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Abstract
X-ray images play an important role in providing physicians with satisfactory information correlated to fractures and
diseases; unfortunately, most of these images suffer from low contrast and poor quality. Thus, enhancement of the image
will increase the accuracy of correct information on pathologies for an autonomous diagnosis system. In this paper, a
new approach for low-contrast X-ray image enhancement based on brightness adjustment using a fuzzy gamma reasoning
model (FGRM) is proposed. To achieve this, three phases are considered: pre-processing, Fuzzy model for adaptive
gamma correction (GC), and quality assessment based on blind reference. The proposed approach’s accuracy is examined
through two different blind reference approaches based on statistical measures (BR-SM) and dispersion-location (BR-
DL) descriptors, supported by resulting images. Experimental results of the proposed FGRM approach on three databases
(cervical, lumbar, and hand radiographs) yield favorable results in terms of contrast adjustment and providing satisfactory
quality images.

Keywords X-ray · Enhancement · Fuzzy logic · Gamma correction · Statistical measurement · DL scatter

1 Introduction

Improving medical imaging has revolutionized the medical
field by improving image quality, and thus, helping doctors
diagnose patients’ diseases [11, 23]. Indeed, the processing
of these images allows doctors to see fine details of the
images that are difficult to detect or distinguish just by
using the naked eyes. There are different medical imaging
modalities such as computed tomography (CT), magnetic
resonance imaging (MRI), positron emission tomography
(PET), X-ray, PET-CT, and biomarkers. Among these,
digital X-rays have been widely used for image acquisition
in the field of medical imaging because they are reliable and
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affordable [13, 23]. X-ray imaging has been accepted as a
diagnosis tool to facilitate fast checkup for the doctors. It
displays a wide range of potential information and details
regarding the patient’s health. The output scan pictures
are examined by practitioners where the symptoms can be
analyzed just by looking at these images. In other words,
X-rays are essential for the management of various diseases
associated with high mortality since they are used to guide
the diagnosis and then to plan the therapeutic intervention.

The appropriate visual characteristics that determine the
quality of radiological images are density and contrast.
A specific medical test should never influence a correct
diagnosis. Although these images contain large amount
of information, the details could be unclear and the
contrast is low in most cases [34]; the main causes of the
poor quality of such images come from the limitation of
acquisition devices, transmission via a noisy channel and
defective memory locations in equipments, and insufficient
lighting during image capture or adverse external conditions
during image acquisition [42]. Thus, the image may be
affected by contrast, noise, loss of information, insufficient
illumination, blur, and incorrect color balance [36].

Improving contrast of images and sharpness of details
while suppressing noise is therefore considered a neces-
sity in the medical field [34]. Image enhancement involves
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manipulating an image by modifying its attributes to pro-
duce more appropriate and meaningful result for a specific
task and human viewer. Also, image optimization aims to
improve the interpretability of the information contained in
images for viewers and provide better information for other
automatic image processing approaches, such as segmenta-
tion, detection, and recognition. The images, after improve-
ment, are transformed into an appropriate representation of
the subtle details and without undesirable deterioration [36].

1.1 Related works

Image enhancement has become an innovation issue that
covers wide topics and can be applied to different domains.
It can be classified into two categories: spatial domain
methods which directly deal with image pixels to achieve
desired enhancement and frequency domain methods that
utilize Fourier transform technique [5, 13, 15, 22]. Here,
this study reviews current approaches for brightness and
contrast adjustment–related works invariant for image and
X-ray enhancement.

1.1.1 Enhancement via conventional approaches

Among the works that have focused on image enhancement
using conventional approaches, [16] overcame the problem
of the typical histogram equalization (HE) by proposing
a novel extension referred to as the mean preserving bi-
histogram equalization (BBHE). The main objective of the
proposed algorithm is to preserve the mean brightness of the
input image while enhancing its contrast.

The authors in [40] have proposed histogram-
modified contrast limited adaptive histogram equalization
(HMCLAHE) which incorporates histogram modifica-
tions as an optimization technique and contrast limited
adaptive histogram equalization (CLAHE) [45] to adjust
and enhance the level of contrast giving the output image
a strong contrast and bringing the local details for more
relevant interpretation.

The dynamic histogram equalization (DHE) method
[1] was developed to take control over traditional HE
for appropriate contrast enhancement of images without
introducing any severe side effects. The work presented
in [39] proposed a scheme based on a generalization
of histogram equalization for adaptive image contrast
enhancement.

Other works focused on using filtering techniques for
image enhancement. The authors in [9] developed a contrast
enhancement method using adaptive high-pass (HP) filter
combined with low-pass (LP) filter to obtain an adaptive
image enhancement filter. A combination of wiener [19] and
median [20] filters along with HE and gamma correction
(GC) was proposed in [41] to remove salt and pepper noise,

enhance the image contrast, and maintain the brightness
level.

In [12], a method that modifies histograms and enhances
contrast in digital images, referred to as AGCWD (adaptive
gamma correction with weighting distribution), was pro-
posed. This automatic transformation uses adaptive gamma
correction to increase the low intensity and avoid decrement
of the high intensity. Then, the weighting distribution func-
tion is applied to modify the statistical histogram and lessen
the generation of adverse effects and probability distribution
of luminance pixels.

1.1.2 Enhancement using fuzzy logic

Fuzzy logic is a technique that has proved its effectiveness
in image enhancement and has yielded advantageous
results. The authors in [35] proposed a combination of fuzzy
models for nonlinear filtering and edge detection to enhance
and address low-contrast and nonuniform illumination in
images.

The authors in [31] proposed an algorithm for contrast
enhancement and natural characteristic preservation of
images. To this end, the fuzzy similarity index (FSI) and
fuzzy contrast factor (FCF) were used to develop fuzzy
measures of dissimilarity of pixels. Based on FCF, a fuzzy
dissimilarity histogram is developed for global contrast
enhancement and incorporation of contextual information
of the image. FSI and coefficient of the covariance are
used to develop a new fuzzy membership function. Then, a
new contextual intensity transfer function using contextual
information along with intensity is introduced.

The work cited in [10] dealt with low-contrast and
nonuniform brightness grayscale images. The proposed
fuzzy enhancement technique introduced a contrast factor
used to divide the degraded image into bright and dark
regions. The enhancement process is then performed
separately according to the image’s respective regions in
order to preserve brightness and details without amplifying
existing noises.

In [14], a fuzzy-based adaptive contrast enhancement
(FACE) method is proposed. It is capable of treating each
pixel differently based on its neighborhood characteristics
by computing contrast gain values using a fuzzy inference
system. FACE has advantages in dealing with noise
amplification and increasing image sharpness. It has a
limited level of contrast enhancement and a deficient
improvement of image brightness.

The authors in [21] focused on image brightness
preservation while improving local contrast of the original
image. Their fuzzy logic–based histogram equalization
(FHE) method uses fuzzy set theory to compute fuzzy
histogram. Then, the fuzzy histogram is separated into two
based on the median value of the original image. Finally, the
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contrast is improved by applying HE independently on each
subhistogram.

In [30], a new method of contrast enhancement is
proposed using fuzzy logic interpolation. This method
defines pixel intensity level transformation function from a
set of locally stretched pixel intensity.

A brightness preserving dynamic fuzzy histogram equal-
ization (BPDFHE) method [38] was introduced as an
enhanced version of brightness preserving dynamic his-
togram equalization (BPDHE) [17] to improve its brightness
preserving and contrast enhancement abilities while reduc-
ing its computational complexity. Fuzzy statistics of digital
images are used for their representation and processing in
order for the technique to handle the inexactness of gray
level values in a better way.

1.1.3 X-ray brightness adjustment methods

X-ray images are mainly used for diagnosis purpose;
although they have a major impact in the medical field,
limited works have focused on their enhancement. Among
these, the work cited in [23] aims to develop a system that
automates the image enhancement process by implementing
HE, GC, and log transformation (LT) using image statistics.

In [18], the authors have proposed adaptive contrast
enhancement algorithms, which are based on the segmenta-
tion of the image area with a relatively high density of dark
elements.

The paper [34] proposes a new type of homomorphic
filter using a total variation model as a transfer function
offering balance between brightness adjustment and detail
improvement.

The authors in [11] presented an algorithm that includes
two-step filtering and contrast enhancement for radiological
images. They proposed a method using an adaptive median
filter and a bilateral filter. This method removes the mixed
noise that contains Gaussian and impulsive noises, while
preserving important structures (e.g., edges) in images.
Then, the contrast of the image is improved using grayscale
morphology and CLAHE.

The AFELCE method, short for adaptive fuzzy exposure
local contrast enhancement, proposed in [36], is specifically
designed to improve the contrast by using specific
algorithms for different regions. The AFELCE technique
successfully enhanced the contrast of 300 low-contrast and
nonuniform lighting images taken from three databases,
namely standard, underwater, and microscopic human
sperm (MHS) images.

The work cited in [25] focused on spine X-ray
enhancement by employing GC as a nonlinear contrast
adjustment scheme for noise reduction. This was achieved
by investigating the GC filter with variable gain factor
value; then, a new algorithm for adaptive gain factor

detection was developed based on statistical pixel-level
features extraction and traditional artificial neural networks
model as a classifier to find the best gain factor.

1.2 Contribution

State-of-the-art X-ray screening systems for medical appli-
cations offer a variety of “image enhancement” functions
as color inversion, edge-enhancement, and indirect con-
trast enhancement techniques. They are often encouraged
because they bring details that are obscured or highlight cer-
tain features, but still face various problems and challenges
in improving computer radiography [25, 26]. Thus, this
work presents an additional effort that was made to study the
effect of the modeling approach for adjusting the contrast
of radiographic images and is compared with the previous
studies. The aim of this work is to establish a framework
that adaptively enhances contrast and quality of X-rays for
a better diagnosis procedure in medical usage, with the pri-
mary goal of distinguishing between regions of interest and
background-based contrast adjustments. The main objec-
tive of this work is to design a new FGRM approach based
on GC filter and fuzzy logic model that is effective for
nonuniform brightness and contrast adjustment in cervical,
lumbar, and hand X-rays. Various advanced methods such
as BPDFHE, GC, LT, mean filter, median filter, contrast
stretch (CS), CLAHE, HE, and AGCWD are examined to
evaluate the FGRM approach. Blind references based on
two modes including statistical measure and DL descriptor
are examined to validate the proposed approach.

The main contribution here can be considered as follows:
(1) the FGRM shows robust results with all examined
databases that suffer from low contrast, compared with the
previous studies, and (2) the FGRM reflects good results
in both subjective and objective measurements, contrary to
other methods where both measurements are not correlated
in most cases.

The paper organization is as follows: Section 2 focuses
on the conceptual framework and methodology of the
proposed approach. The experimental results are presented
in Section 3, overall performance is discussed in Section 4,
and concise conclusions are presented in Section 5.

2Methodology

2.1 X-ray databases

Two types of X-ray images were examined in this study. The
first type refers to the human spine containing 242 cervical
and lumbar digital radiographs obtained from the second
National Health and Nutrition Survey (NHANES II) -
National Institutes of Health (NIH) [25]. Figure 1a, b shows
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Fig. 1 A sample of X-ray images for different subjects. a Cervical. b Lumbar. c Hand

type 1 samples comprising cervical (C1 to C7 vertebrae) and
lumbar (L1 to L5 vertebrae), respectively. This collection
of data is useful for analyzing and assessing (a) the
irregularity of a bone fracture [4], (b) disk space narrowing
degradation [24], (c) identify congenital abnormalities and
spinal curvatures such as kyphosis or scoliosis, and (d) can
also be performed to diagnose causes of back or neck pain,
dislocation of vertebrae, or more importantly, bone injuries
and tumors.

The second type concerns 180 samples of human’s left
hand taken from Children Hospital Los Angeles, consisting
of 19 categories of age (newborn, age 1 to 18) coupled with
eight categories of race and gender including Caucasian,
African-American, Hispanic, and Asian for both man and
woman. This type of data is useful for assessing and
predicting bone age through the phalangeal and carpal
bones [6], as shown in Fig. 1c [32, 44]. In addition, these
predictions and assessments are crucial for the diagnosis
and assessment of growth and endocrine disorders, the
prediction of adult size for small patients, or when hormone
therapy is used.

Unfortunately, the datasets collected are of low contrast
and quality; they do not provide correct information on
pathologies that interest medical researchers. Thus, the
proposed solution increases the contrast and enhances
the quality of X-ray images to provide sufficient visual
information to the radiologist.

2.2 Proposed solution

The basic concept of the proposed solution, based on
fuzzy gamma reasoning model (FGRM) for improving
X-ray image quality for medical purposes, is pre-
sented in Fig. 2. Three steps were used to construct
the proposed FGRM algorithm: (1) pre-processing,
(2) fuzzy model to predict adaptive GC gain, and

(3) image quality evaluation using the adaptive
GC.

2.2.1 Preprocessing

The idea behind the proposed algorithm began with the
visual inspection of the three datasets used, of poor
quality due to the uneven distribution of brightness and
illumination. Thus, it is possible to improve the quality
of these images by using filtering processes that work
adaptively according to local characteristics [26]. To
do this, the first step can be performed by applying
adaptive equalization of the histogram with limited contrast
(CLAHE) to the input image. Second, the resulting image is
then processed by extracting two similar blocks, defined as
foreground (FG) and background (BG), as shown in Fig. 2
(subdivision block). FG is considered as the block size of
the windows (1/n × 1/m, n and m are the height and the
width of the image, respectively) located in the center of the
image, representing the highest possible brightness density
of the bone. While BG is considered, with the same block
size, as the upper-right corner, representing the background
brightness density of the image. The average intensities
of both blocks were examined as inputs to the fuzzy
model.

2.2.2 Fuzzy model

Fuzzy logic is a computational paradigm that allows
manipulating information and reasons in a very sim-
ilar way to human reasoning [4]. Fuzzy image pro-
cessing is a form of information processing for which
both input and output are images. The proposed system
for low-contrast X-ray image enhancement can be parti-
tioned into 3 stages: fuzzification, inference system, and
de-fuzzification.
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Fig. 2 The proposed approach
based on FGRM

3 Fuzzification: fuzzy sets

At this stage, the average intensities (δFG) and (δBG)
measured from both of the blocks (FG) and (BG),
respectively, identified earlier are fuzzy sets used as
inputs to the fuzzy model. Due to the importance of
the average intensity (δFG), representing the foreground
of the image, seven fuzzy sets in total, abbreviated HD,
D, LD, U, LB, B, and HB, are used to represent it.
Whereas, the second average intensity (δBG), expressing the
background of the image, is represented with two fuzzy
sets: DB and LB. Tables 1 and 2 summarize the linguistic
terms of the first and second input variables, respectively,
and the membership functions of the foreground and
background variables are shown in Figs. 3 and 4,
respectively.

The purpose of the FGRM model is to predict the
gamma value and feed it to the GC function for adaptive
noise reduction and contrast enhancement. The expected
gamma value is the minimum value from the pair (g1,

g2) produced using FGRM. Figures 5 and 6 show the
membership functions of output variables g1 and g2.

Figure 7 illustrates the investigation to optimize the G
value prior to the fuzzy modeling. It is very clear from
the obtained infograph of investigation that G = f (δ)

(with G and δ representing the gamma value and δFG of
the preprocessed image, respectively) has an almost linear
representation (due to the uniform brightness distribution
after using the CLAHE filter) with the nonlinearity
constraints as follows:

{
Case1 : Non-linear functionality appear when δFG > 0.9
Case2 : Non-linear functionality appear when G > 0.9

On the basis of the above constraints, the degree of
membership of cases 1 and 2 tends to be zero. Therefore,
Gaussian representation as a membership function is
an appropriate choice for these two cases. The other
membership functions are selected to be triangular, and they

Table 1 Linguistic variables of
foreground and their ranges Foreground variable

Linguistic terms Abbreviation Range

High dark HD ∈ [0 0.3]

Dark D ∈ [0.25 0.4]

Low dark LD ∈ [0.35 0.5]

Uniform U ∈ [0.45 0.6]

Low right LB ∈ [0.55 0.7]

Bright B ∈ [0.65 0.8]

High bright HB ∈ [0.73 0.94]
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Table 2 Linguistic terms of the
background variable with
ranges

Background variable

Linguistic terms Abbreviation Range

Dark background DB ∈ [0 0.29]

Light background LB ∈ [0.19 1]

provide a sufficient representation of knowledge. Aouache
and Oulefki [4, 29].

4 Inference system: fuzzy rules

To obtain the fuzzy rules of the proposed FGRM approach,
each input and output were considered with two variables
to implement the “Mamdani” inference engine. Fuzzy rules
simplified as a matrix to obtain the 2 by 2 system. The
first and second inputs were represented by seven and two
possibilities, a total of (7×2 =14) rules are defined as
follows:

if a is A and b is B, then g1 is G1 and g2 is G2

(*)
Where a and b signify the two input values for the

foreground (δFG) and the background (δBG) intensities,
respectively; A and B denote the two input fuzzy sets for
the rule, and G1 and G2 denote the two output fuzzy sets of
the consequence of the rule.

The forced value (FV) membership function is used to
control and adjust the final output of the fuzzy model.

5 Defuzzification: fuzzy output

To switch the fuzzy output represented by a fuzzy set into
corresponding numeric values, a defuzzification process is

Fig. 3 Membership functions of the foreground input variables

necessary. Table 3 shows the defuzzification of linguistic
variables (g1, g2) and their ranges.

The fuzzy outputs (g1 and g2) are the prediction of the
degree intensity, where the crisp value of the output variable
is computed by finding the weighted average expressed as
follows:

Y =
∑N

i=1 βigi∑N
i=1 βi

(1)

With N = 14 (number of rules) and βi the output value
of the ith rule, which is represented in the rule definition
(*) by G1 and G2. Finally, the minimum value of the fuzzy
output pair (g1, g2) was considered as the gain value (g)
implemented to the GC function (2).

Gamma correction is a popular pixel-domain method,
that deals with both bright and dimmed images and is
cost-effective [7]. The resulting filtered image is given by:

O(i, j) = C × I (i, j)
1
g (2)

where O(i, j) and I(i, j) represent the intensity value of
the output and input images, respectively; C is a positive
constant that is related to the device, and g is a positive
constant expressing the gamma gain factor value[25].

Fig. 4 Membership functions of the background input variables
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Fig. 5 Membership functions of g1 output bvariables

5.1 Quality Measurement

Due to the unavailability of a reference image, the objective
evaluation techniques are classified in full reference (FR),
blind reference (BR), and reduced reference (RR) [28].
Thus, the proposed FGRM is examined using three X-ray
databases and the QM of image is performed via the BR
on the basis of statistical measurements (BR-SM), the BR
on the basis of DL descriptors (BR-DL), and the visual
interpretation of resulting images.

5.1.1 QM via BR-SM

The X-ray images of the three databases are of poor quality
and suffer from high brightness which has led to a loss of

Fig. 6 Membership functions of g2 output bvariables

Fig. 7 Investigation of the gamma value

information. The enhancement of these images requires a
considerable reduction of the brightness in order to better
visualize them. Quantitatively, six quantitative evaluations,
which are MSE, PSNR, AMBE, E, EME, and UIQI, have
been selected to objectively evaluate the proposed FGRM
relative to other contemporary methods.

Mean square error (MSE) parameter evaluates the pixel-
by-pixel differences between the original image and filtered
one. It can be defined by the following mathematic
equation [25]:

MSE =
M∑
i=1

N∑
j=1

[I (i, j) − O(i, j)]2
M × N

(3)

where I (i, j) is the original image, O(i, j) is the filtered
image, and M and N are the dimensions of the images.

Peak signal to noise ratio (PSNR) is another parameter to
measure the capability of the filter to reduce the noise. The
mathematic formula of PSNR is given by [25]:

PSNR = 20 × log10

[
255√
MSE

]
(4)

In contrast to the case of restoration and noise reduction
purposes, in the case of brightness adjustment, the pair
(PSNR, MSE) is desired to have lower and higher values,
respectively, as seen from the inverse relation between the
two metrics.

Absolute mean brightness error (AMBE) indicates how
close the mean brightness of the output image is to the input
image’s one. It can be defined as follows [8, 11]:

AMBE = |XO − XI | (5)

where XO and XI are the mean brightness of output and
input images, respectively. In this study, the AMBE value is
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Table 3 Defuzzification of g1 and g2 linguistic variables and their ranges

g1 and g2 variables

Abbreviation Linguistic terms g1 range g2 range

HD High dark ∈ [0 0.2] ∈ [0 0.15]

D Dark ∈ [0.15 0.3] ∈ [0.1 0.25]

LD Low dark ∈ [0.25 0.4] ∈ [0.2 0.35]

U Uniform ∈ [0.35 0.5] ∈ [0.3 0.45]

LB Low bright ∈ [0.45 0.6] ∈ [0.4 0.55]

B Bright ∈ [0.55 0.7] ∈ [0.5 0.65]

HB High bright ∈ [0.62 0.95] ∈ [0.58 0.9]

VF Forced value 1 1

considered to be higher for brightness reduction, in order to
indicate a considerable image’s enhancement.

As introduced by Shannon and Weaver (1948) [37], E is
utilized to evaluate the number of details in the image. E of
an image is calculated as follows [36]:

E = −
L−1∑
i=0

p(Yi) × Log2p(Yi) (6)

where p(Yi) represents the enhanced gray level (Yi)
probability. Images with a high value of E imply that they
contain further detailed information [36].

In this paper, the effective measure of enhancement
EME is a quantitative measure of image enhancement. It
provides an absolute value to each image by evaluating
image contrast using Weber’s law and linking it to the
perceived brightness based on Fisher’s law [4]. It is obtained
by splitting the image into a number of blocks and using the
equation,

EME = 1

K1K2

K2∑
L=1

K1∑
K=1

20ln

[
Imax(k, l)

Imin(k, l)

]
(7)

where, K1 and K2 are the number of horizontal and vertical
blocks in the image and Imax(k, l) and Imin(k, l) are the
maximum and the minimum pixel values in a given block
[2].

UIQI [43] is a simple measure that counts on the first-
and second-order statistic of the input and output images
[3]. This index considers three factors, namely loss of
correlation, luminance distortion, and contrast distortion.
Its calculation is made by modeling any distortion as a
combination of the three mentioned factors [43]. It is given
by the following equation:

UIQI = σxy

σxσy

.
2x̄ȳ

(x̄)2 + (ȳ)2
.
2σxσy

σ 2
x + σ 2

y

(8)

where

x = 1

N

∑N

i=1
xi,

y = 1

N

∑N

i=1
yi,

σ 2
x = 1

N − 1

∑N

i=1
(xi − x)2,

σ 2
y = 1

N − 1

∑N

i=1
(yi − y)2, and

σxy = 1

N − 1

∑N

i=1
(xi − x)(yi − y).

The dynamic range of UIQI is [−1, 1]. The value 1 is
achieved if and only if yi = xi for all i=1, 2...N. In our case,
the lowest value of UIQI indicates a better result.

5.1.2 QM via BR-DL

As shown in Fig. 8, DL scattering is an approach
used to classify the dispersion of the pixel inten-
sity of an image into four triangles, namely A, B,

Fig. 8 Model of dispersion versus location (DL) scatter and its four
triangles with coordinates

Med Biol Eng Comput (2020) 58:1177–11971184



Table 4 Cervical dataset quality measurement(QM) via blind reference based on statistical measurement (BR-SM)

BR-SM Original FGRM BPDFHE GC LT Mean F Med F CS CLAHE HE AGCWD

MSE - 0.19 0.00 0.09 0.12 0.00 0.00 0.02 0.01 0.05 0.02

PSNR - 7.31 32.50 10.38 9.22 35.14 49.59 17.75 22.41 13.22 17.54

AMBE - 0.42 0.01 0.23 0.34 0.00 0.00 0.07 0.04 0.17 0.13

E 5.76 6.42 5.59 5.76 5.76 5.71 5.68 5.73 6.35 4.83 5.49

EME 0.33 6.78 0.56 0.37 0.25 1.37 0.22 0.520 1.20 0.75 0.13

UIQI 1.00 0.18 0.86 0.75 0.89 0.76 0.77 0.77 0.55 0.49 0.87

C, and D, reflecting the classes, high-contrast/medium-
luminance (HC/ML), low-contrast/low-luminance (LC/LL),
medium-contrast/medium-luminance (MC/ML), and low-
contrast/high-luminance (LC/HL), respectively.

The DL features, with dispersion (D) measured by
the range, and location (L) measured by midrange, are
considered as a reasonably representative feature of the
images’ intensities and deal with the relationship between
local contrasts and local brightness in the image using
location and dispersion estimators [4, 26, 33]. In this case,
the [midrange, range] pair within the image is computed
using equation 9 by employing an optimal window size of
15 × 15.

[
Midrange
Range

]T

= [
min max

] ×
[
1 \ 2 1 \ 2
−1 1

]
(9)

5.1.3 Visual inspection

The visual assessment was performed by medical experts
from the Department of Radiology, Faculty of Medicine,
Univeristi Kebangsaan Malaysia Medical Centre as indi-
cated in our related work [13, 24, 27]. The experts examined
the image quality subjectively by verifying the brightness
and contrast changing of the displayed images before and
after enhancement using both the expert eye visualization
along with the distribution versus location plot, where, the
DL cluster based on regions A, B, C, and D classes reflect-
ing to (high-contrast/medium-luminance, low-contrast/low

luminance, medium-contrast/medium-luminance, and low-
contrast/high-luminance), respectively, were used to help in
the image quality assessment (IQA) subjectively.

6 Results

As previously indicated, the performance of the FGRM
filter and the measurement of X-ray quality were compared
with the most recent methods using the BR-MS, BR-
DL matrices, supported by a visual interpretation of the
resulting images.

6.1 Assessment via BR-SM

The QM via BR-SM was calculated from the image
obtained using the adaptive GC based on the FRGM
approach. Tables 4, 5, and 6 show summarized details of
measurement results (mean value of MSE, PSNR, AMBE,
E, EME, and UIQI metrics) with the overall datasets,
(cervical, lumbar, and hand, respectively) using the FRGM
along with the nine enhancement methods (BPDFHE,
gamma correction, log transform, mean filter, median filter,
contrast stretching, CLAHE, HE, and AGCWD) assessed in
this study.

As shown in Table 4, the FGRMmethod performed better
than other techniques when examining the cervical database
for all quality measures. In addition, results from the lumbar
and hand databases as in Tables 5 and 6, respectively,
indicate that the performance of the FGRMmethod provides
the highest average ranking. The log transformation method

Table 5 Lumbar dataset quality measurement(QM) via blind reference based on statistical measurement (BR-SM)

BR-SM Original FGRM BPDFHE GC LT Mean F Med F CS CLAHE HE AGCWD

MSE - 0.07 0.00 0.04 0.07 0.007 0.007 0.027 0.01 0.06 0.03

PSNR - 14.52 29.30 14.56 12.31 39.31 52.09 16.64 20.93 13.54 15.06

AMBE - 0.21 0.01 0.18 0.23 0.00 0.00 0.11 0.06 0.19 0.15

E 5.05 5.73 4.83 5.05 5.05 5.08 5.03 5.02 5.68 4.12 4.92

EME 1.72 11.94 1.99 1.90 1.56 2.56 1.47 3.08 3.65 2.24 1.99

UIQI 1.00 0.29 0.82 0.67 0.79 0.87 0.88 0.70 0.55 0.48 0.78
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Table 6 Hand dataset quality measurement(QM) via blind reference based on statistical measurement (BR-SM)

BR-SM Original FGRM BPDFHE GC LT Mean F Med F CS CLAHE HE AGCWD

MSE - 0.07 0.00 0.04 0.07 0.00 0.00 0.01 0.01 0.04 0.02

PSNR - 12.03 30.29 13.96 11.89 39.21 46.22 21.37 19.87 14.76 16.30

AMBE - 0.23 0.01 0.18 0.24 0.00 0.00 0.08 0.05 0.14 0.13

E 5.58 6.46 5.33 5.58 5.58 5.46 5.43 5.53 6.33 4.52 5.36

EME 2.10 20.59 4.07 2.31 1.92 2.01 0.98 7.60 5.34 9.79 3.10

UIQI 1.00 0.28 0.78 0.70 0.81 0.66 0.67 0.79 0.59 0.53 0.76

slightly outperformed our method in terms of PSNR and
AMBE quality measures. In contrast, the filtering methods
BPDFHE, mean filter, and median filter obtained the lowest
rankings for measuring the overall quality of the three
radiology databases.

In summary, results based on BR-SM show that the
proposed FGRM effectively improves the structure of
radiological images while preserving image features of
interest to medical experts. In addition, FGRM showed
a better performance when compared with the methods
assessed in this study. The numerical results confirm that
the QM via BR-SM of FGRM are proven to have relatively
almost the highest average value of all metrics.

6.2 Assessment via BR-DL

The computation of the DL measurement was also applied
to all images of the three databases. Figures 9, 10, and 11
represent the distribution of the points in the regions A,
B, C, and D of the cervical, lumbar, and hand databases’

X-ray images, respectively. Each chart has the concentration
percentage values of a particular region with regards to all
methods resulting images along with the original data.

This DL distribution is explained in Tables 7 (for cervical
dataset) and 8 (for lumbar and hand datasets since they have
the same behavior), where the underlined letter indicates
lowest or missing points in that region, whereas, the bold
letter indicates the presence of higher percentage of points
in that region.

From Table 7, we notice that the cervical database
suffered from over brightness and that our FGRM method
improved the images by significantly reducing brightness
and increasing the sharpness, only GC and HE methods
improved the brightness by darkening the over-bright
images, and only median filter, HE, and CLAHE methods
enhanced images in terms of sharpness; all the other
methods gave similar results to the original data. Moreover,
from Table 8, we note that the lumbar and hand databases
contain a mixture of dark and bright images. Although our
method kept the same order of distribution of the points

Fig. 9 From left to right, DL distribution of regions A, B, C, and D of original cervical database using FGRM, BPDFHE, gamma correction (GC),
log transform (LT), mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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Fig. 10 From left to right, DL distribution of regions A, B, C, and D of original lumbar database using FGRM, BPDFHE, gamma correction
(GC),, log transform (LT), mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD

in regions A, B, C, and D, it adjusted the brightness by
modifying the concentration percentages of points. Also,
it increased the sharpness of all images, in particular,
the hand database’s images. As for the state-of-the-art
methods, the GC method darkened the images, the LT, HE
and AGCWD methods enlightened even more the images,
the HE and CLAHE methods gave small improvement
regarding sharpness, and the rest of the methods’ results are
similar to original data.

6.3 Visual assessment

The visual assessment was performed by inspecting the
images’ quality with human eyes, X-ray images were
given to experts and our biomedical researcher volunteers
in the field, and they were requested to visually assess
the quality of the produced image using the proposed
algorithm versus the state-of-the-art methods in the order
of brightness and contrast changing from the most

Fig. 11 From left to right, DL distribution of regions A, B, C, and D of original hand database using FGRM, BPDFHE, gamma correction (GC),
log transform (LT), mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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Table 7 DL index, description, and explanation at each region of the original cervical data compared with the ten examined techniques (UB,
underwent bright; BA, brightness adjusted; UA, unsignificant adjustment; OB, over bright)

DL index DL description and explanation Quality

Cervical DBCA Points in region D were concentrated more than in regions B and C, A UB

FGRM BDCA Points in region D from original data migrated to B and gained more points BA

BPDFHE DBCA Points in region D more than in regions B and C, A (similar to original) UA

GC BDCA Points concentrated in region B more than D, C, and A BA

LT DCBA Majority of the points are in region D OB

Mean F DBCA Points in region D more than in regions B and C, A (similar to original) UA

Med F DBCA Points in region D more than in regions B and C, A (similar to original) UA

CS DBCA Points in region D more than in regions B and C, A (similar to original) UA

CLAHE DBCA Points in region D more than in regions B and C, A (similar to original) UA

HE BDCA Points are concentrated and balanced in both regions B and D BA

AGCWD DBCA Points in region D more than in regions B and C, A (similar to original) UA

preferable enhancement result to the worst and most
undesirable one.

Figures 12, 14, and 16 show the visual interpretation
of radiography sample images for different subject respec-
tively in the cervical, lumbar, and hand datasets and the
contrast-enhanced results with their respective DL plot,
as shown in Figs. 13, 15, and 17, produced from the
original image and the ten enhancing methods (FRGM,
BPDFHE, GC, LT, MeanF, MedianF, CS, CLAHE, HE, and
AGCWD). The visual results of X-ray images clearly show
that the proposed FGRM is motivated with a profitable
enhancement rate in providing satisfactory visual informa-
tion and increases the accuracy of the correct information
on pathologies for an autonomous diagnostic system.

7 Discussion

The results of Tables 1, 5, and 6 indicate that measurements
of the BR-SMmatrix obtained from the images via all tested

methods have unequal correlation values. Thus, the results
reported here can be justified as follows:

• First, the conventional metrics such as MSE and PSNR
have conflicting values (with high values of MSE, and
lower PSNR). Such an attitude indicates that these
measurements are used more for restoration and noise
reduction purposes and they do not correctly reflect the
perceived visual quality of the image when it is related
to non-uniform brightness and contrast adjustments. In
contrast, the lower value of AMBE achieved in our case
is justified by the fact that brightness preservation is not
requested.

• Second, if we neglect conventional metric measure-
ments, the complex metrics such as E, EME, and UIQI
have non-contradictory correlation values (high values
of E and EME and lower UIQI); to this end, E and EME
stand as the best choices. These measurements cor-
rectly reflect the perceived visual quality of the image

Table 8 DL index, description and explanation at each region of both original lumbar and hand data compared with the ten examined techniques
(Lum, lumbar; Han, hand; QB, quasi-balanced; BA, brightness adjusted; UA, unsignificant adjustment; OD, over dark)

DL Index DL Description and Explanation Quality

Lum-Han BDCA Points in region B were concentrated more than in regions D and C, A QB

FGRM BDCA Points in region D from original data migrated to B and gained more points BA

BPDFHE BDCA Points in region B more than in regions D and C, A (similar to original) UA

GC BDCA Majority of the points are in region B OD

LT DBCA Points are concentrated and balanced in both regions B and D. BA

Mean F BDCA Points in region B more than in regions D and C, A (similar to original) UA

Med F BDCA Points in region B more than in regions D and C, A (similar to original) UA

CS BDCA Points in region B more than in regions D and C, A (similar to original) UA

CLAHE BDCA Points in region B more than in regions D and C, A (similar to original) UA

HE DBCA Points are concentrated and balanced in both regions B and D BA

AGCWD DBCA Points are concentrated and balanced in both regions B and D. BA
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Fig. 12 From left to right, contrast enhancement of original cervical X-ray image using FGRM, BPDFHE, gamma correction (GC), log transform
(LT), mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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Fig. 13 From left to right, DL distribution of original cervical X-ray image using FGRM, BPDFHE, gamma correction (GC), log transform (LT),
mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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Fig. 14 From left to right, contrast enhancement of original lumbar X-ray image using FGRM, BPDFHE, gamma correction (GC), log transform
(LT), mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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Fig. 15 From left to right, DL distribution of original lumbar X-ray image using FGRM, BPDFHE, gamma correction (GC), log transform (LT),
mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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Fig. 16 From left to right, contrast enhancement of original hand X-ray image using FGRM, BPDFHE, gamma correction (GC), log transform
(LT), mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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when it is related to nonuniform brightness and contrast
adjustments.

• Third, the complex measurements in this study prove to
have quite high correlation values and more dominant
using the FGRM algorithm. Indeed, from Tables 4,
5, and 6, we note that FGRM gave the best results
compared with all other methods in terms of BR-SM
for the cervical dataset followed by CLAHE and HE.
For the lumbar and hand datasets, FGRM was slightly
outperformed only in terms of PSNR and AMBE,
because the brightness of these two databases is quasi-
balanced (according to the DL distribution in Table 8);
thus, there has not been a dramatic brightness change
and the FGRM method was able to adaptively preserve
that brightness.

Illustrated in Figs. 12, 13, 14, 15, 16, and 17 are the
the visual results with their respective measurements based
on the BR-DL of the original image in relation to all
tested methods. To facilitate understanding and readability,
summarized details of BR-DL measurements results are
discussed in Tables 7 and 8.

Case (1)—Cervical dataset as in Table 7. The results
based on BR-DL show that original cervical dataset before
enhancement had a DL index of DBCA (indicating that
most points were concentrated in region D more than
in regions B, C, and A) with an attributed quality of
category underwent bright (UB). After applying the ten
contrast enhancement methods (FGRM, BPDFHE, GC,
LT, mean filter, median filter, CS, CLAHE, HE, and
AGCWD), new DL indexes appear as (BDCA, DBCA,
BDCA, DCBA, DBCA, DBCA, DBCA, DBCA, BDCA,
DBCA), respectively.

• By employing the FGRM, GC, and HE methods, a
significant distributions descriptors BDCA, BDCA, and
BDCA occurred. Implying that points in region B have
been expanded, and points in region D have been
decreased, unlike the movements of the points when
using the original distributions descriptorDBCA. These
movements indicate that the entire cervical dataset
was enhanced with the brightness amount adjusted and
contrast increased.

• The attributed quality of category when applying the
selected methods (FGRM, GC, and HE) is brightness
adjusted (BA), indicating that the entire cervical
dataset was generally enhanced and considered as high-
contrast/medium luminance (HC/ML). For the rest of
the methods, no significant adjustment was observed.

Case (2)—Lumbar and hand datasets as in Table 8. The
BR-DL results show that the original lumbar and hand
before improvement had a DL index of BDCA (indicating
that points were concentrated in region B more than in

regions D, C, and A) with an assigned category of quasi-
balanced (QB). New DL indexes appear as BDCA, BDCA,
BDCA, DBCA, BDCA, BDCA, BDCA, BDCA, DBCA,
and DBCA, respectively, when applying FGRM, BPDFHE,
GC, LT, medium filter, median filter, CS, CLAHE, HE, and
AGCWD, respectively.

• By applying the FGRM method, brightness adjusted
(BA) quality category appeared, indicating that the
entire lumbar and hand datasets were slightly enhanced
that reflects a minor correction of brightness adjusted
due to the quasi-balanced datasets. In contrast, other
methods react with the same manner with different
degrees of brightness adjustment.

In sum, the results based on BR-SM and BR-DL
show that the proposed FGRM enhances and performs
well compared with other methods in terms of contrast
adjustment and the preservation of image structure using
all three datasets. This achievement can be justified due to
the fuzzy modeling that can manage the uncertainty and
imperfection of the input images represented as a fuzzy
set, and used here to process and simulate the human
knowledge in the form of fuzzy if-then rules, contrary
to the compared methods which process mostly using
transformation process.

8 Conclusion

In this work, an adaptive filter based on the proposed FGRM
approach for adjusting non-uniform brightness radiography
is presented. FGRM uses the foreground and background
intensity measures for G value prediction using fuzzy
reasoning model, to be used for operating gamma function
adaptively. The approach was tested on three different
databases (cervical, lumbar, and hand). The proposed
FGRM algorithm was evaluated using qualitative (BR-
SM and BR-DL) and subjective (visual inspection) and
compared with state-of-the-art methods such as BPDFHE,
gamma correction, log transform, mean filter, median filter,
contrast stretching, CLAHE, HE, and AGCWD. Simulation
and the visual enhancement results demonstrated that the
proposed FGRM algorithm can (1) effectively enhance
X-ray contrast while offering adjusted brightness results
and (2) offer higher quality compared with the nine
peers methods regarding the brightness adjustment. In
sum, obtained results by employing FGRM produce the
best performance in both qualitative and quantitative
evaluations. Thus, the proposed method can effectively
and significantly improve the X-ray images’ low contrast.
Future work can be considered in order to validate the
FGRM approach by examining (1) a new index measure
based on fuzzy DL scatter and (2) apply the proposed
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Fig. 17 From left to right, DL distribution of original hand X-ray image using FGRM, BPDFHE, gamma correction (GC), log transform (LT),
mean filter, median filter, contrast stretching (CS), CLAHE, HE, and AGCWD
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FGRM to different medical image modalities such as CR,
MRI, and CT.
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