor Abolhassan Vafai), pp. 2047-2056

26. Rashid B, Destrade M, Gilchrist MD (2012) Mechanical character-
ization of brain tissue in compression at dynamic strain rates. J
Mech Behav Biomed Mater 10:23–38

27. Limbert G, Middleton J (2004) A transversely isotropic
viscohyperelastic material: application to the modeling of biologi-
cal soft connective tissues. Int J Solids Struct 41(15):4237–4260

28. Garnich MR, Karami G (2004) Finite element micromechanics for
stiffness and strength of wavy fiber composites. J Compos Mater
38(4):273–292

29. Karami G, Garnich M (2005) Micromechanical study of
thermoelastic behavior of composites with periodic fiber waviness.
Compos Part B 36(3):241–248

30. Abolfathi N, Naik A, Sotudeh Chafi M, Karami G, Ziejewski M
(2009) A micromechanical procedure for modelling the anisotropic
mechanical properties of brain white matter. Comput Meth
Biomech Biomed Eng 12(3):249–262

31. Arbogast KB, Margulies SS (1999) A fiber-reinforced composite
model of the viscoelastic behavior of the brainstem in shear. J
Biomech 32(8):865–870

32. Karami G, Grundman N, Abolfathi N, Naik A, Ziejewski M (2009)
A micromechanical hyperelastic modeling of brain white matter
under large deformation. J Mech Behav Biomed Mater 2(3):243–
254

33. Meaney D (2003) Relationship between structural modeling and
hyperelastic material behavior: application to CNS white matter.
Biomech Model Mechanobiol 1(4):279–293

34. Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological
materials. Nano Today 1(3):26–33

35. Radmacher M (1997) Measuring the elastic properties of biological
samples with the AFM. IEEE Eng Med Biol Mag 16(2):47–57

36. Javid S, Rezaei A, Karami G (2014) A micromechanical procedure
for viscoelastic characterization of the axons and ECM of the
brainstem. J Mech Behav Biomed Mater 30:290–299

37. Yousefsani SA, Shamloo A, Farahmand F (2018) Micromechanics
of brain white matter tissue: a fiber-reinforced hyperelastic model
using embedded element technique. J Mech Behav Biomed Mater
80:194–202

38. Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M,
Karami G (2019) Rate-dependent constitutive modeling of brain
tissue. Biomech Model Mechanobiol 19:1–12

39. Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M,
Karami G (2020) A poro-hyper-viscoelastic rate-dependent consti-
tutive modeling for the analysis of brain tissues. J Mech Behav
Biomed Mater 102:103475

40. Liu Q, Liu J, Guan F, Han X, Cao L, Shan K (2019) Identification
of the visco-hyperelastic properties of brain white matter based on
the combination of inverse method and experiment. Med Biol Eng
Comput 57(5):1109–1120

41. Miller K, Chinzei K (2002) Mechanical properties of brain tissue in
tension. J Biomech 35(4):483–490

42. Forte AE, Gentleman SM, Dini D (2017) On the characterization of
the heterogeneous mechanical response of human brain tissue.
Biomech Model Mechanobiol 16(3):907–920

43. Naik A, Abolfathi N, Karami G, Ziejewski M (2008)
Micromechanical viscoelastic characterization of fibrous compos-
ites. J Compos Mater 42(12):1179–1204

2117Med Biol Eng Comput (2020) 58:2107–2118



44. Abolfathi N, Naik A, Karami G, Ulven C (2008) A
micromechanical characterization of angular bidirectional fibrous
composites. Comput Mater Sci 43(4):1193–1206

45. Garnich MR, Karami G (2005) Localized fiber waviness and im-
plications for failure in unidirectional composites. J Compos Mater
39(14):1225–1245

46. Karami G, Garnich M (2005) Effective moduli and failure consid-
erations for composites with periodic fiber waviness. Compos
Struct 67(4):461–475

47. Jahani B, Salimi Jazi M, Azarmi F, Croll A (2018) Effect of volume
fraction of reinforcement phase on mechanical behavior of ultra-
high-temperature composite consisting of iron matrix and TiB2
particulates. J Compos Mater 52(5):609–620

48. Yousefsani SA, Farahmand F, Shamloo A (2018) A three-
dimensional micromechanical model of brain white matter with
histology-informed probabilistic distribution of axonal fibers. J
Mech Behav Biomed Mater 88:288–295

49. Budday S, Sommer G, Haybaeck J, Steinmann P, Holzapfel G,
Kuhl E (2017) Rheological characterization of human brain tissue.
Acta Biomater 60:315–329

50. Rios LM, Sahinidis NV (2013) Derivative-free optimization: a re-
view of algorithms and comparison of software implementations. J
Glob Optim 56(3):1247–1293

51. Alimo SR, Beyhaghi P, Bewley TR (2019) Delaunay-based global
optimization in nonconvex domains defined by hidden constraints,
Evolutionary and deterministic methods for design optimization
and control with applications to industrial and societal problems.
Springer, Berlin, pp 261–271

52. Alimo, S. R., Beyhaghi, P., and Bewley, T. R., Optimization com-
bining derivative-free global exploration with derivative-based lo-
cal refinement, Proc. 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pp. 2531–2538

53. Eberhart, R., and Kennedy, J., Particle swarm optimization, Proc.
Proceedings of the IEEE international conference on neural net-
works, Citeseer, pp. 1942-1948

54. Du K-L, Swamy M (2016) Search and optimization by
metaheuristics, techniques and algorithms inspired by nature.
Birkhauser, Basel

55. Ramzanpour, M., Hosseini-Farid, M., Ziejewski, M., and Karami,
G., 2020, A constrained particle swarm optimization algorithm for
hyperelastic and visco-hyperelastic characterization of soft biolog-
ical tissues Int J Comput Methods Eng Sci Mech, pp. 1-16

56. Ramzanpour, M., Hosseini-Farid, M., Ziejewski, M., and Karami,
G., Particle swarm optimization method for hyperelastic character-
ization of soft tissues, Proc. ASME International Mechanical

Engineering Congress and Exposition, American Society of
Mechanical Engineers, p. V009T011A028

57. Hosseini Farid, M., Ramzanpour, M., Ziejewski, M., and Karami,
G., A biphasic viscoelastic constitutive model for brain tissue, Proc.
ASME International Mechanical Engineering Congress and
Exposition, American Society of Mechanical Engineers, p.
V003T004A005

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Mohammadreza Ramzanpour is a PhD candidate in the Mechanical
Engineering Department at North Dakota State University (NDSU). He
received his MSc degree in Mechanical Engineering from Sharif
University of Technology. His major research thrust is in the area of
numerical methods and machine learning techniques for characterization
of soft tissues and micromechanics of the brain tissue.

Mohammad Hosseini Farid is a Mechanical Engineering PhD graduate
from North Dakota State University (NDSU). He received his MSc de-
gree in Mechanical Engineering from Iran University of Science and
Technology. His major research thrust is in the area of tissue engineering
of the brain and study of the biomechanics of the trauma and impact.

Jayse McLean is a master’s degree student in the Mechanical
Engineering department at North Dakota State University. His major field
of research includes vibrational analysis of brain and human head in
ballistic impact.

Mariusz Ziejewski is a Professor in the Department of Mechanical
Engineering at the North Dakota State University. He received his PhD
in Mechanical Engineering in 1986 from North Dakota State University.
His areas of research interests include biomechanics of the trauma and
impact, head/neck/brain computer modeling, and vehicle dynamics.

Ghodrat Karami is a Professor of Mechanical and Biomedical
Engineering and Graduate Program Coordinator of the Mechanical
Engineering Department at North Dakota State University (NDSU). He
received his MSc degree in 1980 and PhD in 1984 in Mechanical
Engineering from Imperial College of Science and Technology,
University of London, England. Dr. Karami’s research interests include
multi-scale computational biomechanics, tissue engineering, constitutive
modeling, composite engineering, and engineering design.

2118 Med Biol Eng Comput (2020) 58:2107–2118


	Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates
	Abstract
	Introduction
	Materials and methods
	Material constitutive modeling
	Micromechanical modeling
	A framework for the simulation-based optimization

	Results
	Micromechanical optimization of the constituent’s properties
	Strain rate dependency of the axons material properties

	Discussion
	Conclusion
	References


