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Regularized logistic regression for obstructive sleep apnea screening
during wakefulness using daytime tracheal breathing sounds
and anthropometric information
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Abstract
Obstructive sleep apnea (OSA) is a prevalent health problem. Developing a technology for quick OSA screening is momentous.
In this study, we used regularized logistic regression to predict the OSA severity level of 199 individuals (116 males) with apnea/
hypopnea index (AHI) ≥ 15 (moderate/severe OSA) and AHI < 5 (non-OSA) using their tracheal breathing sounds (TBS)
recorded during daytime, while they were awake. The participants were guided to breathe through their nose, and then through
their mouth at their deep breathing rate. The least absolute shrinkage and selection operator (LASSO) feature selection approach
was used to select the discriminative features from the power spectra of the TBS and the anthropometric information. Using a
five-fold cross-validation procedure, five different training sets and their corresponding blind-testing sets were formed. The
average blind-testing classification accuracy over the five different folds was found to be 79.3% ± 6.1 with the sensitivity
(specificity) of 82.2% ± 7.2% (75.8% ± 9.9%). The accuracy for the entire dataset was found to be 81.1% with sensitivity
(specificity) of 84.4% (77.0%). The feature selection and classification procedures were intelligible and fast. The selected features
were physiologically meaningful. Overall, the results show that TBS analysis can be used as a quick and reliable prediction of the
presence and severity of OSA during wakefulness without a sleep study.
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1 Introduction

Obstructive sleep apnea-hypopnea disorder (OSA) is charac-
terized by repetitive narrowing or complete closure of the
upper airway (UA) during sleep, leading to complete cessation
(apnea) and/or partially (≥ 50%) reduction (hypopnea) of air-
flow that lasts at least 10 s and is associated with a minimum
of 4% drop in oxygen saturation level of blood (SaO2) [1]. The
apneic episodes often contribute to frequent arousals or awak-
enings in order to restore airway functioning. These frequent

arousals reduce sleep continuity and quality [2]. Untreated
OSA is associated with many deficits, including excessive
daytime sleepiness, increased risk of motor vehicle accidents
[1], and increased risk of cardiovascular disease [3].

OSA is a common health problem which affects all age
groups. Between 9 and 38% of the general adult, the popula-
tion is suffering fromOSA, while it is higher in men compared
to women and much higher in the elderly groups [4]. Since
OSA is still underdiagnosed, these statistics are believed to
underestimate the actual numbers [5]. The severity of OSA
is currently measured by the number of apneic episodes per
hour of sleep using the apnea/hypopnea index (AHI). AHI < 5
considered as non-OSA, and 5 ≤ AHI < 15, 15 ≤ AHI < 30,
AHI ≥ 30 considered as mild, moderate, and severe OSA,
respectively [6]. AHI is measured by polysomnography
(PSG) assessment over the night sleep. PSG records various
signals including electroencephalogram, electrocardiogram,
electrooculogram, electromyography of chins and leg, body
position, nasal airflow, SaO2, as well as abdominal and tho-
racic movements in order to provide a full assessment of sleep
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quality [7].While full-nocturnal PSG is considered as the gold
standard for sleep apnea assessment, it is time-consuming,
laborious, expensive, and not easily accessible, particularly
in small towns and remote areas. Thus, in emergency situa-
tions that the OSA status of a patient is needed, it might not be
feasible to perform a quick assessment of OSA status using
PSG approach, hence underdiagnose OSA. For example,
around 80% of patients presenting for operation are undiag-
nosed at the time of surgery [5]. Inadequate preoperative as-
sessment of OSA in these patients may increase their postop-
erative complications risks. Therefore, a quick and reliable
screening OSA assessment during daytime without a full-
nocturnal sleep study is highly desirable.

The current quick preoperative OSA screening method in
hospitals is based on using subjective questionnaires, such as
Berlin Questionnaire, Epworth sleepiness scale, STOP, and
STOP-BANG [8], that collect anthropometric information
(gender, neck circumference, age) [9]. These methods have
shown to have a high sensitivity (90%) but at the cost of a
very low specificity (< 40%) [8]. Consequently, they could
potentially result in identifying a much higher number of par-
ticipants as high-risk patients and reducing the cost-
effectiveness of such assessment. On the other hand, our team
and a few other researchers around the world have used tra-
cheal breathing sounds (TBS) for OSA monitoring and
screening during daytime to predict their OSA condition with
better accuracy than the commonly used method based on
questionnaires [10–12]. The premise of our technique to
screen OSA during wakefulness is based on the fact that the
TBS change as the UA structure varies in OSA individuals
[13, 14]. It has been shown that these structural changes are
present not only during sleep [15, 16] but also during daytime
when patients are awake (wakefulness) [17–20].

In a study reported in [12], the formant frequencies of TBS
and their variation from inspiration to expiration were inves-
tigated for 10 mild moderate (AHI < 30) and 13 severe (AHI ≥
30) OSA patients during wakefulness before getting asleep.
They used an LDA classification approach using formant fea-
tures and some anthropometric information. They reported
sensitivity (specificity) of 88.9% (84.6%) and accuracy of
86.4%. Since the features were extracted from the entire
dataset (due to the small sample size), those results are con-
sidered as biased. Also, LDA is a generative approach that
makes strong and sometimes unrealistic assumptions such as
normality as well as equal variance structure of all extracted
features for each class. In our team’s previous study [10],
many features were extracted from the TBS’ power spectra
of 105 randomly selected participants (56 non-OSA, AHI ≤ 5
and 49 OSA, AHI ≥ 10) out of a total of 130 participants.
Next, using data of all participants and within an exhaustive
leave-two-out routine (by leaving one subject from each of the
two groups as testing and the remaining as training), six fea-
tures with the best discriminative power were selected.

Afterward, using a support vector machine (SVM) classifier
with linear kernel, the classification accuracy of all combina-
tion of three-feature sets were calculated. This procedure was
repeated until each participant’s data was used at least once as
a test. Finally, from the most repeated 3 features, 2 of them
with the lowest correlation were selected. Then, through an-
other exhaustive leave-two-out cross-validation, the 2-class
SVM classifier resulted in 83.83% and 83.92% accuracies
for training and test datasets, respectively. The sensitivity
(specificity) was 83.92% (85.20%) for training and 82.61%
(85.22%) for test datasets [10]. Despite the high accuracy of
the classification results, the proposed procedure in [10] is
complicated and computationally expensive. Moreover, the
random selection of training participates for feature extraction
was done only once; thus, the reported results might have
some bias.

In this paper, we propose to apply the logistic regression
with least absolute shrinkage and selection operator (LASSO)
or l1-penalty for classification of apneic individuals using the
combination of the anthropometric information and TBS dur-
ing daytime while the subjects are awake. LASSO is a pow-
erful regularization method that performs the feature selection
for statistical models [21] by shrinking and sometimes setting
some of the coefficients of the regression variables to zero [21,
22]. Removing some of the coefficients can reduce the vari-
ance without a substantial increase of the bias, hence, increase
the prediction accuracy. Moreover, by eliminating the irrele-
vant variables that are not associated with the response vari-
able, the LASSO helps to increase the model interpretability
and reduce the overfitting [21, 22]. This method has been
widely used in variable selection and classification in many
clinical fields [23–25].We also use LASSO logistic regression
for our classification problem, as it is a discriminant approach
that does not require normality assumption or homogeneity of
features in OSA classes. To the best of our knowledge, this is
the first research where these techniques are used to assist in
OSA diagnosis from TBS signals recorded during the day-
time. We have validated our approach on a larger number of
participants compared to that of previous studies. The physi-
ological interpretation of the selected features in relation to the
structural changes of UA due to OSA are also discussed.

2 Method

2.1 Data

Data of this study were collected from 199 participants
suspected of OSA, prior to overnight PSG assessment at
Sleep Disorder Lab at Misericordia Health Centre
(Winnipeg, MB, Canada). The Biomedical Research Ethics
Board of the University of Manitoba approved the study,
and all participants signed an informed consent form prior to
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participating in the study. After our recording, participants
proceeded to overnight PSG preparation and sleep assess-
ment. We collected their anthropometric information and cal-
culated their AHI (from PSG assessment) afterward to com-
pare with our proposedmethod’s AHI prediction and calculate
its accuracy. Our collected data included 74 (29 males) non-
OSAwith AHI < 5, and 90 (66 males) moderate/severe OSA
with AHI ≥ 15. The remaining 35 (21 males) mild-OSA par-
ticipants with 5 ≤ AHI < 15 were dealt separately. Table 1
presents the anthropometric information of the participants.

2.2 Recording procedure

TBS data were recorded during the daytime, while the partic-
ipants were awake, and prior to their PSG assessment.
Participants’ TBS were recorded by a miniature microphone
(Sony ECM-77B) embedded in a chamber with a 2-mm cone-
shaped space with skin placed over the suprasternal notch of
trachea using a double-sided adhesive ring tape. The chamber
was embedded in a soft neckband wrapped around the partic-
ipants’ neck to prevent plausible movement and comfort of
the participant. The recorded breathing sounds were amplified
using a Biopac (DA100C) amplifier, band-pass filtered in the
frequency range of (0.05–5000 Hz), and digitized at 10240 Hz
sampling rate. In supine position with head resting on a pillow,
the participants were instructed to breathe deeply in two ma-
neuvers: first through their mouth with a nose clip in place,
second through their nose with their mouth closed. and then
we recorded 5 full breath cycles in each maneuver.

2.3 Pre-processing and signal analysis

All of our recordings were done in a hospital setting in a
relatively noisy background. Thus, the recorded sounds
contained various types of noises (e.g., vocal noises, air con-
ditioner sounds) in addition to the desired breathing sounds.
We applied different processes to remove unwanted noises

from the collected TBS. As the first step, we examined the
recorded sounds in the time-and-frequency domain by visual
and auditory means using the spectrogram program of
MatlabTM software; this step was done manually to ensure
100% accuracy in selecting noise-free breathing sounds seg-
ments. Consequently, all of the breathing cycles that included
artifacts, vocal noises, swallowing, and low signal to noise
ratio compared to the background noise were excluded from
the analysis. Figure 1 shows a sample spectrogram that con-
tains breathing sounds in addition to various type of noises
including swallowing, coughing, vocal noises, and the
michrophone movement sounds due to either fat or lose tis-
sues of the neck touching the microphone.

As the second step of noise reduction, we used a 5th-order
Butterworth band-pass filter in the range of (75–2500 Hz) to
keep the main frequency components of the breathing phases
of each selected sound and to suppress the effect of low and
high-frequency noises (including heart sounds that are less
than 75 Hz [26], neck muscle artefact, fundamental frequency
of the power line (60 Hz in Canada), and background noises).
The reason for choosing the 2500 Hz as the high-frequency
bound is that most of the TBS energy is claimed to be below
2500 Hz [27]. Next, similar to our previous studies [10, 28],
we normalized the filtered sounds first by their variance enve-
lope (64-sample sequence moving average filter of the signal),
and secondly, by their energy to compensate for probable dif-
ferent flow rates in different breathing cycles.

In this study, we did not record the respiratory flow of
participants, however, to ensure the respiratory phases all re-
cording procedures started at the inspiration phase and marked
by the voice of the experimenter. Using that auditory marker,
the inspiratory and expiratory phases were separated manually
and analyzed independently. Then, we used the method intro-
duced in [14] to determine the approximately stationary por-
tion of each normalized sound. In brief, the logarithm of the
sound’s variance (LogVar) was calculated, and the sounds
segments corresponding to the middle part (50% duration

Table 1 Anthropometric information’s mean and their corresponding standard deviations (std) for the non-OSA, moderate/severe OSA, andmild-OSA
groups

Non-OSA (AHI < 5, n = 74) Moderate/severe OSA (AHI≥ 15, n = 90) Mild-OSA (5 ≤ AHI < 15, n = 35)

AHI ± std 1.2 ± 1.3 42.8 ± 32.7 8.7 ± 2.6

NC (cm) ± std 38.7 ± 4.1 44.1 ± 3.7 42.2 ± 6.3

Age (year) ± std 46.8 ± 12.9 52.2 ± 11.6 52.3 ± 11.7

BMI (kg/m2) ± std 30.6 ± 6.3 36.4 ± 8.0 34.3 ± 8.4

Sex (male:female) 29:45 66:24 21:14

Height (cm) ± std 167.5 ± 9.4 170 ± 10.3 170.6 ± 9.9

Weight (kg) ± std 85.1 ± 19.3 106 ± 23.2 188.8 ± 20.8

MP (I-II-III-IV) 41-19-6-8 22-30-22-16 19-6-9-1

AHI is apnea/hypopnea index, NC is neck circumference, BMI is body mass index, and MP is Mallampati score and the numbers in that row show the
number of subjects with MP level I, II, II, and IV
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around the maximum) was extracted as the stationary portion
of each breathing phase. Finally, we estimated the power spec-
trum density (PSD) of the stationary portion of each TBS
signal using Welch’s method [29] in windows of 205-point
(~ 20 ms) with 50% overlap between the successive windows.
The values of optimum window size and overlap for
segmenting the TBS signal were selected based on the results
of our previous study [28] and our various pilot studies that
showed these values estimates the mostly differentiable power
spectrum density (PSD) signals between the non-OSA and
OSA subjects.

Following the above routine, for each participant, we esti-
mated the PSD in both linear and logarithmic scale for TBS
recorded in each mouth and nasal maneuvers. The PSD esti-
mation was done for each inspiratory/expiratory phase sepa-
rately and also for their combination (summation/subtraction).
This routine resulted in 16 different PSD signals for each
participant; they were then averaged over the breathing cycles
of each part icipant’s data. Figure 2 outl ines the
abovementioned pre-processing and signal analysis.

2.4 Feature extraction

We used the 5-fold cross-validation routine to randomly split
the set of 164 participants associated with the non-OSA and

moderate/severe OSA groups into five non-overlapping
groups (folds), each consisting of approximately 33 partici-
pants (20% non-OSA and 20% moderate/severe OSA). Each
time, participants’ TBS data of one fold were left out and
considered as blind-testing data, and data of the remaining
four folds (131 participants) were considered as training data
and used for feature extraction. The test error was estimated by
averaging the five resulting error estimates. Data of the mild-
OSA group (5 < AHI < 15, n = 35) were not used during
feature selection, and they were dealt separately as described
later in Section 2.5.

As mentioned in Section 2.3, within each training set,
we estimated the PSD for all participants separately. In
order to extract the characteristic features between the
mild and moderate/severe OSA groups of this study, we
separately averaged the PSD signals of mild and moderate
groups within each training dataset and calculated their
95% confidence intervals (CI). The 95% CI for either
mild or moderate/severe OSA groups were calculated ac-
cording to the Eq. 1 as follows:

CI ¼ PSD� Critical value� std PSDð Þffiffiffi
n

p ð1Þ

where PSD is the average of PSD for each OSA group,
std is the standard deviation, n is the number of

Fig. 1 Spectrogram of a sample recording with vocal noises, swallowing, coughing, and microphone movement sounds due to attachment of the
microphone to the participant’s skin
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participants in each OSA groups, and Critical _ value is
the t-statistics (values of t-distributions) with n − 1 degree
of freedom.

We considered the mean and slope of the regions with
different slopes and the non-overlapped area between the
average power spectra of two groups in association with
their corresponding 95% CIs as characteristic features to be
further selected for classification. As an example, Fig. 3
shows the average power spectra that calculated from the
summation of inspiratory and expiratory mouth TBS sig-
nals in linear and logarithmic scale for the non-OSA and
moderate/severe OSA groups in one of the training sets as
well as their corresponding 95% CIs. TBS features were
extracted from the regions between the solid, dotted, and
dashed lines. Overall, we extracted 78 TBS features.
Combining these TBS features with seven anthropometric
features of each participant (sex, age, height, weight, body

mass index (BMI), neck circumference (NC), and
Mallampati score (MP)) resulted in a total of 85 features.

2.5 Feature reduction and classification

Due to the high number of extracted features, we used a fea-
ture selection/reduction approach to find the most characteris-
tic features for classification of the two moderate/severe OSA
and non-OSA groups. The first step of feature reduction was
to apply an unpaired t test on the features of the participants in
each training set and to select the statistically significantly
different features (p < 0.01) between non-OSA and
moderate/severe OSA groups within that training set. In order
to meet the statistical significance of 99% for the overall test,
the significance level of each test was considered as 1 − (1 −
0.01)1/85 ≅ 1.2 × 10−4 [30, 31]. Within each training set, on
average 11 features with p value >1.2 × 10−4 were omitted,

Fig. 2 Pre-processing and signal analysis framework. Tracheal breathing
sounds were extracted during daytime while the participants were awake.
After manual exclusion of noisy sounds, the breathing sounds were
separated as inspiratory and expiratory phases. Each individual phase of

breathing sounds were filtered and normalized to purify tracheal
breathing sounds. Afterward, the power spectrum density were
estimated for the approximately stationary portion of each normalized
sound
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and the features with the discrimination potential between the
two groups were kept for further analysis.

To classify the two non-OSA and moderate/severe OSA
groups, we considered a linear logistic regression model for
the severity level of participants:

log
Pr Y ¼ 1jX ¼ xð Þ

1−Pr Y ¼ 1jX ¼ xð Þ
� �

¼ β0 þ βTx ð2Þ

where Yϵ{0, 1} is the true severity label of participants, X is
the matrix of (n × p) for n participants and p features, β is the
coefficient vector, and Pr(Y = 1|X = x) represents the probabil-
ity of assigning a participant to the moderate/severe group.

To further reduce the number of features and obtain a par-
simonious model, we used the LASSO approach [21] as a
powerful and stable feature selection algorithm to automati-
cally select significant features by shrinking the coefficient of

unimportant features to zero. This is done by estimating the
parameters of the logistic regression via minimizing the neg-
ative log-likelihood with an l1- regularization defined as fol-
lows:

argminβ −
1

n
∑
n

i¼1
yi β0 þ βT xi
� �

−log 1þ eβ0þβT xi
� �n o

þ λ ∑
p

j¼1
β j

		 		 !

ð3Þ
where λ is the penalty parameter that is selected in a way to
minimize the out of sample error (generalized error) of the
model. For each value of λ, the above optimization problem
is solved and the optimal value of λ is tuned using the cross-
validation [32]. As the objective of this study was to balance
the accuracy and computational cost, we selected λ such that it
provides the smallest number of coefficients with a reasonable
accuracy. Therefore, the λ that occurred within one standard
error of the optimal λ was selected as the optimum value. The
LASSO penalized logistic regression model was implemented
using the Glmnet package of R statistical software version
3.5.1.

We applied this method to the dataset of entire non-OSA
and moderate/severe OSA participants (164 participants) and
also to the data of different training sets to investigate the
robustness of the procedure. From the selected features of
each dataset, the features with a high correlation (> 50%) to
other features were excluded, and the remaining were used for
classification.

To classify each participant into one of the two groups of
non-OSA or moderate/severe OSA, we used the features se-
lected by the lasso feature selection method as input to another
LASSO logistic regression method trained for the classifica-
tion. Once β coefficients are determined, the probability of
assigning a participant to either non-OSA or moderate/
severe OSA is determined using the Eq. 2. The accuracy,
specificity, and sensitivity were calculated using test and train-
ing data of each dataset as well as data of entire non-OSA and
moderate/severe OSA participants. Data of the mild-OSA par-
ticipants with 5 ≤ AHI < 15 were also classified at this stage
with the same procedure using the models formed based on
data of the entire non-OSA and moderate/severe OSA groups
as well as data of each training dataset. Figure 4 shows the
flowchart of this method for feature selection and
classification.

The total computational cost of our proposed algorithm
was also calculated; it is detailed in Appendix B.

3 Results

In this study, features were mainly extracted from the areas
with different slopes and the non-overlapped regions of the
average power spectra of non-OSA and moderate/severe OSA

Fig. 3 Average power spectra of the summation of mouth inspiratory and
expiratory breathing sounds with their 95% confidence intervals (CI,
shadows) in non-OSA (blue) and moderate/severe OSA (red) groups,
using one of the training sets with 131 participants in a linear scale, b
logarithmic scale with base of 10. The area between solid lines, dotted
lines, and dashed lines shows the regions where the features were
extracted
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participants. As these regions were slightly changed among
different training sets, for robustness, we chose the common
area among the five-fold training datasets. Our feature selec-
tion procedure resulted in the following five features as de-
scribed in Eq. 4–7; F represents a feature. Table 2 presents the
features that were selected using data of each training set as
follows:

F1 : neck circumference
F2 : slope 10log10 PSDmouth−Ins þ PSDmouth−exp 260 : 440 Hzð Þ� �� �

ð4Þ
F3 : mean 10log10 PSDmouth−Ins þ PSDmouth−exp 1100 : 1350 Hzð Þ� �� �

ð5Þ
F4 : slope PSDmouth−exp 250 : 350 Hzð Þ� �� � ð6Þ
F5 : mean 10log10 PSDnose−Ins þ PSDnose−exp 1000 : 1300 Hzð Þ� �� �

ð7Þ

Table 3 presents the coefficients of each feature for differ-
ent training sets and also the entire dataset of non-OSA and
moderate/severe OSA participants. Figure 5 shows the corre-
lation between the AHI and the selected features for separating
non-OSA and moderate/severe OSA participants within one
of the training sets as an example.

The selected features of different datasets were investigated
using the unpaired t test to check whether they were statisti-
cally significantly different from each other. All the p values
were found to be highly significant (p <7.9 × 10−6). The dis-
criminative power of the selected features between non-OSA

and moderate/severe OSA participants within different
datasets were also investigated using other sets of unpaired t
tests. Compared to moderate/severe OSA participants, the
non-OSA participants showed to have lower NC, lower
high-frequency power, and lower slope around the second
formant. All the p values were found statistically significant
(p < 4.6 × 10−6).

Different multivariate analysis of variance (MANOVA)
tests were run over the selected features of the five different
training datasets and also the entire non-OSA and moderate/

Fig. 4 The flowchart of feature
selection and classification
methods, using the LASSO
logistic regression

Table 2 Selected features for different training sets and the dataset
containing entire non-OSA and moderate/severe OSA participants, cap-
tured using the regularized logistic regression with the LASSO penalty
feature selection method

Dataset F1 F2 F3 F4 F5

Training set 1 ∗ ∗ ∗
Training set 2 ∗ ∗ ∗
Training set 3 ∗ ∗ ∗
Training set 4 ∗ ∗ ∗
Training set 5 ∗ ∗ ∗
Entire non-OSA and moderate/severe OSA ∗ ∗ ∗

F1: neck circumference; F2: slope (10 log 10(PSDMI + PSDME[260 :
440 Hz])); F3: mean (10 log 10(PSDMI + PSDME[1100 : 1350 Hz])); F4:
slope (PSDME [250 : 350 Hz]); F5: mean(10 log 10(PSDNI +
PSDNE[1000 : 1300 Hz]))

PSDME is power spectrum density of mouth expiratory sounds; PSDMI is
power spectrum density of mouth inspiratory sounds; PSDNE is power
spectrum density of nose expiratory sounds; PSDNI is power spectrum
density of nose inspiratory sounds
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severe OSA dataset to ensure the combination of the selected
features in each feature set were (statistically) significantly
different between the two groups; all were found to be highly
significant (p < 6.5 × 10−7). Therefore, the selected features
were used for classification of the two groups within each
training sets as well as the entire dataset (all five-folds’ data).

Table 4 provides the classification specificity, sensitivity, and
accuracy of applying the regularized logistic regression with
LASSO penalty over data of different training datasets and their
corresponding blind-testing sets, as well as data of the entire five-
folds’ dataset. The classification of the entire 164 non-OSA and
moderate/severe participants showed 81.1% accuracy with sen-
sitivity and specificity of 84.4% and 77.0%, respectively. The

average accuracies of the 5 training sets were found to be
82.3% ± 0.7 and 79.3% ± 6.1 for training and testing, respective-
ly. The sensitivity (specificity) were 85.0% ±2.0 (79.1% ± 1.0%)
for training and 82.2% ± 7.2 (75.8% ± 9.9%) for testing, respec-
tively. Table 4 also reports the area under the curve (AUC) values
associated with the average receiver operating characteristic
(ROC) curves of the regularized logistic regression classifier
for classification of non-OSA and moderate/severe OSA partic-
ipants in different datasets, using their selected features. The
AUC value associated with the ROC curve calculated using data
of all non-OSA and moderate/severe OSA participants was
shown to be 89.02. In addition, the average of the AUC values
between the 5 training datasets was found to be 89.9 ± 1.7.
Figure 6 shows the ROC curve calculated using the non-OSA
and moderate/severe OSA participants for one of the training
sets. Table 5 shows the number of misclassified participants in
each fold of training and testing as well as the entire dataset.
Table 6 details the anthropometric information of the
misclassified participants when applying the LASSO logistic re-
gression model to the entire dataset.

The computational cost for each step of our proposedmeth-
od is detailed in Appendix B. The overall computational cost
of our proposed approach is shown in Eq. 8.

16n� O Nlog Lð Þð Þ þ p O nð Þ þ O pnð Þ þ O 3nð Þ≈16n
� O Nlog Lð Þð Þ þ O pnð Þ ð8Þ

where n is the number of participants,N is the length of the TBS
after normalization, L is the window length, and p is the number
of features. The computational cost of our proposed method is
linear in terms of the number of features and the number of
participants; hence, the method is very fast.

Fig. 5 Visualization of the correlation between AHI and the selected
features of one of the training datasets, using LASSO feature selection
method. On top, the values of the correlation between features plus their
significance level as star (***p < 0.001). The overall distribution of
features showed as histograms with a fitted curve. The selected features

are neck circumference, the average of the power spectrum calculated
from summation of mouth inspiratory and expiratory breathing sounds
in the high-frequency range of (1100–1350 Hz), and the slope of the
power spectrum calculated from summation of mouth inspiratory and
expiratory breathing sounds in the frequency range of (260–440 Hz)

Table 3 Coefficients of selected features of different training sets and
the dataset containing entire non-OSA and moderate/severe OSA partic-
ipants, captured using the regularized logistic regression with the LASSO
penalty feature selection method

Dataset β0 β1 β2 β3

Training set 1 − 6.5 0.2 4.8 0.05

Training set 2 − 7.2 0.2 10.5 0.05

Training set 3 − 7.5 0.2 11.6 0.03

Training set 4 − 4.5 0.1 11.6 0.08

Training set 5 − 6.8 0.2 10.2 0.08

Entire non-OSA and moderate/severe OSA − 7.1 0.2 10.2 0.04

β0, intercept; β1, coefficient of the neck circumference; β2, coefficient of
the feature related to the slope of the power spectrum around second
formant; β3, coefficient of the feature related to the average power spec-
trum in the high-frequency range.

The reason that we decided to italicize these entries is that they are either
the average over different datasets or the result of the overall data, and we
just want to emphasis these foundings. In addition these are the results
that we reported on the text of the paper

2648 Med Biol Eng Comput (2019) 57:2641–2655



4 Discussion

In this study, we proposed to use a regularized logistic model-
ing approach as a simple and fast method for analyzing TBS
recorded during daytime when the subjects were awake
(wakefulness) with the purpose of predicting their OSA sever-
ity by a few minutes breathing sound recording and data anal-
ysis. Our proposed approach is discriminative in nature and
does not rely on strong model-based assumptions. We devel-
oped a robust feature selecting approach, and used it in clas-
sifying subjects with AHI < 5 and AHI ≥ 15. The first set of
features considered for this study (p = 85) were a combination
of the TBS features and the anthropometric information of
participants. As there were two breathing maneuvers and we

investigated respiratory phases both separately and in combi-
nation, the number of features was large. Thus, we used a
feature selection approach based on regularized logistic re-
gressionmethodology with a LASSO penalty to select the best
subset of features.

In LASSO feature selection method, shrinking and removing
some of the model’s coefficients lead to reducing the variance
without a considerable increase in bias; hence, it provides desir-
able prediction accuracy [32]. This is useful when the number of
participants is not much larger than the number of features, as it
was the case in our study. The LASSO method is very fast and
provides an interpretable model by weighting the selected fea-
tures. Therefore, it is easy to explain which features are more
important for predicting the true class labels; the coefficients of
the selected features show their importance ranking (Table 3).

As the LASSO method uses a cross-validation procedure to
automatically estimate the optimal value of λ (the penalty param-
eter), there is no need to perform another cross-validation proce-
dure for obtaining the training and testing results. However, we
generated five sets of randomly selected training and blind-
testing data to ensure the unbiased test classification. Our find-
ings (Tables 2 and 3) show that in different training sets the
selected features and their corresponding coefficient values were
different; however, in all of the training sets and also in the entire
five-folds’ dataset three selected feature types were common.
Those features were (1) the neck circumference, (2) the slope
of the average PSD around the second formant, and (3) the
average of the high-frequency portion of the average PSD.
These features are congruent with the findings of our previous
study on a separate dataset [28]. In all training and testing datasets
of this study, the unpaired t test showed that the selected features
were statistically significantly different from each other and also

Table 4 Regularized logistic regression classification results for
different training sets and their corresponding blind-testing sets, the av-
erage of all five datasets and their standard deviations (std), and also for

the dataset containing entire non-OSA and moderate/severe OSA partic-
ipants, using their corresponding features selected by the LASSO penal-
ized logistic regression feature selection method.

Dataset Specificity (%) Sensitivity (%) Accuracy (%) AUC (%)

Training set 1 Training 78 87.5 83.2 92.1
Blind testing 60 83.3 72.7

Training set 2 Training 78 86.1 82.4 90
Blind testing 73.3 72.2 72.7

Training set 3 Training 80 82 81.1 87.3
Blind testing 85.7 77.8 81.3

Training set 4 Training 79.7 84.7 82.4 89.4
Blind testing 80 88.8 84.8

Training set 5 Training 79.7 84.7 82.4 90.5
Blind testing 80 88.9 84.8

Average Training ± std 79.1 ± 1.0 85 ± 2.0 82.3 ± 0.7 89.9 ± 1.7
Blind testing ± std 75.8 ± 9.9 82.2 ± 7.2 79.3 ± 6.1

Entire non-OSA and moderate/severe OSA – 77.0 84.4 81.1 89.02

The reason that we decided to italicize these entries is that they are either the average over different datasets or the result of the overall data, and we just
want to emphasis these foundings. In addition these are the results that we reported on the text of the paper

Fig. 6 ROC plot of the regularized logistic regression classification over
selected features of one of the training datasets, found using the LASSO
feature selection method. The selected features are neck circumference,
the average of the power spectrum calculated from summation of mouth
inspiratory and expiratory breathing sounds in the high-frequency range
of (1100–1350 Hz), and the slope of the power spectrum calculated from
summation of mouth inspiratory and expiratory breathing sounds in the
frequency range of (260–440 Hz)
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different between the two groups of non-OSA and moderate/
severe OSA. These features also showed high correlations with
AHI. In addition, the ROC curves of the different LASSO logis-
tic regression classifiers over different training sets and also on
the entire dataset showed high performance with high values of
AUC (Table 4). These high AUCs indicate the robustness of the
LASSO logistic regression classifiers with respect to our selected
features. Appendix A reports the results of using a simple logistic
regression for classification as opposed to the LASSO logistic
regression method. The simple logistic regression classification
of the entire 164 non-OSA and moderate/severe participants
showed 80.5% accuracy with sensitivity (specificity) of 82.2%
(78.4%), which are lower than those of LASSO logistic regres-
sion classification (Table 4). The reason that LASSO logistic
regression classification resulted in better than the simple logistic

regression is that regularization term of LASSO logistic regres-
sion classification method (λ) improves the generalization per-
formance (performance on new data) by reducing the variance of
parameter estimates (shrinks the coefficients that contribute most
to the error).

It is also important to investigate the characteristics of
misclassified participants. For the dataset containing all non-
OSA and moderate/severe OSA participants, the overall accura-
cy of the LASSO logistic regression was 81.1%; out of 164
subjects, 31 were misclassified, out of which, 17 were from
non-OSA and 14 were from moderate/severe OSA group
(Table 5). Further investigation on the anthropometric informa-
tion of misclassified subjects (Table 6) and comparing themwith
the non-OSA and moderate/severe participants of this study, re-
vealed that overall, the non-OSA misclassified individuals are

Table 5 Number of misclassified participants found using the
regularized logistic regression classification for different training sets
and their corresponding blind-testing sets, the average of all five datasets,

and also for the dataset containing entire non-OSA and moderate/severe
OSA participants

Dataset Total misclassified Non-OSA misclassified Moderate/severe OSA misclassified

Training set 1 Training 22 13 9

Blind testing 9 6 3

Training set 2 Training 23 13 10

Blind testing 9 4 5

Training set 3 Training 25 12 13

Blind testing 6 2 4

Training set 4 Training 23 12 11

Blind testing 5 3 2

Training set 5 Training 24 13 11

Blind testing 4 3 1

Average Training 24 13 11

Blind testing 11 4 7

Entire non-OSA and moderate/severe OSA 31 17 14

The reason that we decided to italicize these entries is that they are either the average over different datasets or the result of the overall data, and we just
want to emphasis these foundings. In addition these are the results that we reported on the text of the paper

Table 6 Anthropometric information’s mean and their corresponding
standard deviations (std) for the misclassified non-OSA and moderate/
severe OSA participants of the dataset containing entire non-OSA and

moderate/severe OSA participants, found using the regularized logistic
regression with LASSO penalty classifier

Non-OSA (AHI < 5, n = 74) Moderate/severe OSA (AHI ≥ 15, n = 90)

AHI ± std 1.1 ± 1.1 29.5 ± 20.2

NC (cm) ± std 43.6 ± 3.1 39.04 ± 2.1

Age (year) ± std 46.6 ± 13.4 57.1 ± 10.2

BMI (kg/m2) ± std 35.3 ± 7.3 33.6 ± 4.7

Sex (male:female) 13:4 5:9

Height (cm) ± std 170.9 ± 9.4 164.3 ± 12.1

Weight (kg) ± std 105.7 ± 21.7 88.3 ± 15.5

MP (I-II-III-IV) 8-6-1-2 5-7-1-1

AHI is apnea/hypopnea index; NC is neck circumference; BMI is body mass index; MP is Mallampati score and the numbers in that row show the
number of subjects with MP level I, II, II, and IV
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characterized with higher NC, BMI, height, weight, and being
male, while the moderate/severe OSA misclassified individuals
are characterized with lower NC, BMI, height, weight, and being
female. This finding is not surprising, as it is known that these
anthropometric parameters affect the breathing sounds while be-
ing correlated with AHI [33]. Thus, ideally, we should have the
two non-OSA and moderate/severe OSA groups of the training
and testing matched in these characteristics. However, that re-
quires a much larger dataset.

In this study, similar to all other similar studies, we used the
AHI values as the true label of each individual to be either in
non-OSAormoderate/severe OSAgroup. AlthoughAHI is one
of the most important and commonly used indicators for diag-
nosis of OSA, there are many individuals with similar AHI but
different daytime symptoms and different levels of OSA sever-
ity. The clinical diagnosis of OSA is not only based onAHI; it is
based on a combination of frequency of arousals, daytime
symptoms, lack of deep sleep, etc. [34]. We speculate that the
TBS features are indeed good representatives of the OSA se-
verity as they are affected by the pathophysiology of OSA.
However, the UA pathology of two individuals with similar
AHI (e.g., AHI of 14 and 16) may not be that much different
to affect the TBS differently enough to be detected by sound
analysis. For this reason, to avoid the misclassification in the
borderline ranges with artificially crisp nature, we allowed a
small gap (5 ≤ AHI < 15) in continuous AHI values of the
non-OSA and moderate/severe OSA groups to form the two
groups. Once the classifiers were trained, the participants with
AHI in this gap range were classified using our proposed meth-
od. Using the model obtained based on data of 164 non-OSA
andmoderate/severe participants, 11 out of 35 individuals in the
gap range were assigned to the non-OSA group and the remain-
ing 24 individuals assigned to the moderate/severe group.
Further investigation of these participants revealed that the in-
dividuals assigned to the moderate/severe group had higher
NC, higher slope around the second formant, and higher aver-
age PSD in high-frequency ranges compared to those assigned
to the non-OSA group, while there was not much difference in
their AHI values (8.8 ± 0.6 and 8.4 ± 0.8, respectively). This
finding confirms the shortcoming of using AHI as the only
indicator for OSA severity. Finding a better OSA severity indi-
cator still remains a challenge. Perhaps a better indicator would
be a combination of several factors including AHI, duration of
apneic events, and number of arousals, and also the breathing
sounds features.

Last but not the least advantage of the proposed method is
that the most repeated features among the selected features of
all datasets were extracted from the combination of inspiratory
and expiratory TBS. This finding implies that there may be no
need to separate the breathing phases in the pre-processing step.
Although there are various methods for automatic separation of
breathing phases into inspiration and expiration [35, 36], how-
ever, none of them are 100% accurate. Therefore, there is

always a need for manual investigation of breathing sounds.
Eliminating this part from the pre-processing procedure will
speed up the data analysis significantly; hence, providing a
faster online screening tool for OSA.

4.1 Physiological interpretations of the selected
features

It is worth mentioning that selected features using the regular-
ized logistic regression approach are physiologically mean-
ingful and highly correlated with AHI (Fig. 5).

Obesity is a risk factor in patients with sleep apnea [37, 38].
The relationship between obesity and OSA has been demon-
strated to be totally explained by variation in neck size [39,
40]. It was suggested that the increases in neck circumference
and fat deposited around the upper airway might narrow the
upper airway [38]. Therefore, we can conclude that NC, a
surrogate measure of neck fat, can be considered as a predictor
of the presence of OSA.

A highly collapsible/compliant pharyngeal airway is known
as the main anatomical abnormality in the UA of OSA patients
[41]. A reason for increased collapsibility of OSA subjects com-
pared to that of controls is their smaller cross-sectional area [42,
43]. According to the Helmholtz equation [44], an UA with a
smaller cross-sectional area reflects a lower resonant frequency
( f ) as follows:

f ¼ c
2π

ffiffiffiffiffiffi
A
VL

r
ð9Þ

where c is the speed of sound, A is cross-section area, V is the
cavity volume, and L is the length of the bottleneck. The resonant
frequencies of the UA are represented by formant frequencies;
the peaks in the spectrum of sound signals. Hence, we expect to
see lower formant frequencies for moderate/severe OSA partici-
pants. This is congruent with what is observed in Fig. 3, espe-
cially for the second formant (F2). In our study, the higher slope
in PSD of themoderate/severe OSA participants’ around their F2
implied that their F2 occurred in lower frequencies compared to
that of non-OSA participants.

On the other hand, stiffness is the property of a tissue that
resists the change in shape in response to an applied force. It
has been shown that during wakefulness, the stiffness of the
tongue muscles and soft palate tissues of OSA patients is
higher compared to those of controls [45]. The stiffening of
the narrower portion of the UA of OSA individuals was also
supported by showing a predominantly bottle shape for their
narrowed UA [20]. As an increase in stiffness is presented by
an increase in high-frequency components of the breathing
sounds, we expected to see higher energy in the high-
frequency portion of the average PSD of moderate/severe
OSA participants compared to that of non-OSA; this is what
is observed in Fig. 3.
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5 Conclusion

In this study, we investigated the application of regularized
logistic regression model using a LASSO penalty for predic-
tion of OSA severity during wakefulness using TBS analysis
and anthropometric information. The selected features by this
regressionmodeling approach are congruent with those select-
ed by other methods in our previous studies; they are physio-
logically meaningful and highly correlated with AHI. The
unbiased blind-testing classification accuracy, sensitivity,
and specificity over the non-OSA and moderate/severe OSA
groups of five different folds were found to be 79.3% ± 6.1%,
82.2% ± 7.2%, and 75.8% ± 9.9%, respectively. The accuracy
for the entire dataset was 81.1% with sensitivity and specific-
ity of 84.4% and 77.0%, respectively. Although results of this
study are similar but not necessarily superior to previous stud-
ies’ results but they are important from different aspects. The
most important contributions of this work are (1) the method
presented in this work does not need respiratory phase identi-
fication as the best features do not depend on that (2) the
method is simple, quick, and computationally more effective
than SVM and other previous methods for OSA screening
during wakefulness; thus, suitable for online applications;
(3) the method can be used for screening OSA individuals
with severity as low as 15 with high sensitivity and a reason-
able specificity. The main limitation of this study is the lack of
a large sample size to have a better way to handle OSA sever-
ity prediction of individuals with 5 < AHI < 15.

Glossary

AHI Apnea/hypopnea index
AUC Area under the curve
CI Confidence interval
FFT Fast Fourier transform
LASSO Least absolute shrinkage and selection operator
LogVar Logarithm of the sound’s variance
MANOVA Multivariate analysis of variance
OSA Obstructive sleep apnea
PSD Power spectrum density
PSG Polysomnography
ROC Receiver operating characteristic
SaO2 Oxygen saturation level of blood
SVM Support vector machine
TBS Tracheal breathing sounds
UA Upper airway

Appendix 1. Classification using simple
logistic regression

In this study, as we had 2 classes of participants (non-OSA and
moderate/severe OSA). Thus, we also applied the binomial

logistic regression classifier to the features selected by the
LASSO penalized logistic regression for classification pur-
pose. The classification of the entire 164 non-OSA and
moderate/severe participants showed 80.5% accuracy with
sensitivity and specificity of 82.2% and 78.4%, respectively.
The average of the results between the 5 training sets showed
accuracies of 82.0% ± 1.8% and 78.1% ± 7.7% for training
and testing, respectively. The sensitivity (specificity) was
83.0% ± 3.1% (80.8% ± 2.2%) for training and 78.9% ±
11.4% (77.1% ± 9.9%) for testing, respectively. The AUC,
associated with ROC curve calculated using all non-OSA
and moderate/severe participants, was shown to be 80.3. In
addition, the average of the AUC values between the 5 train-
ing sets was shown to be 81.9 ± 1.7. For the dataset containing
all 164 non-OSA and moderate/severe OSA participants, 32
were misclassified, out of which, 16 were from non-OSA and
16 were frommoderate/severe OSA group. In addition, 17 out
of 35 subjects in the gap range were assigned to the non-OSA
group and the remaining 18 subjects to the moderate/severe
group.

The reason for achieving the better result for regularized
logistic regression classification than the simple logistic re-
gression is that as there is still some correlation between the
selected features, the regularization term can improve the gen-
eralization performance (performance on new data) by reduc-
ing the variance of parameter estimates.

Appendix 2. Computational complexities

The computation cost of our proposed algorithm is rela-
tively low. For the feature extraction part, the computa-
tional cost was estimated for a typical TBS with length N
after normalization. The feature extraction phase consisted
of 2 main parts: LogVar estimation and PSD estimation.
The LogVar and PSD calculated for each segment, de-
fined as the window with length L which moves along
the signal with 50% overlap. Thus, the total number of
overlapping windows within each TBS is approximately
2N
L . The computational cost of calculating LogVar within

one segment is L; thus, the total number of operations to
calculate the LogVar of each TBS is as follows:

L� 2N
L

¼ O Nð Þ: ð10Þ

For the PSD estimation, the fast Fourier transform (FFT) of
each segment was calculated and averaged. The computation-
al cost of calculating FFT of each segment is L log(L); thus,
the total cost of PSD estimation for each TBS is as follows:

O
2N
L

� L log Lð Þ
� �

¼ O Nlog Lð Þð Þ: ð11Þ
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The feature extraction part is from O(k),where K is the
number of extracted features from each TBS signal. As we
have 16 signals for each participant (for mouth/nose breathing
maneuvers, inspiratory/expiratory phases, summation/
subtraction of phases, and normal/logarithmic scale), there-
fore, the total cost of feature extraction from n participant is
as follows:

16n� O Nð Þ þ O Nlog Lð Þð Þ þ O kð Þð Þ≈16n
� O Nlog Lð Þð Þ: ð12Þ

Feature reduction part of this study consists of applying t
test and LASSO. As each t test has the computational cost of
O(n), therefore, the overall t tests for all p features have the
computational cost of p ×O(n). On the other hand, in this
study, we ran the LASSO with the Glmnet package of R,
which uses the coordinate descent algorithm to find the opti-
mum solution. The computational cost of this method is re-
ported to be O(pn) for each iteration of the optimization [32].
Besides, as three features were selected as the best feature set
of each training set, thus, the computational cost of logistic
regression classification using the LASSO penalty is O(3n).
Therefore, the total computational cost of our proposed meth-
od can be written as follows:

16n� O Nlog Lð Þð Þ þ p O nð Þ þ O pnð Þ þ O 3nð Þ≈16n
� O Nlog Lð Þð Þ þ O pnð Þ ð13Þ

which is linear in terms of n, p.
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