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Abstract
The cognitive processing and detection of errors is important in the adaptation of the behavioral and learning processes. This
brain activity is often reflected as distinct patterns of event-related potentials (ERPs) that can be employed in the detection and
interpretation of the cerebral responses to erroneous stimuli. However, high-accuracy cross-condition classification is challenging
due to the significant variations of the error-related ERP components (ErrPs) between complexity conditions, thus hindering the
development of error recognition systems. In this study, we employed support vector machines (SVM) classification methods,
based on waveform characteristics of ErrPs from different time windows, to detect correct and incorrect responses in an audio
identification task with two conditions of different complexity. Since the performance of the classifiers usually depends on the
salience of the features employed, a combination of the sequential forward floating feature selection (SFFS) and sequential
forward feature selection (SFS) methods was implemented to detect condition-independent and condition-specific feature sub-
sets. Our framework achieved high accuracy using a small subset of the available features both for cross- and within-condition
classification, hence supporting the notion that machine learning techniques can detect hidden patterns of ErrP-based features,
irrespective of task complexity while additionally elucidating complexity-related error processing variations.
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1 Introduction

The detection of an error is the cognitive evaluation of an
outcome that is considered undesired or mismatches an ex-
pected response. As such, the ability of the brain to recognize
errors made during the various mental operations is an impor-
tant factor for the optimization of human behavior.

Non-invasive electroencephalography (EEG) and in partic-
ular the study of event-related potentials (ERPs) elicited dur-
ing incorrect actions provide new insight in the attempt to
decode the complex neural mechanisms underlying error-
related cognitive performance. In this regard, a negative de-
flection of a response-locked ERP, peaking at 40–150 ms after
the commission of an error (error-related negativity, Ne, ERN)
has been well-established [1, 2]. In addition, following the
ERN, a positive ERP component (error positivity, PE), possi-
bly reflecting error awareness, has been consistently reported,
typically peaking at 200–500 ms after incorrect responses [2,
3]. Feedback on incorrect actions also induces a specific time-
locked negative ERP (feedback-related negativity, FRN)
peaking at approximately 250–300 ms after a feedback senso-
ry stimulus [4, 5]. However, ERPs related to error monitoring
do not only appear when an error occurs. Numerous studies
have demonstrated an ERP component appearing after correct
trials (correct-related negativity, CRN) that is similar in terms
of latency and morphology to ERN and serves as an error-
preventing mechanism [6, 7].

In order to unveil the cognitive processes of error monitor-
ing, various studies that take into account different modalities
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have been pursued [8–11]. To that end, EEG source localiza-
tion techniques and functional magnetic resonance imaging
(fMRI) have been frequently employed, revealing that the
generators of negative and positive deflections such as ERN,
PE, FRN, and CRN are similar in terms of topology and most-
ly present midline scalp distributions, suggesting that error
processing is generated in the anterior cingulate cortex [10,
12–15].

The robustness of the error-related ERPs (ErrPs), a
term that will subsequently be used in the present study
to indicate the various ERPs stated above, has been cru-
cial for the identification and effective analysis of error-
related responses in conjunction with the overall human
cognitive processes related to error monitoring. Most ErrP
studies include machine learning models, which analyze
the recorded EEG signals in order to recognize distin-
guishable patterns and construct models based on the
characteristics of scalp potentials for the classification of
error-related brain electrical activity as correct or incorrect
[16–20].

Despite the efficient classification of ErrPs, most of these
studies focus on single-task discrimination between erroneous
responses. However, high-accuracy cross-task pattern recog-
nition remains a challenge, since expansion of single-task to
multi-task classification usually demonstrates poor perfor-
mance [21–24]. This could be the result of training on one
task and testing on another, thus being more likely to include
task-specific features, reducing the overall accuracy and – in
some cases – rendering the classifier unreliable in task-
independent classification In this regard, it should also be kept
in mind that the extracted features vary significantly under
different task conditions, while additionally the ErrPmorphol-
ogy has been known to exhibit significant amplitude and la-
tency variations according to intention, psychological condi-
tions, motivation, age, as well as among individuals [25–28].

On the contrary, no studies concerning cross-condition
classification of error-related responses in regard to task
difficulty have been conducted. As such, most condition-
complexity error-related classification studies either focus
on the modulation of ErrP components between different
errors, as being affected by confidence level, error sever-
ity, etc. [29, 30], or employ machine learning techniques
in different experimental paradigms of similar complexity
and/or stimuli [31, 32]. For instance, Spüler and
Niethammer [30] performed continuous feedback EEG
classification between different types of severity errors
with an average accuracy of 75%, using frequency and
time-locked ERP features, suggesting that difference in
classification accuracy can be attributed to task complex-
ity. This suggestion is in line with research indicating that
error-monitoring brain signals can present amplitude and
latency modulations with task difficulty variations
[33–35]. Endrass et al. [36] implemented a visual size

discrimination task with three difficulty conditions using
principal component analysis and found decreased ERN
and CRN in the highest difficulty level. Furthermore, Van
der Borght et al. [37] found significant decrements in the
ERN, CRN, and partly in the PE (significant in early PE
but not in late PE) during the difficult condition of a two-
condition flanker task. In light of this evidence, given that
the difficulty of a task may mask part of the error-
processing mechanisms, demonstrating high sensitivity
in their morphology under different tasks, difficulty con-
ditions, and psychological states, the conventional pre-
defined time windows that error-related components typi-
cally appear may be extended or overlapping.

Taking the above into consideration, the novelty of the
present study concerned the investigation of error re-
sponse classification in a task with conditions differing
in difficulty and, more specifically, investigating whether
a small number of ERP-based feature subsets can provide
high cross-condition accuracy and subsequently detect
condition-specific features to further increase individual
condition accuracy. Moreover, our analysis included both
the typical ErrP time windows and combinations of adja-
cent time windows, in order to reduce the effects of mod-
ifications of the ErrP signal properties due to task com-
plexity. To investigate this hypothesis, different SVM
classification methods were implemented on data collect-
ed from an auditory identification experiment with two
conditions of complexity employing ERP-based time-win-
dowed features. Taking into account the fact that the per-
formance of classifiers is generally affected not only by
the reliability and the distinctness of the features extracted
but also by the number of features to be employed (in a
large set some features may likely be redundant or irrele-
vant with respect to the classification task), we applied a
feature selection (FS) framework to optimize the problem,
reduce variance, and hence improve the classification per-
formance. As such, we have employed a feature search
strategy, based on the combination of sequential forward
floating selection (SFFS) and sequential forward selection
(SFS), to attain the optimal overall performance and at the
same time assess the prominence of individual features,
facilitating the investigation for the feature sets that pro-
vide high classification accuracy in relation to task diffi-
culty. This method was capable of selecting features both
common to the two conditions and specific to each con-
dition separately, successfully discriminating between cor-
rect and incorrect responses. The high classification accu-
racy attained for both cross-condition and within-
condition classification implies that although task difficul-
ty might affect the characteristics of ERP components
reflecting error processing, machine learning methods
can efficiently detect distinct ErrP differentiations be-
tween correct and incorrect decisions.
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2 Materials and methods

2.1 Subjects

The EEG data used in the present study were collected
as part of a previous research [38]. In particular, the
data were acquired from 14 healthy individuals (8 males
and 6 females) with a mean age 26.6 ± 2.9 years, who
performed an auditory identification task in two ses-
sions, each under a different condition of complexity.
All subjects were right-handed with normal hearing –
measured by pure-tone audiogram (thresholds < 15 dB
HL) – and no history of hearing problems. Prior to the
experiment, all subjects performed an acoustic pre-test
to assess their hearing ability in the frequency ranges of
interest to the experiment, where they were able to suc-
cessfully discriminate the tones presented. Furthermore,
informed consent was obtained from all participants.

2.2 Experimental design

The full details of the experimental design are given in [38]
and are exposed in the present section to the extent needed for
the reader’s convenience (Fig. 1). Initially, subjects were di-
vided into seven dyads, with each dyad undergoing two ses-
sions of an auditory identification experiment under two com-
plexity conditions. Both sessions were performed on the same
date and required the determination of the specific frequencies
corresponding to the acoustic stimuli. Each session consisted
of 80 trials, and during each trial, the dyad members assumed
actor-observer roles, switching roles among trials, thus
resulting in 40 trials for each individual when participating
as an actor or as an observer, respectively. Participants sat

opposite while being screened from each other and had com-
puter screens in front of them, displaying a slider and a cursor.

At the beginning of each trial (operating phase), the
stimulus was provided to both members through head-
phones as a 1-s duration tone, randomly selected from a
block of four frequency ranges with a fixed bandwidth
of 400 Hz: 200–600 Hz, 620–1020 Hz, 1040–1440 Hz,
and 1460–1860 Hz. Then, the actor was asked to match
the frequency of the stimulus tone via a gamepad by
positioning a cursor in a slider bar appearing in both
participants’ computer screens. The slider represented
the frequency range, while the position of the cursor
corresponded to a specific tone within this range.
Participants were not aware of the band of the frequen-
cy range in which they had to place the cursor and
neither the actor nor the observer could hear the sound
corresponding to the position chosen during the
gamepad handling. The end of the operating phase
was marked by the non-movement of the gamepad for
0.5 s.

Following the operating phase, the two participantswere asked
to judge the correctness of the position chosen by the actor using a
two-button controller (correct/incorrect). After the first judgment,
the tone corresponding to the position chosen by the actor was
provided to the participants (feedback tone, FBT), who were then
asked to judge for a second time whether the tone corresponding
to the position chosen by the actor was the same as the original.
The disclosure onwhether the position chosenwas right or wrong
was made via a “knowledge-of-results” tone (KOR). The KOR
tone was either a 500-Hz tone, when the position selected was
correct, or a 3-kHz tone, when the position selected was incorrect.
In addition, both participants would hear the word “correct” or
“incorrect” depending on thematching or not of the stimulus with
the position chosen.

Auditory
 Stimulus

Response
FBT

KOR
Judgement

1st trial

Auditory
 Stimulus

2nd trial

80 trials
. . .

Fixed Bandwidth Slider Sub1 Actor
Sub2 Observer

Fig. 1 The design of the
experimental protocol. In a single
trial, both subjects heard the same
auditory stimulus (tone). The
subject being the actor had to
match the frequency of the
stimulus tone by positioning a
cursor in a slider appearing in
both participants’ computer
screens (response). Then a
judgment was asked to be made
concerning the correctness of the
response, and a first feedback
tone (FBT) was presented to the
subjects. Next a judgment was
again asked to be made by the
subjects, and a second, definitive
feedback tone (“knowledge-of-
results,” KOR) was presented.
Subjects alternated in actor and
observer roles in successive trials
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As the participants interchanged their roles as actors and
observers between trials, the complexity difference between
the two conditions was based onwhether the frequency ranges
of the acoustic stimuli belonged to the same (“easy” condition,
Joint1) or different (“difficult” condition, Joint2) frequency
bands. Under condition Joint1, acoustic stimuli of the same
frequency range were presented to both participants, while in
condition Joint2, the stimulus presented to each participant as
an actor differed in terms of frequency range from the stimulus
presented to his/her partner, when the partner was the actor. In
this respect, observers in condition Joint1were expected to be
more efficient in correctly matching the stimulus sound when
they became actors, since they could mentally map the fre-
quency range of the slider bar while observing their partner-
actor in the previous trial. In contrast, during condition Joint2,
by observing the actor in previous trials, individuals could not
use the same mental map based on the frequency range which
their partner acted on, while additionally they could be men-
tally disoriented when it was their turn to assign the cursor to
the stimulus tone. Hence, the dissimilarity of the frequency
tone would hinder the identification process and thus increase
the complexity of the task, making it more challenging to
identify its correct position within the frequency range
employed. Indeed, this affected the individuals’ performance,
as was indicated by the behavioral analysis in [38].

Within the experimental design, both FBTand KOR can be
considered as feedbacks, FBT being the first-level feedback,
providing indirect information for the actor’s response, and
KOR being the second-level feedback, providing the unam-
biguous information on the correctness of the actor’s initial
selection. However, since FBT was considered the first feed-
back for the actor’s response, it might be assumed that it elicits
a cognitive response temporally closer to the action, compared
to the one elicited by KOR. Therefore, only actors’ FBT ERPs
were investigated in this study.

2.3 Data acquisition and pre-processing

Electrophysiological recordings were performed simulta-
neously for both participants, alternating between actors and
observers. EEG was recorded continuously using two differ-
ent recording systems, each with a 32-channel electrode cap
(Biosemi, Activetwo System), the international 10–20 EEG
system. The electrodes used were Fp1, AF3, F7, F3, FC1,
FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4,
P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz,
and Cz (Fig. 2A). Additionally, horizontal and vertical elec-
trooculograms (EOG) were recorded. For interference elimi-
nation, the experiment was conducted in a Faraday room,
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Fig. 2 (a) Electrodes used for the EEG recording. The ellipse encircles the electrodes whose recordings were employed in the feature extraction process.
(b) Average ERPs across all subjects (both conditions merged) for the two classes of response
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while optical receiver for trigger inputs was also used in both
subjects, and electrode cables were bundled.

Recorded signals were digitized at 256 Hz and filtered
offline by applying a low-pass and a high-pass Chebyshev
filter with cut-off frequencies of 35 and 0.05 Hz, respectively,
as well as re-referenced to the average of the electrode record-
ings and de-trended. Subsequently, EEG signals were seg-
mented into ERP epochs with a duration of 2.5 s (0.5 s before
and 2 s after the FBT), resulting in 40 × 14 × 2 = 1120 trials
acquired from the total of 40 trials for each of the 14 partici-
pants and for the 2 complexity conditions. After segmentation,
each trial was baseline-adjusted relative to a 100-ms pre-stim-
ulus baseline, and trials with ocular artifacts were manually
removed. It is noted that due to significant artifact contamina-
tion, measurements of 1 dyad were excluded from subsequent
analysis, leaving 12 subjects for further processing.

2.4 Definition of correct and incorrect responses

Since two tones, close in terms of frequency, can be com-
monly misinterpreted as the same sound, it can be as-
sumed that similar feedback and stimulus tones may not
elicit error cognition. Therefore, to evaluate the proximity
of the response and stimuli tones and label the actors’
responses as correct or incorrect, the individuals’ ability
of perceiving and discriminating between different tones
was taken into account. To that end, the distinguishability
of auditory perception was quantified through the psycho-
acoustic function of equivalent rectangular bandwidth
(ERB) [39]. This function gives an approximation of the
frequency range in which auditory stimuli are considered
identical by modeling the filters of human hearing as rect-
angular band-pass filters determined as a function of a
central frequency (Fig. 3). ERB was calculated by the
following formula (where Be is the bandwidth of the filter

in Hz and f is the central frequency) (presented as the
stimulus tone) of the filter in Hz:

Be ¼ 6:23 10−6 f 2 þ 9:339 10−2 f þ 28:52 ð1Þ

Since the ERB is not a linear function (although appearing
to be so in low frequencies, Fig. 3B), the use of a specific pre-
defined criterion, such as the ratio f/Be, for the definition of
correct and incorrect answers could render the discrimination
between the different responses ineffective. Therefore, for
each trial, the individual’s response was compared to the stim-
ulus tone plus/minus the ERB bandwidth. If the response was
within this range, the trial would be considered correct
(Fig. 3A), otherwise it would be regarded as erroneous.

Due to the different number of response ERPs per subject
and condition and on the basis that ErrPs are subject-sensitive,
the pre-processed ERPs were averaged per subject and class
(correct/incorrect) of the responses given, including both con-
ditions. Specifically, for each of the 32 electrode positions, the
mean ERPs were calculated for the 2 conditions and for the 12
actors according to the class of their responses (correct/incor-
rect), aiming to address the problem of the imbalanced classes
that would impair FS and classification. Therefore, from the
available data, 12 × 2 × 32 = 768 FBT ERP recordings were
used corresponding to correct responses, as well as 12 × 2 ×
32 = 768 FBT ERP recordings corresponding to incorrect re-
sponses. In Fig. 2B, we present the average across all subjects
and conditions for the two classes of responses for the elec-
trodes employed in the subsequent analysis.

2.5 Feature extraction

Although the inclusion of temporal electrode positions might
provide a better insight concerning auditory cognition, central
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Fig. 3 (a) Definition of the correctness of each response using the
equivalent rectangular bandwidth (ERB). On each trial, the stimulus
(solid-line arrow) was randomly selected within the fixed frequency band
(graded bar, lower left), while the response (dashed-line arrow) was de-
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regions of the scalp are more relevant to error processing, as
stated in the introduction. Since our goal is the investigation
and subsequent classification of error-related processing with
regard to complexity modifications, we excluded locations not
strongly related to error processing, as indicated by other stud-
ies [21, 28]. To that end, features were extracted only from the
Cz electrode and from six additional electrodes (Fig. 2A).
Their selection was determined according to their position
relative to the Cz electrode, comprising the two midline elec-
trodes adjacent to Cz (Fz and Pz) and the four non-midline
electrodes that are closer to Cz (FC1, CP1, CP2, FC2).

Starting from the presentation of the FBT (0 ms), features
were extracted from five time windows: Time window 1 (tw1)
starting at 0 ms and ending at 125 ms, time window 2 (tw2)
starting at 125 ms and ending at 220 ms, time window 3 (tw3)
starting at 220 ms and ending at 300 ms, time window 4 (tw4)
starting at 300 ms and ending at 400 ms, and time window 5
(tw5) starting at 0 ms and ending at 600 ms. The time windows
were selected in order to better isolate ErrP components of
interest, as indicated by the literature presented in the intro-
duction. Furthermore, the inclusion of the whole duration of
the after stimulus ERP recording (tw5) might provide useful
features that could otherwise go unnoticed when extracting
the features from the separate (small-duration) time windows.

The features calculated for each electrode position and each
of the time windows were based on latency and shape charac-
teristics describing ErrPs [16, 40] (Fig. 4) and consist of the
following:

& MaxA: The maximum of the ERP signal, corresponding
to the highest amplitude value for each time window

& MinA: The minimum of the ERP signal, corresponding to
the lowest amplitude value for each time window

& MaxT: The latency of the maximum value, corresponding
to the time MaxA occurred for each time window

& MinT: The latency of the minimum value, corresponding
to the time MinA occurred for each time window

& AUC: The area under the ERP curve, estimated by calcu-
lating the ERP integral over the corresponding time
window

Hence, from each averaged ERP, five features were calcu-
lated for each of the five time windows and each of the seven
electrode positions, resulting in 7 × 5 × 5 = 175 features.

2.6 Feature selection and classification

In the present study, classification was used to discriminate
between correct and incorrect responses of actors. More spe-
cifically, SVM classifiers were adopted with different config-
urations regarding the learning methods and kernel functions
[41, 42]. The SVM framework applied included a sequential
minimal optimization (SMO), a least squares (LS), and a qua-
dratic programming (QP) SVM learning method while addi-

tionally employing linear kernel (K x!; z!� � ¼ x!T
z!

� �
Þ, ra-

d i a l bas i s func t ion ( rb f ) K x!; z!� � ¼ e−γ x!− z!
�� ��2

�

; γ ¼ 0:055; 0:08; 0:125; 0:22; 0:5Þ, q u a d r a t i c ðK

x!; z!� � ¼ cþ x!T
z!

� �d
; c ¼ 1; d ¼ 2 ) , mu l t i - l aye r

p e r c e p t r o n ( m l p )

( K x!; z!� � ¼ tanh k x!T
z!þ d

� �
; k ¼ 1; d ¼ −1 ) , a n d

polynomial (K x!; z!� � ¼ cþ x!T
z!

� �d
; c ¼ 1; d ¼ 3 ) ker-

nel functions. For each classification technique, the overall
classification accuracy, sensitivity, and specificity were com-
puted, which are defined as follows:

The overall classification accuracy is defined as the ratio of
the correctly classified responses, i.e., the number of true pos-
itives (correct responses classified) plus the number of the true
negatives (incorrect responses classified), to the total number
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of responses:

overall classification accuracy

¼ ∑True Positiveþ ∑True Negative
Total number of cases

ð2Þ

Sensitivity is the ratio of the correct responses that are
classified as such, to the total number of correct responses:

sensitivity ¼ ∑True Positives
Total number of Positives

ð3Þ

Specificity is the ratio of the incorrect responses that are
classified as such, to the total number of incorrect responses:

specificity ¼ ∑True Negatives
Total number of Negatives

ð4Þ

As stated in the introduction section, our main goal was to
detect cross-condition high-accuracy classification feature
subsets and then, on top of those features, to identify addition-
al complexity-specific ErrP features that would improve the
classification of the individual difficulty levels. To that end,
we first implemented FS and classification on 12 subjects for
both conditions and response classes concurrently (12 × 2 ×
2 = 48 instances) reaching an FS condition-independent sub-
set, and, subsequently, starting from that subset, we obtained
task-specific features further increasing the performance on
each individual condition (12 × 2 = 24 instances, i.e., 12 sub-
jects for both response classes). As a general methodological
procedure, FS was applied for the purpose of examining
whether specific subsets of features provide better classifica-
tion performance compared to the full feature set, as well as in
order to eliminate features that could carry redundant and/or
unnecessary information. In this direction, the FS and

classification processes were implemented individually for
the five time windows, as well as for two-window combina-
tions: tw1 and tw2 (tw1, 2), tw2 and tw3 (tw2, 3), and tw3 and tw4

(tw3, 4). Overlapping windows were avoided, since they might
include features from multiple components and thus mask the
individual ErrP contribution to the classification process, as
well as to further investigate discriminative characteristics of
the ERP components and determine whether using features
from components belonging to adjacent time windows might
improve classification.

For the identification of the optimal condition-independent
feature subset, sequential forward floating search (SFFS) [43]
was applied to all extracted features that were previously ex-
tracted. SFFS is thought to satisfactorily cope with the nesting
problem found in other FSmethods [43, 44] and consists of an
iterative repetition of three steps: inclusion, conditional exclu-
sion, and continuation of conditional exclusion. Starting from
a null set, the SFFS algorithm selects and adds into the set the
most significant feature in terms of classification accuracy
through an exhaustive search. Then, the new most significant
feature –with respect to the existing feature subset – is includ-
ed. Provided that the resulting subset will include at least two
features, the least significant feature of the subset is excluded,
and the new subset accuracy is estimated. Should the least
significant feature be the one just added, the feature is kept
in the subset and a new inclusion is made. Otherwise, a new
exclusion is made with the condition that the accuracy of the
new subset is better than the one found so far with the same
size feature subset. This process is conducted for all features in
the subset until these conditions cease to be satisfied.
Subsequently, a new inclusion is conducted, and the three-
step procedure is repeated until no further improvement can
be by modifications of the feature set.

To ensure that the output feature set would be representa-
tive of both conditions concurrently and no bias toward a
specific condition would be introduced, every SFFS step
was evaluated as the average of the corresponding feature
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set accuracies of both conditions (using concurrently Joint1
condition data and Joint2 condition data). In this manner, the
final set produced by the SFFS is deemed to represent features
that best classify responses as correct or incorrect, irrespective
of the task difficulty. The above procedure was repeated until
SFFS concluded producing the overall values of the classifi-
cation accuracies and feature subsets as the output.

Upon selection of the optimal feature subset, a sequential
forward selection (SFS) method was applied in the two con-
ditions separately [44]. Specifically, SFS started from the op-
timal feature subset provided by the SFFS procedure and re-
peatedly included the most significant feature with respect to
the preceding feature subset through exhaustive search, until
the classifier accuracy could not improve. To mitigate the
nesting problems occurring from the greedy nature of SFS,
the implemented algorithm considered a two-feature addition
to the feature subset if accuracy did not increase just by a
single feature addition, provided that each of the two single
features would not reduce the accuracy of the modified feature
subset. The termination of SFS for each condition was expect-
ed to provide the additional features that improve the

classification for the specific difficulty level of each condition
separately.

Τhe above procedure (Fig. 5) was repeated for each classifier
configuration, while the objective function of classification accu-
racy allowed for concurrent evaluation of the FS processes as
well as the various classification algorithms. For the purpose of
training and testing, a leave-one-out cross-validation procedure
was implemented in every step of the SFFS and SFS. This pro-
cedurewas adopted due to the limited data available and involves
using a single instance from the original data as the testing set and
the remaining data as the training set. This process is repeated,
selecting a different instance each time, until all responses are
used for testing once. Typically, leave-one-out cross-validation
procedures provide a reliable generalization framework, approx-
imating the actual performance of the classifiers better than other
cross-validation approaches and avoiding overtraining [45, 46].
In addition, to ensure that FS introduced no bias and to assess the
statistical significance of the computed accuracy values, 1000
runs of permutation tests were carried out by performing classi-
fication on randomized class labels, thus obtaining an empirical
distribution of accuracy.
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3 Results

The overall classification accuracy results following the FSmeth-
od are presented in Figs. 6 and 7. The accuracy values on which
the classifiers were evaluated were the cross-condition classifica-
tion accuracy achieved by SFFS, the task-specific classification
accuracy achieved by SFS when applied to the data of the two
conditions separately (Joint1 and Joint2), and their average value
(task-specific average) which was calculated as the mean value
of the task-specific accuracies of Joint1 and Joint2. Due to the
large number of the different methods and kernels employed,
only the cases that passed a performance evaluation criterion of
cross-condition accuracy larger than 0.8 and a task-specific aver-
age larger than 0.9 are further analyzed. For these cases, the
corresponding results for classification accuracy are given in
Table 1, while for sensitivity and specificity, they are given in
Table 2. In these cases, only a small fraction of the total number

of features was selected after both SFFS and SFS were applied,
with a mean feature number of 12.6 and 12.2 for Joint1 and
Joint2 conditions, respectively.

From Tables 1 and 2, it can be deduced that FS, using the
SVM classifier with rbf kernel, did not produce results that
passed the performance evaluation criterion, in contrast to linear,
quadratic, and mlp kernels. Furthermore, in most cases, the per-
formance evaluation criterionwasmet for features extracted from
combination of two time windows. On the other hand, the ex-
tended time window tw5 that included the ERP recordings from
0 to 600 ms did not produce results meeting the criterion.
Additionally, classification accuracy equals to 1 was reached
for SFS in four cases, using quadratic kernels. In those cases,
the optimal performance attained by task-specific average was
0.96 for two cases. The very low p values of the permutation
tests, as well as the small feature subsets compared to the overall
number of features, suggest that the classifiers adopted were

Table 1 Overall classification accuracy results

Overall classification accuracy Number of features

Time window Classifier Cross-
condition

Joint1 Joint2 Task -specific average Common Joint1 Joint2

tw2 LS-quadratic 0.83** 0.88* 0.96** 0.92 5 5 + 2 5 + 3

tw3 SMO-mlp 0.85** 0.96** 0.92* 0.94 5 5 + 5 5 + 4

tw1, 2 SMO-quadratic 0.88** 0.92** 1.00** 0.96 7 7 + 1 7 + 5

tw2, 3 LS-quadratic 0.90 ** 1.00** 0.83* 0.92 9 9 + 10 9 + 8

tw2, 3 QP-quadratic 0.85** 0.92** 0.92** 0.92 9 9 + 3 9 + 8

tw2, 3 SMO-mlp 0.90** 0.92** 0.92* 0.92 9 9 + 6 9 + 7

tw3, 4 QP-linear 0.90** 0.92** 0.92** 0.92 12 12+ 5 12 + 10

tw3, 4 SMO-quadratic 0.85** 1.00** 0.83* 0.92 6 6 + 3 6 + 1

tw3, 4 LS-quadratic 0.83** 0.92** 1.00** 0.96 2 2 + 4 2 + 3

tw3, 4 QP-quadratic 0.90** 0.96** 0.92** 0.94 7 7 + 16 7 + 2

Asterisks mark the level of significance *p < 0.01; **p < 0.001

Table 2 Sensitivity and specificity results

Sensitivity Specificity

Time window Classifier Cross-
condition

Joint1 Joint2 Cross-
condition

Joint1 Joint2

tw2 LS-quadratic 0.86 0.91 1 0.81 0.85 0.92

tw3 SMO-mlp 0.87 1 0.92 0.84 0.92 0.92

tw1, 2 SMO-quadratic 0.85 0.92 1 0.91 0.92 1

tw2, 3 LS-quadratic 0.91 1 1 0.88 1 0.75

tw2, 3 QP-quadratic 0.90 0.92 0.92 0.81 0.92 0.86

tw2, 3 SMO-mlp 0.95 0.86 0.92 0.85 1 0.91

tw3, 4 QP-linear 0.88 0.92 1 0.91 0.92 0.86

tw3, 4 SMO-quadratic 0.87 1 0.9 0.84 1 0.79

tw3, 4 LS-quadratic 0.86 0.86 1 0.81 1 1

tw3, 4 QP-quadratic 0.88 1 1 0.91 0.92 0.86
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successful in detecting significant affiliations between features
and class labels while avoiding overfitting. Furthermore, the high
specificity and sensitivity values, as illustrated in Table 2, further
corroborate the validity of the classifiers employed. The small
numbers of both false positives and false negatives support the
notion that there was no bias in favor of one class over the other
during the classification of the actors’ responses.

Concerning specific electrodes and features, no overall clear
trend could be discerned. Nevertheless, as depicted in Table 3, for
the 2 cases that Joint1 accuracy reached 1 and task-specific
average was higher than 0.9, the features selected to be added
for Joint1 presented a central/centro-parietal majority (9 of the 13
selected features). Moreover, for the 2 cases that Joint2 accuracy
reached 1 and task-specific average surpassed 0.9, the features
selected for Joint2 presented a parietal/centro-parietal majority (7
of the 8 selected features). Interestingly, in the above cases, a
differentiation between the two condition-specific subsets was
detected. In more detail, the condition-specific features added
for Joint1 condition were different from those added for Joint2
condition, starting from the same SFFS cross-condition set, with
an exception of one case, namely, feature MinT, for electrode Pz
and tw1. The feature distributions for the two cases corresponding
to the best classification results, i.e., cases where Joint1 or Joint2
accuracy was 1 and task-specific average had its highest value
0.96, are presented in Fig. 8.

4 Discussion

In this study, we performed cross-condition and within-condition
classification on error-processing ERP signals in an auditory task
with two levels of complexity. The presented framework was
capable of selecting ERP characteristic features both common
to the two conditions and separately for each condition, leading
to successful discrimination between correct or incorrect

responses. In fact, although the waveforms of correct and incor-
rect responses –when averaged across all subjects and conditions
– did not present a clearly distinguishable error-related differen-
tiation (Fig. 2B) (as also indicated by previous research of our
group on these data [38]), the high classification accuracy
reached for cross-condition and within-condition classification
corroborates our initial hypothesis thatmachine learningmethods
can successfully detect hidden patterns in ErrP features. Hence,
incorrect decisions can be identified irrespective of the task dif-
ficulty, while additional ErrP characteristics that improve classi-
fication for each difficulty level can be extracted. Among the
SVM models adopted in the present study, quadratic kernels
presented the highest performance. Interestingly, rbf kernels
failed to meet the performance evaluation criterion, suggesting
that although the main advantage or SVM classifier is that –
paired with the kernel trick – it can efficiently classify non-
linear data, the fact that linear kernels present higher performance
might indicate the linear nature of the features extracted [47].
This may well be the case, as other EEG classification studies
also display better classification accuracy utilizing SVM kernels
other than rbf [48–50]. For further validation,we also implement-
ed the k-nearest neighbor (k-NN) and the linear discriminant
analysis (LDA) classification techniques, using the methodology
exposed above (see Supplementary materials). The performance
of the k-NN and LDA classifiers was overall inferior to the
SVM-based machine learning approach, although LDA reached
acceptable performance levels, adding to the indications for the
efficiency of employing linear modeling.

The response-related signals analyzed in our work are elicited
after hearing FBT, i.e., the first feedback tone provided to the
subjects. Therefore, the generation of an FRN-like signal might
have been expected. Of note is that the overwhelmingmajority of
error-related studies employ pre-defined time windows to detect
and analyze error-related components [5, 19]. However, it should
be taken into consideration that because of the nature of FBT, as

Table 3 Features selected

Time
window

Classifier Cross-condition Features added for Joint1 Features added for Joint2

tw2, 3 LS-quadratic tw2: FC2_MinA, Cz_MinT, Cz_
MaxA, CP1_MaxT, CP2_MinA
tw3: Fz_MinT, Cz_MinT, Cz_AUC,
CP1_MinA

tw2: FC1_MinA, FC2_MaxT, P1_AUC,
CP2_MinT, CP2_MaxA, Pz_MinT, Pz_
MaxA tw3: FC2_MinA, Cz_MaxT, CP2_
MaxA

tw2: FC1_MinT, FC1_MaxA, FC2_
MinT, Cz_MaxT, CP1_MinA tw3:
FC1_AUC, CP2_MinA, CP2_
MaxT

tw3, 4 SMO-quadratic tw3: Fz_MinT, FC2_MinA, CP1_
MaxA, CP1_AUC, Pz_MinA, Pz_
AUC

tw3: FC2_AUC tw4: CP2_MaxA, Pz_MinT tw3: CP2_MaxT

tw1, 2 SMO-quadratic tw1: FC1_MaxA, FC2_MinT, CP1_
MinTtw2: Fz_MaxA, Fz_MaxT,
Cz_MaxA, CP1_MaxT

tw2: Pz_MinT tw1: FC2_MinA, CP1_AUC, CP2_
AUC, Pz_MaxA tw2: Pz_MinT

tw3, 4 LS-quadratic tw3: CP1_AUC tw4:FC2_MaxA tw3: FC1_MaxT tw4: CP2_MinA, Pz_
MinA, Pz_MinT

tw3: CP1_MinA, CP2_MinA tw4:
CP1_MaxT

The first two cases correspond to the cases in Table 1 where Joint1 classification accuracy reached 1, while the last two cases correspond to the cases in
Table 1 where Joint2 classification accuracy reached 1. Each feature is denoted including the electrode fromwhich the feature was extracted, followed by
the feature itself, i.e., “electrode feature”
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explained in the methodology section, as well as the fact that
amplitude and latency variations of ErrPs appear to depend on
individual subject differences and task-condition manipulations
[28, 51, 52], the morphology and duration of the error-related
ERP signals could not be ascertained beforehand. Therefore, a
series of consecutive timewindowswere investigated, intowhich
features were computed, so as not to preclude latencies that could
provide useful information. Results indicate that useful informa-
tion can mainly be extracted from combinations of adjacent time
windows tw1, 2 (0–220ms), tw2, 3 (125–300ms), and tw3, 4 (220–
400 ms), instead of the short-duration single time windows. This
can be related to the fact that the ErrPs corresponding to feedback
tone processing can have error-related features extending in time
windows of over 200 ms [53]. In addition, it could be inferred
that, since the ErrPs tend to be distorted or masked by other
components due to task complexity [54], the combination of time
windows could provide a suitable approach for incorporating
additional error-related components to the classification schemes.
On the other hand, using an overly extended time window, i.e.,
tw5 lasting from 0 to 600 ms, might confound the FS algorithms,
as the large ERP peaks after 400 ms appearing in auditory tasks
might reflect information unrelated to error processing and thus
decrease the number of useful features [55]. In this context, it
should be kept in mind that feedback-related ErrPs may be con-
founded and not be apparent due to variability of feedback va-
lence and experimental conditions [56–58].

In addition, reward expectancy and reinforced learn-
ing effects modulate the characteristics of feedback-

related ErrPs, even in correct trials [59, 60]. The ERPs
investigated in the current study originated from epochs
where the FBT provided indirect information for the
response of the actor. Therefore, the ERPs analyzed
might not provide as clear error-related features as those
that would have been extracted from ERPs recorded
after the presentation of a sole feedback tone providing
unambiguous information on the correctness of the par-
ticipants’ actions.

Considering the features selected for the two conditions, in
the cases where accuracy of Joint1 or Joint2 reached 1, the
features selected by SFS for Joint1 condition were different
from the features selected by SFS for Joint2 condition, starting
from the same SFFS-selected set (see Table 3). Therefore, the
feature sets that provided the best classification between ErrPs
corresponding to correct and incorrect responses, although
initiating from the same SFFS, when subsequently tailored
to each condition separately resulted in sets differing for the
two conditions, notably for the cases that provide the best
classification accuracy. This is in line with other cross-
condition pattern recognition studies presenting differentia-
tions on ErrP classification performance related to condition
manipulations [22, 30, 36]. In this regard, contrary to previ-
ously proposed methods that apply training and testing on
different tasks [21–23], thus taking into account for training
condition-salient features that subsequently result in impaired
cross-condition performance, our framework succeeds in
disentangling cross-condition and condition-specific
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classification by selecting both common and individual con-
dition features for the overall classification processes.

Additionally, the fact that the performance evaluation cri-
terion and single-condition accuracy equal to 1 were met in
several cases indicates that the procedures used in FS grant
flexibility to the method, consequently providing high-
accuracy results in classifying ErrP features corresponding to
correct and incorrect responses from each condition. On the
other hand, since FS took into account the mean value of not
only cross-condition but also condition-specific classification
accuracy, it might be expected that the feature set provided by
SFFS, when only cross-condition classification was evaluat-
ed, would perform better for condition-independent classifica-
tion, although bias might be introduced toward Joint1 or
Joint2 classification.

Some considerations need to be taken into account when
interpreting the results of the current study. In order to allevi-
ate the effects of unbalanced conditions on SVM algorithms
[61] and to elucidate generalizability in the evaluation of the
error recognition, the average of each participant’s ERP sig-
nals was employed for classification purposes, thus leading to
a small number of instances to be classified.

Of note is that we only employed features that derive from
morphological apparent signal characteristics (amplitude, la-
tency, etc.), since our goal was to perform condition-
independent and condition-dependent classification using
rather simple ERP-based characteristics. Investigating more
complex features might improve results.

Although the features selected for each method contribute
to the classification accuracy, the degree to which they relate
to the underlying condition-specific processes should be
viewed with skepticism [62]. The main concern is the lack
of consistency in the features selected, since for each method
a different set of features was selected (see Table 3). In this
context, the features that improve performance may not direct-
ly relate to the underlying neuronal processes and could have
been chosen also because they allowed for reduction of noise
unrelated to neuronal processing. Nevertheless, the existence
of both condition-independent and condition-specific salient
subsets of ErrP-based features might have the potential to
successfully discriminate between ErrPs corresponding to cor-
rect and incorrect responses and provide indications for error-
processing mechanisms adjusted to task difficulty [63, 64].
Taking the above into consideration, it can be conjectured that
ErrPs associated with brain error-monitoring processes might
reflect both elements of a common underlying error-detection
cognitive mechanism and modifications of that mechanism,
depending on the task complexity level. Toward this direction,
we intent to extend this study in future work, in order to
investigate the underlying brain mechanisms related to a uni-
versal error-processing mechanism irrespective of task com-
plexity and elucidate neural substrates that regulate global and
condition-specific error responses.

5 Conclusion

The cognitive error-related processing is deemed highly signifi-
cant in the human behavior adaptation as well as in clinical
research applications. However, even though ErrPs are stimu-
lus-locked, they display large variations in signal characteristics
as a result of different cognitive tasks and experimental condi-
tions. As such, cross-condition error prediction based on ERP
attributes remains a challenge. In this paper, we presented a
framework for condition-specific and condition-independent
classification of ERP-based features of an auditory identification
task under two difficulty levels. Our analysis succeeded in pro-
viding a small number of feature subsets with high accuracy by
utilizing a feature selection (SFFS-SFS) framework for handling
both cross- and individual-condition error-processing variations,
depending on the task complexity level. Results seem to support
the initial hypothesis that machine learning algorithms
employing a small number of ErrPs-based features have the po-
tential to model hidden patterns and successfully discriminate
between correct and incorrect responses in multiple conditions
while additionally provide indications that the combinations of
adjacent time windows can help incorporate ErrP components
affected by complexity modifications.
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