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Abstract
Lung cancer is the deadliest cancer worldwide. It has been shown that early detection using low-dose computer tomography
(LDCT) scans can reduce deaths caused by this disease. We present a general framework for the detection of lung cancer in chest
LDCT images. Our method consists of a nodule detector trained on the LIDC-IDRI dataset followed by a cancer predictor trained
on the Kaggle DSB 2017 dataset and evaluated on the IEEE International Symposium on Biomedical Imaging (ISBI) 2018 Lung
NoduleMalignancy Prediction test set. Our candidate extraction approach is effective to produce accurate candidates with a recall
of 99.6%. In addition, our false positive reduction stage classifies successfully the candidates and increases precision by a factor
of 2000. Our cancer predictor obtained a ROC AUC of 0.913 and was ranked 1st place at the ISBI 2018 Lung Nodule
Malignancy Prediction challenge.
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1 Introduction

Cancer is the main cause of death worldwide, accounting
for 8.2 million deaths per year approximately. Lung cancer
leads this list with 1.69 million deaths per year [50]. Early
detection with the aid of low-dose computer tomography
(LDCT) scans has shown to reduce lung cancer mortality
by 16 to 20% compared with standard chest X-ray among
adults [2]. Unlike conventional X-rays, LDCT scanning
provides very detailed images of many types of tissue in
three dimensions, which avoid the overlapping of several
layers of different tissues in a single image. In January
2013, the American Cancer Society issued guidelines for
early detection of lung cancer based on a systematic review
of the evidence. These guidelines endorse a process of
shared decision-making between clinicians who have ac-
cess to high-volume lung cancer screening programs [2].
Lung cancer is a malignant lung tumor characterized by
uncontrolled cell growth in tissues of the lung [27]. This

growth can spread beyond the lung by the process of me-
tastasis into nearby tissue or other parts of the body [11].
Although the majority of lung nodules (at least 60 percent
of nodules overall) are not cancerous [23], lung cancer di-
agnosis requires the identification of non-lung tissues to be
able to perform a biopsy on them and confirm that they are
benign. Therefore, nodule detection is directly related to
cancer diagnosis. However, the consensus in lung nodule
detection by radiologists is less than 52% when detecting
nodules of any size [3]. As shown in Fig. 1, the difficulty in
the early diagnosis of lung cancer is due to the variability in
shape and size of nodules, and the high unbalance between
the nodules and other lung structures and tissues.

A great amount of research has been conducted over the
past two decades in computer-aided detection (CAD) systems
for lung cancer in LDCT scans [18, 19]. A large number of
systems for cancer detection have been proposed in the liter-
ature [48]. However, low sensitivity and high false positive
rates are still issues that prevent the use of these systems in the
daily clinical practice.

Recently, significant research has been donewith the use of
deep learning techniques, following their recent success for
detection, segmentation, and recognition on natural [12, 17,
33, 36, 39, 43] and medical [13, 21, 24, 25] images makes
inescapable the application of these machine learningmethods
for lung cancer CAD systems. Due to the variability and the
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high unbalance between nodules and other lung structures,
handcrafted features for this task are difficult. In contrast, au-
tomatically learned features from a convolutional neural net-
work yield conceptual abstractions by each layer in a hierar-
chical way and typically outperform handcrafted features.

Our general framework is shown in Fig. 2. To achieve the
goal of cancer diagnosis from a LDCT scan, we implement a
stage for pre-processing using filtering and lung extraction
from the entire volume for each subject. From the extracted
lungs, we generate nodule candidates using morphological
operations. We then use the extracted candidates to train a
three-dimensional convolutional neural network for nodule
classification and false positive reduction. With the top-
scored detected nodules, we train a cancer predictor to

produce a final malignancy score per subject. We conduct
experiments on the largest publicly available database with
individual nodule annotations, the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-
IDRI) for our nodule detector and on the IEEE International
Symposium on Biomedical Imaging (ISBI) 2018 Lung
Nodule Malignancy Prediction dataset for our cancer predic-
tor. Our computer-aided system for the detection of lung can-
cer was ranked 1st place at the ISBI 2018 Lung Nodule
Malignancy Prediction challenge [22]. In order to ensure re-
producibility of our results and to promote further research on
automated lung cancer diagnosis, our source code and pre-
trained models are publicly available at https://github.com/
BCV-Uniandes/LungCancerDiagnosis-pytorch.

Fig. 2 Proposed method: pre-processing for noise reduction and lung
extraction with a mask, candidate generation using morphological oper-
ations, nodule classification with a three-dimensional convolutional

neural network to reduce false positives and increase precision, and a 5-
way convolutional neural network to obtain a final cancer probability for
each subject

Fig. 1 Examples of annotated nodules < 3 mm on the LIDC-IDRI dataset. Left, juxtapleural nodule of diameter 1.7 mm. Right, parenchymal nodule of
diameter 2.7 mm surrounded by vessels
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2 Related work

Computer-assisted lung cancer diagnosis is divided into two
main problems, i.e., lung nodule detection and lung cancer
prediction. Several algorithms have focused on nodule detec-
tion as a critical intermediate step for the prediction of lung
cancer [9, 15, 29, 30, 41, 45]. Other approaches try to predict
cancer nodules from nodule candidate patches, avoiding ex-
plicit detection of nodules [15, 26, 34, 44, 47]. Our framework
learns an intermediate nodule detector whose detections are
then used as input for cancer prediction.

Several algorithms rely on thresholding methods and mor-
phological operations for nodule segmentation, followed by
feature extraction and classification. In 2007, Dolejsi et al. [9]
proposed an algorithm for segmentation of nodules in two
separate ways, morphological closing and thresholding, to
find juxtapleural nodules and 3D blob detector with multi-
scale filtration to locate non-pleural nodule candidates. For
classification, linear and multi-threshold classifiers were used.
In 2007, Osman et al. [30] proposed a CAD system using
template matching over the 3D volume to generate candidates.
The false positive reduction was made using connected com-
ponents and the sum of differences of densities in the sur-
rounding pixels. In 2012, Sudha et al. [41] proposed a global
thresholding algorithm following an iterative approach for
lung volume extraction. The nodule segmentation stage was
made by thresholding and morphological reconstruction.
Another method, using template matching for nodule segmen-
tation, was proposed by Tartar et al. [45] in 2013. False pos-
itive reduction was conducted with decision trees. Other algo-
rithms using morphological operations for candidate extrac-
tion and different types of classifiers for false positive reduc-
tion have also been proposed [15, 29].

In the case of deep learning strategies, few methods added
convolutional neural networks (CNN) in addition to
handcrafted features or use CNN to extract features and

classify using a different methodology [5, 49]. Some research
use deep learning but has focused on the classification of
already detected nodule candidates from the LIDC-IDRI
dataset [14, 40, 42], the LUNA16 challenge dataset (which
is based on LIDC-IDRI), and the Multicentric Italian Lung
Detection (MILD) [31] trial [7]. In these cases, the problem
is addressed as classification of nodules from given candidate
centroids that were detected with previously published CAD
systems [15, 23, 34, 40, 47]. The number of false positives to
be classified by these methods is almost 25 times less than our
extracted candidates, but the highest sensitivity reached by
these methods is around 87% (in the candidate generation
stage) for all sized nodules. Since the nodule classification
algorithms are evaluated over the total previously detected
nodules and not over the total ground truth nodules of each
subject, the classification of nodules from previously detected
algorithms is a problem with a lower difficulty degree.

Nodule detection and/or classification starting from subject
LDCT has also been studied using deep learning tools. One
common strategy is to use 2D CNN with orthogonal or con-
tinuous nodule–centered patches [4, 5, 20, 32, 34, 46] because
of its straightforward adaptation from standard CNN architec-
tures designed for detection and/or classification of natural
images [12, 17, 33, 36, 39, 43]. However, LDCT like many
other biomedical image acquisition methods incorporates 3D
information which natural images do not have and are not
exploited with 2D CNN. A better strategy is to use CNN with
3D convolutions to take advantage of the 3D information.
Several methods use 3D CNN for nodule detection, classifi-
cation, and/or stratification [10, 14, 38].

Transfer learning or the use of learned features (pre-trained
models) from different domains is a common strategy used in
deep learning when the amount of data for training is not large
enough. Pre-trained models have been used for lung nodule
feature extraction [49] and nodule classification [5, 38].

Multi-path CNN architectures are used when the context
information is considered important in the detection or classi-
fication of an object. Several methods have resorted to the use
of such architectures for nodule detection [35] and nodule
classification [6, 37].

What most methods lack is a unified strategy to diagnose
lung cancer starting from a subject LDCT. Our proposed al-
gorithm uses a single subject LDCT and outputs a probability
of cancer/non-cancer. We take advantage of the 3D informa-
tion throughout the entire method. Also, we use a multi-path
architecture (i.e., for our cancer predictor), not as a multi-scale

Table 1 Annotation statistics over 1010 subjects from the LIDC-IDRI
dataset. For this project, we use the included nodules by at least one
radiologist (i.e., total included nodules). “Included by 4 annotators” refer
to nodules included in the unblinded stage by all 4 radiologists

Total nodules 11,608 100% -

Total included nodules 6287 54.2% 100%

Included by 4 annotators 3233 27.8% 51.4%

Italic indicates the best result

Table 2 Statistics from the Kaggle DSB 2017 dataset

Total subjects 1890 100%

Subjects with public labels 1384 73.2%

Subjects without public labels 506 26.7%

Table 3 Statistics from the ISBI 2018 dataset

Total subjects 100 100%

Subjects with public labels 30 30%

Subjects without public labels 70 70%
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feature extractor–like [6, 35, 37], but to combine the informa-
tion of the highest ranked nodules from our nodule detector to
give a single diagnosis.

3 Materials

3.1 LIDC-IDRI dataset

The LIDC-IDRI dataset1 is produced by the LIDC and the
IDRI [3] with a total of 1010 subjects. It is publicly available
in DICOM format and the radiologists’ annotations in XML
markup. The annotations consist of the coordinates and the
number of radiologists that annotated each nodule (i.e., each
object in the lung region of the LDCT considered as a nodule
by a radiologist). Also, for most nodules, it included informa-
tion based on the subjective assessments of multiple experi-
enced radiologists (e.g., lesion category, nodule outlines, and
subtlety ratings) [3]. Each annotation was made by 4 radiolo-
gists in two stages, i.e., a blind stage and a second unblinded
stage where each radiologist was presented with the marks
placed by all radiologists in the blind stage. The total number
of nodules of the LIDC-IDRI dataset is 11,608. Around half
(54.2%) of the total nodules were included after the unblinded
annotation stage (i.e., 6287 nodules). For this project, we con-
sider only the included nodules (i.e., lesions labeled as nod-
ules for at least one specialist and included after the unblinded
second stage).

Table 1 shows the consensus in lung nodule detection by
the four radiologists. As we can see, only 51.4% of the nod-
ules that were included after the unblinded second stage are
detected by the 4 specialists and only 27.8% of the total nod-
ules from the blind initial stage. The consensus of 51.4%,
which we will use as human performance for nodule detection
task, shows the great difficulty of detecting early lung nod-
ules, even for trained specialists.

We divide the dataset for the nodule detector randomly into
3 fixed sub-sets, i.e., 25% of subjects for training, 25% for
validation of hyperparameters, and the remaining 50% for

final testing. We use the average precision (AP) to evaluate
the performance of our detector.

3.2 Kaggle DSB 2017 dataset [16]

The Kaggle DSB 2017 contains thousands of high-resolution
lung scans provided by the National Cancer Institute with
annotations of cancer/non-cancer for each subject. Of the total
1890 subjects, 1384 have public labels. Of the 1384 subjects
with public labels, around 25% of the subjects are labeled with
cancer. The scans are provided in DICOM format. Table 2
shows the statistics of the Kaggle DSB 2017 dataset. We use
the 1384 labeled subjects for training of the multi-pathway
cancer predictor.

3.3 ISBI 2018 lung cancer dataset

The ISBI 2018 Lung Nodule Malignancy Prediction chal-
lenge [22] use a set of 100 subjects with sequential LDCT (a
total of 200 scans; one scan was taken in year 1999 and the
second scan in year 2000 for each subject), including equal
number of cancer and non-cancer cases. This dataset uses a
subset of data from the National Lung Screening Trials
(NLST)2 [1]. The dataset provides annotations of cancer/
non-cancer for each subject, and segmentation annotations
of the index nodule (most critical nodule chosen by annotators
of each LDCT) in Neuroimaging Informatics Technology
Initiative (NIfTI) format. The dataset is divided by the chal-
lenge organizers in 30 subjects for training and 70 subjects for
testing. The labels of the 70 test subjects are not public and
evaluation is performed on the challenge server. The scans are
provided in DICOM format. Table 3 shows statistics of the
ISBI 2018 dataset.

We use the 30 subjects with public labels as validation set
for our cancer predictor. The final score is evaluated on the
entire test set in the ISBI 2018 challenge server. In our exper-
iments, we use only the year 2000 scans of all subjects. We
use the area under curve of the receiver operating characteris-
tic (AUC ROC) to evaluate the performance of our predictor.

1 LIDC-IDRI can be found at The Cancer Imaging Archive (TCIA): https://
wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

2 NLST can be found at The Cancer Imaging Archive (TCIA): https://wiki.
cancerimagingarchive.net/display/NLST

Datasets used for training and evaluation of cancer predictorUsed for nodule detector

LIDC-IDRI Kaggle DSB2017 ISBI 2018 Lung challenge
Annotations of each nodule 

per subject:

- Nodule coordinates

- Number of annotators

- Included label 

(unblinded stage)

Single annotation per 

subject:

- cancer/non-cancer

Single annotation per 

subject:

- cancer/non-cancer

Training Validation and testing

Fig. 3 Summary of the three
datasets used. LIDC-IDRI dataset
has independent nodule annota-
tions, and it is used to train and
validate the nodule detector.
Kaggle DSB 2017 and ISBI 2018
lung challenge datasets have a
single label of cancer/non-cancer
per subject, and are used to train
and evaluate respectively the
cancer predictor
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AUC ROC is the official metric from the ISBI 2018 Lung
Nodule Malignancy Prediction challenge.

The three datasets used for our model are summarized in
Fig. 3.

4 Proposed method

4.1 Nodule detector

We first present our lung nodule detector, which was original-
ly introduced in [32]. It takes as input a subject’s lung LDCT
scan and gives as output the detected nodules with high prob-
ability of being malignant.

4.1.1 Input

We generate nodule candidates for each subject over the entire
lung volume to benefit from the three-dimensional informa-
tion provided by the LDCT scans. We interpolate the original
LDCT volume into an isotropic volume in order to work with
the same voxel size for all subjects.

4.1.2 Lung volume filtering and masking

We filter the volume using a 3D median filter for noise reduc-
tion. An example of a filtered volume is shown in Fig. 4. After
filtering, we extract the lung volume with a calculated mask to
avoid unnecessary information processing, which may lead to
an increased number of false positives. This mask is produced

Fig. 5 Masking and candidate extraction process. a Calculated lung mask with thresholding and morphological operations. b Lungs after erosion. c
Lungs after opening by reconstruction. d Regional maxima calculation

Fig. 4 Volume filtering to reduce noise from the original subject’s LDCT
scan. Filtering reduces the number of false positives (circled in red). Left,
original volume and extracted objects without filtering in a zoomed patch.

In red, we show the objects that are removed with filtering. Right, filtered
volume using a 3D median filter
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for each subject with a thresholding operation. Given that
LDCT scans in the dataset were produced by different ma-
chines, a fixed threshold pixel value does not give good re-
sults. Thus, we use a linear combination of the mean and
standard deviation of each scan independently to get this val-
ue. Following thresholding, we use morphological closing to
fill borders and holes, and to remove small objects and struc-
tures connected to the image border. An example of the
resulting binary lung mask is shown in Fig. 5a .

4.1.3 Candidate generation

For candidate generation, we perform an opening by recon-
struction over the extracted lung volume.We use this morpho-
logical operation given that the candidates are light regions in
the scan. We use a marker volume created by eroding the 3D
volume with an ellipsoid. The radius of the ellipsoid is 1 pixel
and the height is the separation between two slices in each

subject’s volume. We carry out morphological reconstruction
using the marker described above and the filtered image as
mask. In addition, we calculate the regional maxima.
Figure 5b to d show the result after erosion, opening, and
regional maxima, respectively. The objective of the candidate
generation is to extract all light components (higher density
tissue) inside the lungs.

4.1.4 Nodule classification

From the regional maxima, we compute connected compo-
nents per subject and their centroids. As shown in Fig. 6, we
perform a cleaning stage of negatives around the included
nodules with an experimentally estimated radius for the train-
ing dataset (non-maximum suppression for validation and test
datasets).

We design and train a three-dimensional convolutional
neural network (3D CNN) for false positive reduction with

Fig. 7 Axial (top row), sagittal
(middle row), and coronal
(bottom row) planes of 4 sample
nodule candidates (non-nodule in
these cases). Top row, axial plane
shows a round structure with
higher density in the center of the
image. Middle and bottom row,
coronal and/or sagittal planes
show a vessel-like structure

Fig. 6 Cleaning of negatives
around the included nodules.
Top-left, computed centroids
without cleaning. Top-right,
computed centroids with
cleaning. Bottom, extracted
candidates and corresponding
labels without cleaning

1808 Med Biol Eng Comput (2020) 58:1803–1815



3D candidates (volumes centered at the calculated centroid) as
input. In contrast of 2D CNNs when using 3D convolutions,
we analyze one additional spatial dimension which is impor-
tant to differentiate nodules from other structures such as ves-
sels that may look similar in one slice independently. As
shown in Fig. 7, the axial plane of the objects (top row) shows
a centered round structure with higher density. But in sagittal
(middle row) and/or coronal (bottom row) planes, the object is
a vessel-like structure.

We define a modular network for systematic exploration of
CNN architectures. It consists of groups of convolutional
layers with filters of a fixed size 3 by 3, batch normalization,
and rectified linear unit (ReLU) activations [28]. ReLU is used
to create non-linearities that reduce overfitting and regularize
training. In the validation experiments, we change the number
of convolutional layers before each pooling layer, the number
of filters, and the value of hyperparameters such as batch size
and learning rate. Also, the number of max. pooling layers is
changed depending on the input size of the network, resulting
in feature maps in the last convolutional layer with size from 2
× 2 to 12 × 12. Sizes 24 × 24, 12 × 12, and 6 × 6 refer to the
size of the feature responses, i.e., 24 × 24 as the input size, 12
× 12 after the first max. pooling, and 6 × 6 after the second
max. pooling. The architecture of the network with best results
is shown in Fig. 8.

4.2 Cancer prediction

4.2.1 Predictor input

For a subject to have lung cancer, one malignant nodule is
enough. However, in practice, the malignancy of a nodule is
determined by a biopsy of a sample of the nodule tissue. Our
proposed method relies only on the visual information of the

LDCT. Therefore, we want our predictor model to use as
much relevant information (i.e., detected nodules) as we can
provide from our nodule detector. We feed our predictor mod-
el with the five top-scored nodules from our nodule detector.
The decision of the number of inputs was given following this
train of thought:

1. Because our nodule detector is not perfect, we should
avoid feeding our predictor model with only the top-
scored nodule. If the top-scored nodule is a bad detection,
our complete method will fail to predict lung cancer. Also,
we are assuming that the analysis of multiple detected
nodules by our predictor (in contrast to using only the
top-scored detected nodule) may help in the decision
making of whether a subject has cancer or not.

2. Too many inputs (top-scored nodules) to our predictor
model may be unnecessary due to all irrelevant detected
objects that are non-nodules.

3. The upper boundary for the number of inputs to our pre-
dictor model is limited in any case but the amount of
memory we can allocate in a single GPU.

4. Because the five top-scored detected nodules of every sub-
ject in the dataset received a score of at least 0.90 by our
nodule detector, a smaller number of inputs were not
considered.

4.2.2 Multi-path convolutional neural network

We train a multi-path network of 5 paths, all with the same 3D
CNN architecture of the nodule classification network, as
shown in Fig. 8. This cancer predictor is trained on the
Kaggle Data Science Bowl 2017 challenge dataset (around
1400 subjects with labels of cancer/non-cancer for each

Fig. 8 Neural network architecture of twelve 3D convolutional layers
with best results from our modular design of 3 × 3 × 3 filters. Sizes 24
× 24, 12 × 12, and 6 × 6 refer to the size of the feature responses: 24 × 24

as the input size, 12 × 12 after the first max. pooling, and 6 × 6 after the
second max. pooling

Fig. 9 Mask subtractor voxel by voxel between year 2000 LDCT and
year 1999 CT. A subtraction voxel by voxel is done between the nodule
of the year 2000 LDCT and 1999 LDCT of each subject voxel-wise

subtraction. The number of voxels Voxel count resulting from the sub-
traction is then passed through a sigmoid (Sigmoid) to produce a proba-
bility between 0 and 1 (mask score)
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subject CT) and validated on the data from the ISBI 2018
Lung Nodule Malignancy Prediction challenge (30 subjects).
As the input of each of the 5 paths of the multi-path network,
we use the 5 top detected nodules in the previous stage. For
training, we perform data augmentation by a factor of 20 tak-
ing 5 random nodules from the 10 top scoring nodules of each

subject. In the test set, only the 5 top-scored nodules are used.
Figure 2 (right) shows our cancer predictor architecture.

4.3 Post-processing

An additional post-processing stage is applied using the re-
leased test segmentations by the ISBI lung nodule malignancy
prediction challenge of the index nodule of each subject. A
subtraction voxel by voxel is done between the nodule of the
year 2000 LDCT and 1999 LDCT of each subject. The result of
the subtraction is then passed through a sigmoid to produce a
probability between 0 and 1. Figure 9 shows the mask subtrac-
tion of the nodule masks. Then, a linear combination (Fig. 10)
with the result of the trained cancer predictor and the result
from the subtraction gives us the final malignancy probability

Fig. 11 Candidate modalities. a
32 × 32 × 3 candidate with axial,
sagittal, and coronal planes. b 32
× 32 × 9 candidate using 9
consecutive z-planes. c 24 × 24 ×
24 candidate (best result)

Fig. 10 Linear combination used to produce final malignancy score

Fig. 12 Comparison between
false positive reduction methods.
HOG + SVM and best networks
using convolutions in 2D, 2.5D
(2D convolutions over 3D
candidates), and 3D

1810 Med Biol Eng Comput (2020) 58:1803–1815



of each subject. The linear combination parameter x is adjusted
empirically on the training set of the ISBI 2018 Lung Nodule
Malignancy Prediction challenge dataset. When sequential
LDCTs are not available, the output of our method is the cancer
predictor score without the post-processing stage.

5 Experiments

5.1 Candidate generation

For candidate generation, we test different configurations of
thresholding equations, several values for the erosion ellip-
soid’s radius and height, and different input connectivities.
The best recall we obtained for this stage is 99.6% with
3154 included nodules (out of 3167) from a total of
25,221,581 generated candidates from the training/validation
set. That gives a total of 25,218,427 false positives.

As stated before, the total amount of candidates for the
training/validation set is around 25 million with approximate-
ly 3150 included nodules, which is extremely unbalanced. As
a consequence, we perform data augmentation for training
with image translations and horizontal reflections for each
candidate. From the 3150 included nodules, we augment (by

a factor of 216) to around 700,000 to have a representative
number of positive nodules for training the CNN. We select
randomly the same number of negatives (non-nodules) after
augmentation to balance the training dataset. Therefore, our
training/validation set is composed of around 1.4 million
candidates.

5.2 Nodule classification

Due to the variability of intensities in a LDCT scan and the
grayscale nature of the images, we consider as a baseline an
histogram of oriented gradients (HOG) for feature extraction
of each candidate and train a support vector machine (SVM)
for false positive reduction, because of its proven good per-
formance as shape feature discriminator [8]. Although preci-
sion improves (from 0.0062 to 0.021), the number of false
positives remains high.

Therefore, we decide to train a convolutional neural net-
work to increase precision. We test 2D and 3D convolutions.
For the 2D convolutions, we use 32 × 32 × 3 candidates as
input for the network, using the axial, sagittal, and coronal
planes centered on the calculated (Section 4.1.2) centroid
(see Fig. 11a). We take this first approach for its simplicity
and low GPU memory usage. For the second case, we use 2D
convolutions on 32 × 32 × 9 candidates, using the 9 consec-
utive z-planes from the centroid (see Fig. 11b). In this case, we
want to include more spatial information of each candidate
and increase the precision. We also use 3D convolutions on
32 × 32 × 9 and other different candidate input sizes.

We use AP, which is the area under the precision-recall
curve, to evaluate the performance of our nodule detector.
We get best results using 3D convolutions with filters of size
3 × 3 × 3 and input volume size of 24 × 24 × 24. As shown in
Fig. 12, we increase precision for all recall values with the 3D
CNN approach.

In Table 4, we report results using different false positive
reduction methods: HOG + SVM, bi-dimensional input nod-
ule candidates with bi-dimensional convolutions (CNN 2D),
three-dimensional input nodule candidates with bi-
dimensional convolutions (CNN 2.5D), and three-
dimensional input nodule candidates with three-dimensional
convolutions (CNN 3D). The average precision obtained with
deep learning methods (i.e., CNN 2D, 2.5D, and 3D) isFig. 13 Qualitative results of high scored nodule detections

Table 4 Average
precision obtained with
different false positive
reduction methods of the
nodule detector

Method AP (%)

No FP reduction method 0.006

HOG + SVM 0.021

CNN 2D 9.3

CNN 2.5D 16.2

CNN 3D 41.9

Italic indicates the best result

Table 5 Results using different candidate size as input for 3D CNNs

Input size # voxels AP (%)

32 × 32 × 9 9216 13.2

16 × 16 × 16 (isotropic) 4096 32.0

24 × 24 × 24 (isotropic) 13,824 41.9

Italic indicates the best result
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increased to a greater extent than using HOG and SVM. CNN
3D gives the best results.

Figure 12 shows precision-recall curves of the results evalu-
ated in the test set of the different methods used. We can see that
the precision is greatly increased for all recall values using
convolutional neural networks. As shown in the qualitative re-
sults in Fig. 13, our nodule detector is able to detect small paren-
chymal and juxtapleural nodules of clean and noisy LDCT scans.

5.2.1 Nodule classification CNN design experiments

Table 5 shows results with different input size for the 3DCNN
approach. The first approach for 3D convolutions is using
candidates of size 32 × 32 × 9 which is the input size that
gives best results using 2D convolutions. The AP that we

obtain with this candidate size is less than using 2D convolu-
tions (13.2% with 3D convolutions and 16.2% with 2D con-
volutions). Then, we use smaller candidate size (16 × 16 × 16
instead of 32 × 32 × 9), but with more z-planes (16 planes
instead of 9). The result is better than using 32 × 32 × 9
candidates even with less than half number of voxels.
Finally, we increase the candidate size to 24 × 24 × 24 with
which we obtain the best results.

Regarding the batch size, the trend is that the performance
is better when it is smaller; the final batch size chosen is 16. As
for the number of filters, we obtain the best results when the
number (128 filters) is held constant in all layers. As for batch
normalization, the performance of the network increases con-
siderably after using it.

We obtain the best results by employing a neural network
consisting of twelve 3D convolutional layers and one fully
connected layer before the softmax that produces a probability
of nodule/non-nodule. We also use max pooling after the 3rd
and 7th layers. We use batch normalization for all
convolutional layers, and the activation function for each
one is a ReLU. The network architecture is shown in Fig. 8.

We train the network from scratch for 15 epochs using
stochastic gradient descent and backpropagation with a fixed
learning rate of 1e-4. The evaluation is performed on the test
set of the LIDC-IDRI with an AP of 41.9%.

5.3 Cancer prediction

We use the same network architecture proposed as nodule
detector for each of the paths of the cancer predictor in order
to take advantage of the trained nodule feature extractors. We
perform different tests changing the number of pathways (3, 5,
and 10 lanes for the 3, 5, and 10 top-scored nodules of each
subject), and using different amounts of data augmentation of
the Kaggle DSB 2017 dataset. The best result on the valida-
tion dataset (30 training subjects of the ISBI 2018 dataset) is

Table 6 AUC of the ROC curve obtained on the validation and test set
with and without post-processing. Validation set corresponds to the ISBI
2018 Lung Nodule Malignancy Prediction challenge training set with
public annotations. Test set corresponds to the ISBI 2018 Lung Nodule
Malignancy Prediction challenge test set with private annotations. The
test set results are evaluated on the challenge server

Method AUCROC (%)

Validation set

5-way multi-path cancer predictor 88.7

5-waymulti-path cancer predictor + 3Dmask subtraction 93.7

Test set (private annotations)

5-waymulti-path cancer predictor + 3Dmask subtraction 91.3*

Mehrtash et al. (2nd place) 89.7**

Italic indicates the best result
* Our method was ranked 1st place at the ISBI 2018 Lung Cancer
challenge
**Method ranked 2nd place
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Fig. 14 Modified predictor model
using extracted features from
previous layers. We use the
extracted features from the last
layer of each network block,
apply convolutions to each one,
and concatenate with the last
convolutional layer. This
modification is applied to all 5
pathways of our multi-path pre-
dictor model

1812 Med Biol Eng Comput (2020) 58:1803–1815



obtained using the 5 top-scored nodules from our nodule de-
tector as input of a 5-way 3D CNN, data augmentation by a
factor of 20 of the Kaggle DSB 2017 dataset for the training of
the multi-path network, and a 3D mask subtraction post-pro-
cessing. We train our multi-path predictor model for 5 epochs
using as initialization parameters the trained weights from our
detector. Best results are obtained using an increased learning
rate of 1e-3, a batch size of 16.

In practice, it is easier to get a single LDCT of a subject than
having sequential LDCTs for multiple years. Our method can
predict cancer also with a single LDCT by removing the mask
subtraction. Table 6 shows the final results of our method on
our validation set with and without mask subtraction and on the
ISBI 2018 lung challenge test set. Performance by method
ranked 2nd place at the challenge and is included in Table 6.

Our model is able to successfully extract features from radi-
ologist annotations (nodule level annotation of the LIDC-IDRI)
and use them in conjunction with pathology annotations (DSB
2017 annotations). We show that using nodule detection re-
duces the difficulty of cancer diagnosis from a subject LDCT.
The method ranked 2nd place3 at the ISBI 2018 Lung Cancer
challenge and also uses LIDC-IDRI nodule level information in
conjunction with DSB 2017 patient level annotations.

Additional experiments are conducted after the ISBI 2018
Lung Cancer challenge using extracted features from previous
layers in the multi-path predictor CNN. As shown in Fig. 14,
we use the extracted features from the last layer of each network
block (each network block as described in Fig. 8). Then, we
apply a convolution layer with a stride value of 4 to the last
layer of the 24 × 24 block, and convolution with a stride value
of 2 to the last layer of the 12 × 12 block last layer. The two
resulting layers (of size 6 × 6 each) are then concatenated with
the last layer of the 6 × 6 block. This modification is applied to
all 5 pathways of our multi-path predictor model. Using extract-
ed features from previous layers exploits the global context
information of the image improving the representational power
of the model. With this modification, our model is able to in-
crease its performance by 4%. These results are evaluated over
our validation set (ISBI 2018 Lung Cancer challenge test labels
are not publicly available). Results using extracted features
from previous layers are presented in Table 7.

6 Conclusion

Although the problem of nodule detection is extremely unbal-
anced with high intra-class variance, our approach is able to
detect lung nodules and predict cancer effectively. We design
a candidate proposal method with almost perfect recall. In
addition, we train a three-dimensional convolutional neural
network that successfully classifies nodules from non-
nodules and increases the precision by a factor of 2000 (com-
pared with the HOG + SVM baseline) achieving a close to
human performance in this challenging task. As for cancer
diagnosis, we train a 5-way cancer predictor which was
ranked 1st place at the ISBI 2018 Lung Nodule Malignancy
Prediction challenge4. In order to ensure reproducibility of our
results and to promote further research on automated lung
cancer diagnosis, our source code and pre-trained models are
publicly available at https://github.com/BCV-Uniandes/
LungCancerDiagnosis-pytorch5.
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