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Abstract
Automatic and reliable prostate segmentation is an essential prerequisite for assisting the diagnosis and treatment, such as
guiding biopsy procedure and radiation therapy. Nonetheless, automatic segmentation is challenging due to the lack of clear
prostate boundaries owing to the similar appearance of prostate and surrounding tissues and the wide variation in size and
shape among different patients ascribed to pathological changes or different resolutions of images. In this regard, the state-of-
the-art includes methods based on a probabilistic atlas, active contour models, and deep learning techniques. However, these
techniques have limitations that need to be addressed, such as MRI scans with the same spatial resolution, initialization of the
prostate region with well-defined contours and a set of hyperparameters of deep learning techniques determined manually,
respectively. Therefore, this paper proposes an automatic and novel coarse-to-fine segmentation method for prostate 3D MRI
scans. The coarse segmentation step combines local texture and spatial information using the Intrinsic Manifold Simple
Linear Iterative Clustering algorithm and probabilistic atlas in a deep convolutional neural networks model jointly with the
particle swarm optimization algorithm to classify prostate and non-prostate tissues. Then, the fine segmentation uses the
3D Chan-Vese active contour model to obtain the final prostate surface. The proposed method has been evaluated on the
Prostate 3T and PROMISE12 databases presenting a dice similarity coefficient of 84.86%, relative volume difference of
14.53%, sensitivity of 90.73%, specificity of 99.46%, and accuracy of 99.11%. Experimental results demonstrate the high
performance potential of the proposed method compared to those previously published.

Keywords Medical images · Prostate segmentation · Deep convolutional neural networks · Superpixels ·
Probabilistic atlas · Particle swarm optimization

1 Introduction

The American Cancer Society estimates about 174,650 new
prostate cancer cases, resulting in 31,620 deaths in 2019
only in the USA [37], which in 2018 was considered the sec-
ond most frequent cancer in men [36]. Moreover, prostate
cancer has surpassed lung cancer by turning out to be the
most common due to the extensive increase of screening
[33]. According to the most recent data, for every 9 men, 1 is
bound to develop prostate cancer throughout his lifetime [1].

� Giovanni L. F. da Silva
giovannilucca@nca.ufma.br

1 Applied Computing Group - NCA, Federal University
of Maranhão - UFMA, Av. dos Portugueses, SN, Bacanga,
São Luı́s, MA, 65085-580, Brazil

The prostate is an exocrine gland situated nearby the
bladder and the penis that is responsible for the production
and storage of a colorless fluid, which along with sperm
constitutes the semen [2]. Most prostate cancers grow
slowly and cause no symptoms. However, tumors at a
later stage are aggressive and can spread quickly [2, 33].
Therefore, in order to diminish prostate cancer cases, early
detection is crucial, not only by improving the effectiveness
of treatment but also by increasing the survival chance of
almost 96% of the patients [1].

The prostate segmentation is a fundamental step to
assist the identification, analysis, and treatment of cancer;
by instructing medical procedures and therapies, several
works [8, 18, 20, 52, 53, 57] propose methods of prostate
segmentation with diverse medical imaging techniques,
principally magnetic resonance imaging (MRI), for it is
more convenient for cancer analysis compared to other
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approaches such as transrectal ultrasound (TRUS) and
computed tomography (CT) [15]. Besides, MRI scans
provide high-resolution images with excellent soft-tissue
contrast and do not involve ionizing radiation [10].

In current practice, prostate segmentation on MRI scans
is carried out by the hand of a professional, mostly a
radiologist, visually inspecting slice-by-slice. A manual
and time-consuming approach that demands expertise and
concentration [20, 57]. Thereby, an accurate and automatic
method for prostate segmentation on MRI scans is a
meaningful and beneficial contribution to reduce prostate
cancer cases [15].

A precise and automatic method to accomplish prostate
segmentation on 3D MRI scans would be clinically
beneficial, improving efficiency and reducing errors and
inconsistencies in the manual segmentation by radiologists
[8]. Notwithstanding, the prostate does not have well-
defined borders, as it is very similar to its adjacent tissues
and may vary in size and shape according to the patient
and the resolution of the image. Thus, its automatic
segmentation is a challenging task [52, 57].

With the advancement of deep learning techniques,
deep convolutional neural networks (DCNN) prove to
be a great tool for medical image analysis, presenting
encouraging results for segmentation purposes [19, 21, 51].
The DCNN model implicitly extracts features directly from
input data, eliminating the explicit feature extraction step
[25]. Compared to traditional segmentation methods [14,
31, 32], DCNNs have several advantages, such as the ability
to effectively handle extremely diverse data, and are robust
to variations in brightness, noise, distortion, and occlusion.
Problems that may occur according to how MRI scans were
acquired [53, 57].

In addition to the deep learning techniques, the state-of-
the-art includes methods based on the probabilistic atlas and
active contour models. Nonetheless, these methods present
several limitations: (1) the atlas-based approaches need MRI
scans with the same spatial resolution [5], (2) the active
contour-based approaches need a good contour initialization
[16], and (3) the deep learning–based approaches contain
a set of hyperparameters that are critical to the training
process, making it difficult and costly to manually identify
these optimal hyperparameters [38].

Thereby, this paper proposes an automatic and novel
coarse-to-fine segmentation method for prostate 3D MRI
scans based on a DCNN model, content-sensitive superpix-
els technique, probabilistic atlas, active contour model, and
an optimization algorithm in order to address the limitations
mentioned above. As for contributions to this work, we can
formulate as follows:

1. Lies in the exploitation of Intrinsic Manifold Simple
Linear Iterative Clustering [30] to clustering the pixels

in MRI scans. Superpixel analysis guarantees a large
amount of data for deep learning techniques. In addition
to being more efficient than the pixel approach.

2. Build a probabilistic atlas of any dimension, presenting
a wide variety in the prostate anatomy. This process
avoids the use of registration techniques, guaranteeing
the real information of the MRI scans.

3. Combine two parallel convolutional neural networks,
each fed by the superpixel in the original MRI scan and
the probabilistic atlas, thus aggregating the texture and
spatial features in the learning.

4. Apply the particle swarm optimization (PSO) algorithm
[22] to optimize some hyperparameters in the DCNN,
eliminating the requirement of a manual search.

5. An efficient coarse segmentation step based on the
superpixel classification into prostate and non-prostate
tissues. This step guarantees a good and automatic
initialization for the 3D Chan-Vese model, without the
need for human intervention.

Briefly, the proposed method has five steps. After
the materials step, all MRI scans are preprocessed to
reduce the impact of the acquisition of different protocols
and equipment. The coarse segmentation step consists
of the classification of superpixels in prostate and non-
prostate tissue based on the DCNN model in conjunction
with the PSO algorithm. Besides the texture features,
the probabilistic atlas provides spatial features in the
training of the DCNN model. Then, the fine segmentation
step is completed using the 3D Chan-Vese model to
fine segment the prostate. Lastly, the results obtained are
evaluated.

In addition to the introductory section, the paper is
structured into five more sections. Section 2 summarizes
related works recently published in the literature. Section 3
details the proposed method and materials. Section 4
presents the results obtained, and Section 5 discusses the
results. Finally, Section 6 presents final remarks about this
research.

2 Related works

Accurate and automatic prostate segmentation on 3D MRI
scans is useful for the analysis and treatment of prostate
cancer [10, 57]. In this regard, several works have been
recently published in the literature [21, 43, 54] in the light of
early detection significantly increases the patient’s chance
of survival [1]. The literature includes studies based on a
probabilistic atlas, active contour models, and deep learning
techniques.

In the atlas-based approaches, Li et al. [27] proposed an
automatic method based on the random walker algorithm
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and a probabilistic atlas. The method obtained a dice
similarity coefficient (DSC) of 80.7 ± 5.1% using the
Prostate 3T database [28]. Stojanov et al. [43] reported an
automatic method based on a set of pre-labeled atlas. The
method obtained a DSC of 81% using the Prostate MR
Image Database [46]. Tian et al. [47] proposed an automatic
method divided into two stages based on a multi-atlas
framework. The method obtained a DSC of 83.4 ± 4.3%
using a private database.

Korsager et al. [23] described an automatic method
based on probabilistic atlas in conjunction with a graph
cut algorithm. The method obtained a DSC of 88% using
a private database. In general, atlas-based approaches can
result in poor segmentation if the anatomy and size of the
prostate in the MRI scan is very different from the MRI
scans used to generate the atlas. Besides, most of the atlas-
based approaches are performed in a global registration step,
increasing the computational time [5, 34, 45].

In the active contour-based approaches, Al et al. [4]
proposed a semi-automatic method based on a multi-
resolution level set algorithm with shape prior. The method
obtained a DSC of 80% using the Prostate MR Image
Database. Tian et al. [48] described a semi-automatic
method based on 3D graph cuts and a 3D level set.
The method obtained a DSC of 89.3 ± 1.9% using a
private database. Yang et al. [53] reported a semi-automatic
method based on a level set algorithm with shape prior.
The method obtained a DSC of 91.45% using a private
database.

Tian et al. [49] proposed a semi-automatic method based
on supervoxels in conjunction with a level set algorithm.
The method obtained a DSC of 86.9 ± 3.2% using a
private database. Yang et al. [54] described a semi-automatic
method based on a hierarchical level set, using statistic
distance analysis, texture, and shape information. The
method obtained a DSC of 92.05% using a private database.
Notwithstanding, the active contour-based approaches can
result in poor segmentation if the prostate boundaries are not
well defined on MRI scan. In addition, this approach needs
an initial contour [16].

Apropos of deep learning–based approaches, Yan et al.
[52] proposed an automatic method based on geodesic
object proposals algorithm and deep convolutional neural
networks (DCNN). The method obtained a DSC of 89%
using the PROMISE12 database [29]. Guo et al. [18]
reported an automatic method based on stacked sparse
auto-encoder in conjunction with sparse patch matching.
The method obtained a DSC of 87.8% using a private
database. Jia et al. [20] suggested an automatic method
based on an ensemble DCNN. The method obtained a
DSC of 88 ± 0.04% using the PROMISE12 database.
Yu et al. [57] proposed an automatic method based on a
volumetric convolutional neural network with mixed long

and short residual connections. The method obtained a DSC
of 89.43% using the PROMISE12 database.

Cheng et al. [8] reported an automatic method based
on holistic neural network, exploiting both patch-based
and holistic approaches. The method obtained a DSC of
89.77 ± 3.29% using a private database. Jia et al. [21]
described an automatic method based on an ensemble
DCNN in conjunction with atlas registration. The method
obtained a DSC of 91% using the PROMISE12 database.
Nevertheless, the deep learning–based approaches can take
a long time to be trained using the whole image as input and
require a large amount of data. Furthermore, these models
contain a set of hyperparameters that are critical to the
training process, making it difficult and costly to manually
identify these optimal hyperparameters.

Despite the considerable efforts and several methods that
have been proposed in recent literature, accurate and auto-
matic prostate segmentation on MRI scans still remains a
challenge. Thus, we exploit the effectiveness of the afore-
mentioned approaches to present an automatic superpixel-
based deep convolutional neural networks method for
prostate segmentation on 3D MRI scans. The proposed
method combines local texture and spatial information
using superpixels and probabilistic atlas to coarse segment
the prostate. Region-based active contour model to fine seg-
ment the prostate, producing smooth surfaces. Lastly, an
optimization algorithm is used in order to optimize the num-
ber of filters capable of discriminating between the prostate
and non-prostate tissues in each convolutional layer, elimi-
nating therefore the requirement of a manual search.

3Materials andmethod

The proposed method for automatic prostate segmentation
consists of five steps as presented in Fig. 1. Briefly, the first
step describes the databases used as MRI scans. Secondly,
image preprocessing is performed. In the third step, a
coarse segmentation is conducted using a probabilistic
atlas, superpixels, and deep convolutional neural networks.
Afterwards, a fine segmentation is completed using a
region-based active contour model to fine segment the
prostate. Lastly, the proposed method is evaluated using
metrics commonly accepted for performance analysis of
image processing based systems.

3.1 Materials

The MRI scans used in our research consist of the Prostate
3T and PROMISE12 databases, both available on the
internet for challenges purposes. The Prostate 3T database
contains 30 T2-weighted MRI scans along with their ground
truth. The whole database is in the DICOM format and
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Fig. 1 Proposed method
flowchart

has 320 × 320 of dimension with 16 bits per voxel, voxel
spacing of 0.6 × 0.6 × 4.0 mm3, and slice thickness of 4
mm [27]. The number of slices varies from 15 to 24. The
database was acquired on a 3.0T Siemens scanner using a
pelvic phased array coil [28].

The PROMISE12 database contains 50 T2-weighted
MRI scans along with the respective ground truth. The
whole database presents a large variation in the voxel
spacing, dynamic range, and anatomic appearance into
MRI scans [57]. This strain is due to different acquisition
protocols and different types of equipment, such as 1.5T

and 3.0T Siemens scanners using a pelvic phased array coil
(PAC) or an endorectal coil (ERC) [29].

Notwithstanding, there are several reasons to use but the
MRI scans without ERC in our method. (1) ERC deforms
the prostate anatomy due to the introduction of the specific
coil, compressing the peripheral zone, (2) patients with a
historic of rectal therapy or rectal stenosis can not use ERC
to obtain MRI scans, and (3) ERC causes discomfort and
pain to patients [11, 55]. Therefore, in current practice, ERC
is still not commonly used. Figure 2 shows examples of PAC
and ERC MRI scans.

Fig. 2 Examples of PAC and
ERC MRI scans. (a) PAC MRI
scan. (b) ERC MRI scan
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Fig. 3 Preprocessing step
application. (a) Reference
image. (b) Original image. (c)
Original image with histogram
matched based in reference
image. (d) Original image
uniformly quantized at 8 bits

3.2 Preprocessing

The preprocessing step consists of applying two techniques
to normalize the intensity values of the MRI scans. As
described in the Section 3.1, the databases were obtained
with different protocols using different types of equipment.
Hence, prostate tissues may present different texture
patterns inter-scans. To overcome such kind of problem,
the first technique applied was the histogram matching [17]
algorithm, using a single MRI scan of the database as a
reference for all others. Then, the second technique applied
was the uniform quantization [17] algorithm to normalize
the voxel values at 8 bits intra-scans. Figure 3 illustrates its
applications.

3.3 Coarse segmentation

The prostate coarse segmentation step combines local
texture and spatial information using a content-sensitive
superpixels technique and probabilistic atlas in a deep
convolutional neural networks (DCNN) model, as shown
in Fig. 4. The coarse segmentation is divided into three
steps: (1) probabilistic atlas construction, (2) superpixel
clustering, and (3) a DCNN combined with the particle
swarm optimization algorithm for superpixel classification.

3.3.1 Probabilistic atlas construction

A probabilistic atlas is a rough approximation of the
position of the prostate on MRI scans derived from
aligning ground truth, in which each voxel indicates the
probability that the voxel belongs to the prostate [27, 52].
In the proposed method, we used the probabilistic atlas to
incorporate spatial information of the prostate in the DCNN
model. Thereon, in the probabilistic atlas construction, the
images must be aligned presenting the same dimensions
[27]. However, as described in Section 3.1, the databases
present variation in some dimension (z-axis). To overcome
this problem, we propose an algorithm that creates a
probabilistic atlas with any dimension based on an initial
probabilistic atlas, as shown in Fig. 5. The algorithm is
detailed in the following steps:

1. Group the images of the training subset based on the
dimensions (x, y, z).

2. Select the cluster that has the highest number of MRI
scans. The goal of this step is to ensure a greater
diversity in the variation of prostate anatomy.

3. Align all the ground truth of the selected cluster in step
2 to the center of the image. The idea is to create a
probabilistic atlas in the form of a Gaussian distribution,

Fig. 4 Superpixel-based deep convolutional neural networks
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Fig. 5 Process of probabilistic
atlas construction

guaranteeing a high probability of prostate in the central
region of the MRI scan.

4. Create the initial probabilistic atlas, defined by Eq. 1,
using all aligned ground truth in step 3,

Atlas = 1

N

N∑

i=1

Gi ∗ 100% (1)

where Gi represents the ith aligned ground truth and N

is the number of MRI scans in the cluster selected in
step 2.

5. Finally, interpolate the initial probabilistic atlas voxels
to any dimension using the trilinear interpolation
method. At this step, we can create probabilistic atlas of
any dimension presenting a wide variety in the prostate
anatomy.

Figure 5 presents the construction of the probabilistic
atlas. The higher the value of voxel in the atlas the more
likely it is to belong to the prostate and vice versa. Hence,
the probabilistic atlas provides prior information of the
prostate localization in the MRI scan. After the probabilistic
atlas construction step, each MRI scan in the database has a
corresponding probabilistic atlas with the same dimensions.

3.3.2 Superpixel clustering

The coarse segmentation uses superpixels for extracting the
prostate surface in both the MRI scan and the probabilistic
atlas. Considering the fact that spacing between transverse
slices in the databases is much larger than the spacing
between two voxels within the slice, as described in the
Section 3.1, the superpixel clustering and classification are
performed in the two-dimensional approach. This would
degrade the formation of supervoxels due to high slice
thickness. Furthermore, it increases the number of samples
in the network training.

The superpixel technique significantly reduces the com-
putational cost while potentially increasing the detection
accuracy, as it is more robust to noise than pixel-based
method [48, 49]. In our method, the superpixel clustering is
generated by applying the Intrinsic Manifold Simple Linear
Iterative Clustering (IMSLIC) algorithm. The IMSLIC [30]
algorithm extends SLIC [3] to compute content-sensitive
superpixels; meanwhile, it inherits all the favorable fea-
tures of SLIC, such as simplicity and high performance. The
algorithm requires two parameters, such as the mean super-
pixel size and the compactness factor. Furthermore, it can
effectively capture non-homogenous features in an image,
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Fig. 6 Process of superpixel
clustering. (a) Original image.
(b) IMSLIC applied to the MRI
scan. (c) IMSLIC applied to the
corresponding probabilistic
atlas. (d) Superpixel presenting
texture features. (e) Superpixel
presenting spatial features

presenting small superpixels in content-dense regions and
large superpixels in content-sparse regions [30].

The IMSLIC algorithm clusterizes each MRI slice to
obtain superpixels that describe local texture features. To
aggregate spatial features, the same region of the superpixel
has been extracted into the corresponding probabilistic
atlas. Figure 6 presents this process. Both superpixels are
centered on a 64 × 64 patch image, and so, they are
used simultaneously for the classification of prostate and
non-prostate tissues, as illustrated in Fig. 4.

3.3.3 Deep convolutional neural network-based PSO
model

The next step consists of classifying both superpixels into
prostate and non-prostate tissues using a deep convolutional
neural networks (DCNN) model. Therefore, it is necessary
to label the superpixels in two classes: prostate and non-
prostate. To define which superpixels are prostate tissues,
ground truths are used. A superpixel is considered a prostate
tissue if it has at least 90% of its pixels found in the ground
truth. If a superpixel touches the ground truth in a proportion
of less than 90%, they are ignored from DCNN model
training to avoid underfitting. Finally, all the others are
labeled as non-prostate tissues. Figure 7 details the process
of superpixels labelling.

There are certain reasons for using the DCNN in our
research: (1) the DCNN model implicitly extracts features
using the convolutional layers and classifies them using the
fully connected layers at the top of the network [25, 26],
thus eliminating the explicit feature extraction step, and (2)
the pooling layers guarantees the invariance of the extracted

features as the geometric transformations. Problems that
may occur with varying the MRI scans acquisition protocol
[53, 57].

Each layer within the DCNN model contains a set of
hyperparameters that are critical to the training process [21,
38, 51]. Setting these hyperparameters manually, however,
is a costly task, as each application can perform well
with totally different sets of hyperparameters [38, 39].
Therefore, the swarm intelligence technique of particle
swarm optimization (PSO) [12] was used in conjunction
with the DCNN model to automatically define some
set of hyperparameters. Thus, the PSO algorithm was
used to optimize the number of filters capable of
discriminating between prostate and non-prostate tissues in
each convolutional layer, so eliminating the requirement of
a manual search [39].

The proposed architecture of the DCNN model is shown
in Fig. 4. The DCNN model contains five convolutional
layers with two max pooling layers in parallel, followed by

Fig. 7 Process of superpixels labelling
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Table 1 Particle definition in our method

Particle coordinate Hyperparameter

x1 Number of filters in conv1 of texture features

x2 Number of filters in conv2 of texture features

x3 Number of filters in conv3 of texture features

x4 Number of filters in conv4 of texture features

x5 Number of filters in conv5 of texture features

x6 Number of filters in conv1 of spatial features

x7 Number of filters in conv2 of spatial features

x8 Number of filters in conv3 of spatial features

x9 Number of filters in conv4 of spatial features

x10 Number of filters in conv5 of spatial features

two fully connected layers with dropout regularization of
0.5, and an output layer with softmax activation for binary
classification. The kernel size of all convolutional layers is
defined as 5 × 5 and all pooling layer is defined as 2 × 2.
Finally, the number of neurons in both fully connected
layers is determined as 4096.

The particles of the PSO algorithm are encoded as a list
of ten coordinates, corresponding to the hyperparameters to
be optimized, as described in Table 1. Each coordinate cor-
responds to a number of filters in a given convolution layer.
Once these hyperparameters are automatically obtained, the
DCNN model may prioritize one of the information given as
input, texture, or spatial features, in order to obtain a model
with a greater discrimination capacity between prostate and
non-prostate tissues.

Every single particle of the initial swarm is randomly
initialized with integer values between 96 and 384. The
range was based on the smallest and largest number of
filters found in the well-known architecture proposed by
Krizhevsky et al. [24]. The fitness of each particle in the
swarm is defined by the performance obtained from the
DCNN model in the validation subset, as described in Eq. 2.
The metric sensitivity has been given a higher weight as

it represents the ability of the DCNN model to correctly
classify prostate tissue.

Fitness = (2 ∗ Sensitivity) + Specificity + Accuracy (2)

At each PSO iteration, the swarm particles are trained
and their fitness evaluated. After that, all particles are
updated based on the best-known position (Pbest) in the
search-space as well as the best-known position in the
whole swarm (Gbest). The hyperparameters optimization
is performed until the maximum number of iterations.
In the end, the particle represented by Gbest is the
optimal hyperparameters for the superpixel classification
into prostate and non-prostate. Figure 8 illustrates the
proposed DCNN-based PSO flowchart.

In summary, the prostate coarse segmentation consists
of 5 steps, with the image of the preprocessing step as
input: (1) construction of the corresponding probabilistic
atlas, (2) applying the IMSLIC algorithm for superpixels
clustering, (3) extraction of superpixels with texture and
spatial features, (4) classification of superpixels using the
best DCNN-based PSO model, and finally, (5) output image
reconstruction. Figure 9 presents this process.

3.4 Fine segmentation

The superpixel-based deep convolutional neural network
model in conjunction with probabilistic atlas to incorporate
spatial information is an efficient step. Nevertheless,
the resulting image may have an irregular boundary if
superpixels do not find the edge efficiently. Therefore, a
3D active contour in conjunction with a cubic Bézier spline
was used in our method to fine segmentation of the prostate
surface.

Chan et al. [7] proposed one of the most efficient active
contour models without edges information. The algorithm
optimizes the initial segmentation based on information
from internal and external regions the curve, respectively the
prostate and the adjacent tissues. Only a few iterations of

Fig. 8 DCNN-based PSO
flowchart. Each configuration of
DCNN model is trained based on
the training subset and evaluated
on the validation subset
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Fig. 9 Coarse segmentation step
application. (a) Resulting image
of preprocessing. (b)
Correspondent probabilistic
atlas. (c) IMSLIC application.
(d) Superpixels. (e)
DCNN-based PSO model. (f)
Reconstructed image

the algorithm are sufficient to refine the prostate edge. Since
the coarse segmentation step ensures a good initialization
for the 3D Chan-Vese model.

The prostate fine segmentation consists of three steps: (1)
get the largest volume in the resulting image of the coarse
segmentation step, (2) fit a cubic Bézier spline in some
points to produce a smoother prostate surface, and (3) apply
a 3D Chan-Vese model to obtain the final prostate surface.
Figure 10 shows this process.

3.5 Evaluationmetrics

The last step of the proposed method is the evaluation
of results using metrics that are used in 3D segmentation
analysis [19, 21, 44]. The evaluation metrics used in our
research were the dice similarity coefficient (DSC), relative
volume difference (RVD), sensitivity (SEN), specificity
(SPE), and accuracy (ACC) [44].

The dice similarity coefficient (DSC) measures the
spatial overlap between the ground truth of the prostate and
the final segmentation.

DSC = 2T P

2T P + FP + FN
(3)

The relative volume difference (RVD) measures the
absolute size difference between the final segmentation (X)
and the ground truth (Y ).

RV D = (
X

Y
− 1) ∗ 100 (4)

The sensitivity (SEN) measures the proportion of
prostate voxels correctly classified in the final segmentation.

SEN = T P

T P + FN
(5)

The specificity (SPE) measures the proportion of non-
prostate voxels correctly classified in the final segmentation.

SPE = T N

T N + FP
(6)

The accuracy (ACC) measures the proportion of voxels
correctly classified (both prostate voxels and non-prostate
voxels) in the final segmentation.

ACC = T P + T N

T P + FN + FP + FN
(7)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative.

4 Results

The proposed method was developed using ITK [56] and
Keras libraries [9] on a computer with an Intel Core i7-
6700HQ processor, 16GB RAM, and GeForce GTX 1070 of
8GB. The strategy for result analysis is detailed as follows:
(1) database separation, (2) preprocessing evaluation, (3)
coarse segmentation results, (4) fine segmentation result,
and (5) case study.

Fig. 10 Fine segmentation step
application. (a) Resulting image
of coarse segmentation. (b)
Largest volume of input image.
(c) Cubic Bézier splines
smoothing. (d) 3D Chan-Vese
active contour model application
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Fig. 11 Examples of the
preprocessing step application.
(a) Reference image. (b) Input
image. (c) Input image with
histogram matched based in
reference image. (d) Input image
uniformly quantized at 8 bits

4.1 Database separation

Both databases, as described in Section 3.1, contain 56
T2-weighted MRI scans along with their ground truth. In
order to evaluate the proposed method, the databases were
randomly partitioned into three subsets: training, validation,
and test. The proportions of database separation used in this
research were 60%, 20%, and 20%, respectively. Therefore,
the training subset contains 34 MRI scans, the validation
subset contains 11 MRI scans, and the test subset contains
11 MRI scans.

4.2 Preprocessing evaluation

All the MRI scans in the databases were submitted to
the preprocessing step to normalize the intensity values.
Since the histogram matching requires a reference image,
an exhaustive search was carried out to find the best MRI
scan in the training subset. The idea is to extract the
superpixels using the IMSLIC algorithm in all MRI scans on

the validation subset. Then, check which superpixels touch
the ground truth and create a segmented volume. Finally,
compute the dice similarity coefficient (DSC) based on
the ground truth. In the end, the MRI scan of the training
subset with the highest mean DSC is the reference image.
Moreover, the uniform quantization algorithm was applied
at 8 bits. Experimental results proved to be better than
using the original image (16 bits). Figure 11 illustrates the
qualitative results of the preprocessing step application in
some MRI scans.

In order to evaluate the quantitative results of the
preprocessing step, only the validation subset with 11 MRI
scans was used in the experiment. An approach similar to
that used to find the reference image was used to verify
each technique applied in the preprocessing step. As can
be seen in Table 2, the preprocessing step using histogram
matching and uniform quantization obtained the best result
with a mean DSC of 80.79%, being higher than the result if
used only one technique separately. This demonstrates the
importance of both techniques in the proposed method.

Table 2 Quantitative results
from each preprocessing
techinque on the validation
subset

Preprocessing Mean DSC (%) Max DSC (%) Min DSC (%)

Original 74.11 91.12 56.31

Histogram matching 75.50 91.21 59.72

Uniform quantization 79.34 85.83 71.20

Histogram matching and uniform quantization 80.79 87.78 69.79
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Table 3 Results obtained by the Gbest particle on superpixels

Subset Superpixels SEN (%) SPE (%) ACC (%)

Validation 34,170 98.43 98.48 98.65

Test 82,521 98.28 99.06 99.03

4.3 Coarse segmentation results

In order to identify the optimal hyperparameters in the
convolutional layers for the DCNN model using the PSO
algorithm, the IMSLIC algorithm clusterized all MRI slices
into superpixels. The IMSLIC algorithm parameters used in
our research were: 25 × 25 of mean superpixel size and 10
of compactness factor, in which it balances the proximity of
the color space with the spatial regularization, that is, the
smaller this parameter more adjusted to the color space will
be the superpixel [3].

Then, two procedures were performed to decrease the
unbalance of the non-prostate class in both training and
validation subsets. The first procedure is to use only the
bounding box of the correspondent probabilistic atlas with a
30% slack on each side for superpixel extraction. Secondly,
rotational transformations at the 90, 180, and 270 angles
and flip in the axial plane were applied to the prostate class
superpixels.

After the two procedures, the training subset contains
100,817 superpixels (63,040 prostate and 37,777 non-
prostate) extracted on 34 MRI scans, the validation subset
contains 34,170 superpixels (23,240 prostate and 10,930
non-prostate) extracted on 11 MRI scans. At last, the test
contains 82,521 superpixels (3,250 prostate and 79,271 non-
prostate) extracted on 11 MRI scans. The data augmentation
was performed only in the prostate superpixels training
and validation subsets in order to improve DCNN model
performance in correctly classifying prostate tissues.

The DCNN model training configuration is defined as
follows. The number of epochs was defined as 100 with
batches size of 128. The loss function was the cross entropy
[35], and the weights update was based on the standard
backpropagation algorithm [26] with a learning rate of
0.01. To reduce the training process, the image patches
were resized from 64 × 64 to 28 × 28. As for the PSO
algorithm, the swarm size was defined as 10 particles with

Table 4 Results obtained by different hyperparameters on the test
subset

Work Hyperparameters SEN (%) SPE (%) ACC (%)

Krizhevsky et al. [24] 96, 256, 384, 384, 256, 96, 256, 384, 384, and 256 98.22 98.14 98.71

Cheng et al. [8] 64, 192, 384, 256, 256, 64, 192, 384, 256, and 256 97.79 98.17 98.12

Gbest particle 180, 384, 252, 121, 216, 96, 193, 96, 305, and 384 98.28 99.06 99.03

the maximum number of iterations equal to 5. The cognitive
and social parameters were determined to 2.0 [6, 13]. Lastly,
the inertia weight was equal to 0.7 [13].

Table 3 presents the results obtained in both validation
and test subsets for the Gbest particle at the end of the
PSO algorithm. The results include the sensitivity (SEN),
specificity (SPE), and accuracy (ACC). The Gbest particle
consists of the following coordinates: 180, 384, 252, 121,
216, 96, 193, 96, 305, and 384. The particle coordinates
have been described in Table 1.

Analyzing the Gbest particle, we verified that the
DCNN model prioritized the texture features in the first
three convolutional layers (180, 384, 252) more than the
spatial features (96, 193, 96), and only in the last two
convolutional layers the model used more spatial features
(305 and 384) than (121 and 216) texture features. Thus,
the texture features are more relevant when the image has
a higher resolution since the max pooling layers reduce the
dimensions of the image while maintaining the maximum
values, the spatial features become more important to
discriminate the superpixels in the last layers.

To evaluate the DCNN-based PSO performance, the
hyperparameters proposed by Krizhevsky et al. [24] and
Cheng et al. [8] were used in the same test subset. To
produce a fair comparison between the hyperparameters,
all experiments were performed with identical subsets
and the same training configuration. Notwithstanding, the
hyperparameters obtained by Gbest particle presented
better results for superpixel classification into prostate and
non-prostate than the others, as detailed in Table 4.

The Gbest particle took approximately 54 min to train
the DCNN model, obtaining a sensitivity of 98.43%, a
specificity of 98.48%, an accuracy of 98.65%, a fitness
of 3.914, and an error of 0.045 in the validation subset
with 34,170 superpixels (23,240 prostate and 10,930 non-
prostate). As for the other particles, the mean training time
was about 45 min. Finally, the total execution time of the
PSO algorithm was 93 h. Figure 12 presents the training
curves.

In addition to the experiment using superpixel, we
extracted overlapping patches for pixel-wise classification.
This experiment analyzes the importance of the superpixel
clustering step, Section 3.3.2, in the proposed method.
In summary, the same configuration of the experiment
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Fig. 12 Training of the Gbest particle

Table 5 Results obtained based
on pixel and superpixel on the
test subset

Experiment DSC (%) RVD (%) SEN (%) SPE (%) ACC (%)

Pixel 67.29 27.19 76.28 96.31 91.59

Superpixel 78.43 27.64 88.72 99.09 98.69

Table 6 Results obtained by
the proposed method on 3D
MRI scans of the test subset

Step DSC (%) RVD (%) SEN (%) SPE (%) ACC (%)

Coarse segmentation 78.43 27.64 88.72 99.09 98.69

Fine segmentation 84.86 14.53 90.73 99.46 99.11

Fig. 13 Example of a success
case. Final prostate surface is
highlighted in green and the
ground truth is outlined in red
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Fig. 14 Example of a success
case. (a) Coarse segmentation
result. (b) Fine segmentation
result. (c) Corresponding ground
truth

based on superpixel was used, such as the size of the
patch, number of epochs, and parameters of the PSO. The
training subset contains 96,110 superpixels (35,754 prostate
and 60,356 non-prostate) extracted on 34 MRI scans and
the validation subset contains 69.115 superpixels (34,296
prostate and 34,819 non-prostate) extracted on 11 MRI
scans.

The Gbest particle obtained a sensitivity of 91.39%, a
specificity of 98.87%, and an accuracy of 95.16% with the
fitness of 3.768 on the validation subset. Notwithstanding,
the results were worse and the pixel-based experiment is
slower compared to the experiment based on superpixels.
The delay is due to the patch extraction being proportional
to the size of the MRI scans. Table 5 presents results
obtained on the test subset by both experiments in the coarse
segmentation step.

4.4 Fine segmentation results

Since the superpixel clustering and classification are
performed in the two-dimensional approach, the resulting
image in 3D was generated to compare with corresponding
ground truth. Then, the prostate fine segmentation step,
described in Section 3.4, was performed to obtain the final
prostate surface. As the resulting image in 3D of the coarse
segmentation step is a satisfactory initialization for the 3D
Chan-Vese active contour model, few iterations are needed
to achieve convergence. In this research, the number of
iterations was defined equal to 20, as it was noticed in
experiments that reached the best results.

Table 6 describes the results obtained in each step by
the proposed method for automatic prostate segmentation
on 3D MRI scans of the test subset. The results include
the dice similarity coefficient (DSC), relative volume
difference (RVD), sensitivity (SEN), specificity (SPE), and
accuracy (ACC).

Experimental results shown in Table 6 demonstrate the
importance of the fine segmentation step since all evaluation
metrics have improved. The mean DSC of 84.86% with
a minimum DSC of 78.56% and a maximum DSC of
93.46% represents an accurate segmentation result. Positive

mean RVD of 14.53% reflects an over-segmentation of the
prostate. This is due to the model training ignoring the
superpixels of the border. Finally, the mean SEN, mean SPE,
and mean ACC present a good precision of voxels classified
correctly. All results exceeded 90%.

4.5 Case study

Figure 13 illustrates a success case obtained by the proposed
method on the test subset. In this MRI scan, the evaluation
metrics were as follows: DSC of 93.46%, RVD of 6.3%,
SEN of 96.40%, SPE of 98.78%, and ACC of 98.52%.
The final prostate surface is highlighted in green and the
ground truth is outlined in red. Moreover, for the same
success case, Fig. 14 displays the results reached in each
step of the method and its corresponding ground truth in
a series visualization and Fig. 15 presents the final result
in a 3D view. It is noticed that the volume obtained by
the coarse segmentation step is very close to the final
volume, demonstrating to be a good initialization for the
fine segmentation step.

Nevertheless, Fig. 16 exhibits a fail case obtained by the
proposed method on the test subset. The evaluation metrics
for this MRI scan were as follows: DSC of 78.56%, RVD
of 42.73%, SEN of 92.91%, SPE of 99.27%, and ACC of
99.17%. The final prostate surface is highlighted in green,

Fig. 15 Example of a success case in a 3D view
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Fig. 16 Example of a fail case.
Final prostate surface is
highlighted in green and the
ground truth is outlined in red

and the ground truth is outlined in red. Although a mismatch
was found in some MRI slices, the final prostate surface is
alike the ground truth in the middle region. Additionally, for
the same fail case, Fig. 17 shows the results achieved in each
step of the method and its corresponding ground truth in
series visualization and Fig. 18 illustrates the final result in
a 3D view. In this case, the fine segmentation step removed
regions that were erroneously segmented and it incorporated
regions that had been lost by the coarse segmentation step.

5 Discussion

Considering the fact that none of the related work described
in Section 2 made available the database divided into the
three subsets (training, validation, and testing), an accurate
and trustworthy comparison becomes difficult to perform.
Since the only piece of information available in the works
is the database used and the number of MRI scans. Table 7
synthesizes the results recently published in the literature
with the result obtained by the proposed method based on
the DSC metric.

Analyzing these works, the proposed method obtained
better results than some works [4, 27, 43, 47]. However,
only Li et al. [27] used the Prostate 3T database. Besides,
our method does not impose limitations on the use of
the probabilistic atlas in the light of the fact that it
generates a probabilistic atlas of any dimension from an
initial probabilistic atlas. Some works [8, 18, 23, 48, 49,
53, 54] presented DSC higher than that of our method.
Nonetheless, these works used private databases. Generally,
these databases have MRI scans acquired using the
same equipment with well-defined acquisition protocols.
Furthermore, the works of [48, 49, 53, 54] require human
intervention to achieve final segmentation.

Although the works of [20, 21, 52, 57] had results
superior to ours, some of these works had to modify
the spatial resolution of MRI scans using registration
techniques, thus losing real information from the images.
Also, only the PROMISE12 database was used in the
evaluation of these works, generally with a number of MRI
scans in the test subset less than ours (11 MRI scans).
Analysis of published works revealed that the proposed
method obtained results as good as to the most reliable

Fig. 17 Example of a fail case.
(a) Coarse segmentation result.
(b) Fine segmentation result. (c)
Corresponding ground truth
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Fig. 18 Example of a fail case in a 3D view

previously reported works, as shown in Table 7, though
using two completely different MRI databases. The findings
obtained indicated the following:

1. The use of the IMSLIC algorithm was promising for
the clustering of the pixels in MRI scans. It reduced
the computational and memory costs while potentially
increasing the detection accuracy, as it is more robust to
noise than pixels-based method.

2. The construction of a probabilistic atlas of any
dimension presented a wide variety of the prostate
anatomy. This made it possible to use MRI scans with
different resolutions, making the method more robust
and generic.

3. The combination of two parallel convolutional neural
networks, each fed by the superpixel in the original MRI

scan and the probabilistic atlas, aggregated the texture
and spatial features in the model learning.

4. The application of the PSO algorithm to optimize some
hyperparameters in the DCNN model eliminated the
requirement of a manual search. Besides, it obtained
better results than the hyperparameters found in the
literature.

5. The use of Chan-Vese active contour model refined the
prostate surface when the superpixel failed to find the
boundary of the prostate accurately.

6. Lastly, it is important to emphasize that the databases
used in our research are extremely complex and diverse,
containing countless different cases of MRI scans.

It is also worth mentioning the performance of the
proposed method in noise images, a common problem in
medical imaging [40–42]. The databases contain MRI scans
acquired by 1.5T and 3.0T scanners. Although the 3.0T
provides better quality images, they have a higher likelihood
of artifacts appearing in the image due to the movement
of blood or fluid and produces more noise than the 1.5T
scanner [50]. Nevertheless, the proposed method obtained
good results, because the fine segmentation step used a
region-based active contour method that exploits texture
features inside the curve.

As for limitations, the proposed method has two
drawbacks: (1) the superpixels are treated individually in the
classification step, described in Section 3.3.2, and thus the
explored deep features do not reflect the holistic information
ie the prostate anatomy, and (2) the high computational cost
in processing (clustering and classification) of non-prostate

Table 7 Comparison with
other works with reference to
the prostate segmentation

Method Work Database Type DSC (%)

Probabilistic atlas Li et al. [27] Prostate 3T Automatic 80.7

Stojanov et al. [43] Prostate MR Image Automatic 81

Tian et al. [47] Private Automatic 83.4

Korsager et al. [23] Private Automatic 88

Active contour Al et al. [4] Prostate MR Image Semi-automatic 80

Tian et al. [48] Private Semi-automatic 89.3

Yang et al. [53] Private Semi-automatic 91.45

Tian et al. [49] Private Semi-automatic 88.9

Yang et al. [54] Private Semi-automatic 92.05

Deep Learning Yan et al. [52] PROMISE12 Automatic 89

Guo et al. [18] Private Automatic 87.8

Jia et al. [20] PROMISE12 Automatic 88

Yu et al. [57] PROMISE12 Automatic 89.43

Cheng et al. [8] Private Automatic 89.77

Jia et al. [21] PROMISE12 Automatic 91

Proposed method Prostate 3T and PROMISE12 Automatic 84.86
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superpixels away from the prostate region, since the prostate
is usually located in the center of the MRI slice.

6 Conclusion

The present research proposed an automatic coarse-to-fine
segmentation method for prostate on 3D MRI scans. As
for the contributions hereby, the coarse segmentation step
combining local texture and spatial information using the
IMSLIC algorithm and probabilistic atlas in a DCNN model
jointly with the PSO algorithm to classify the prostate and
non-prostate superpixels is presented. Thereupon, the fine
segmentation uses the 3D Chan-Vese active contour model
to obtain the final prostate surface. To the best of our
knowledge, this is the first method that applies the IMSLIC
algorithm to the problem of MRI scan segmentation.

The results obtained indicate the high performance-
potential of the proposed method compared to those
previously published. Besides, the proposed DCNN model
in conjunction with the PSO algorithm eliminates the
explicit feature extraction step and the manual definition
of optimal hyperparameters. Although the databases used
in this method assure a high diversity in the variation of
prostate anatomy, further experiments with other databases
are needed to improve the proposed method and make it
more robust and generic.

Future works include analyzing the supervoxels extrac-
tion using the IMSLIC algorithm. Apart from the aforemen-
tioned, the application of a swarm intelligence technique
to find the best parameters of the IMSLIC algorithm to
segment the prostate on 3D MRI scans. Also, using the
PSO algorithm to build the DCNN architecture instead of
optimizing only the hyperparameters.
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their financial support.
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received PhD in Informat-
ics from Pontifical Catholic
University of Rio de Janeiro
- Brazil in 2004. Currently,
He is a Professor at the Fed-
eral University of Maranhão
(UFMA), Brazil. He works
with machine learning and
image processing, specifically
on medical imaging.

Anselmo Cardoso de Paiva
received PhD in Informatics
from Pontifical Catholic Uni-
versity of Rio de Janeiro -
Brazil in 2002. Currently, he is
a Professor at the Federal Uni-
versity of Maranhão (UFMA),
Brazil. He works with com-
puter graphics and image pro-
cessing, specifically on medi-
cal imaging.

Elton Anderson Araújo
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