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Abstract
This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic
end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced
to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized
image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-
processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch
extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also
show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method
outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000×1000 image can be segmented in less
than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available
at https://github.com/easycui/nuclei segmentation.

Keywords Deep learning · Nuclei segmentation · Fully convolutional neural network · Data augmentation

1 Introduction

With the progress of image processing and pattern recog-
nition techniques, computer-assisted diagnosis (CAD) has
been widely utilized to assist medical professionals in inter-
preting medical images. Digital pathology is earning more
and more attention from both image analysis researchers
and pathologists due to the advent of whole-slide imaging.
The potential applications of digital pathology span a wide
range such as segmentation of desired regions or objects,
counting normal or cancer cells, recognizing tissue struc-
tures, classifying cancer grades, and prognosis of cancers
[5, 33].
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As an essential part of digital pathology, histopathology
image analysis is playing an increasingly important role
in cancer diagnosis, which can provide direct and reliable
evidence to diagnose the grade and type of cancer. This
paper deals with nuclei segmentation, an important step
in histopathology image analysis. The purpose of nuclei
segmentation is not only counting the number of nuclei
but also obtaining the detailed information of each nucleus.
Hence, we can exactly extract each nucleus from the image
and make it available for further analysis. For example,
the features of the individual nucleus and the distribution
of nuclei clusters can be used to grade and classify status
of breast cancers [2, 19]. Because of appearance variations
such as color, shape, and texture, nuclei segmentation
from histopathology images could be very challenging, as
illustrated in Fig. 1, in which it is very difficult even
for humans to recognize and segment all nuclei within
the images. Figure 1a and b illustrate two histopathology
images from different organs. Figure 1c and d are two
histopathology images from the the same organ (breast) but
have different cancer grades.

Current deep learning methods for nuclei segmentation
usually need a complex post-processing procedure to obtain
the final nuclei boundaries [15, 20, 35]. Here, we proposed
an end-to-end approach for nuclei segmentation based on
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Fig. 1 a Colon cancer. b
Prostate cancer. c Breast cancer
(grade I). d Breast cancer (grade
III)

U-net [26]. Unlike prior binary classifiers [17, 29, 36],
which only discriminate nuclei against the background, our
nuclei-boundary segmentation model predicts the nuclei
and their contours at the same time. Due to the accurate
prediction of nucleus and boundary in our approach, the
final segmentation can be generated by a simple and fast
post-processing procedure. To segment the whole-slide
image, a pixel-wise segmentation strategy is necessary.
However, the border area of each patch cannot be predicted
accurately because of a lack of contextual information.
A seamless patch extraction and assembling method is
proposed to handle this problem. The main contributions of
this paper are as follows:

– We propose a nuclei-boundary model to explicitly
detect nuclei and their boundaries simultaneously from
histopathology images. Detecting boundary is able to
improve the accuracy of nuclei detection and help
split the touched and overlapped nuclei. Given the raw
segmentation results by our nuclei-boundary model,
only a simple dilation operation and noise-removing
steps are needed to produce the final segmentation
results.

– We develop an effective approach to segment extra-
large high-resolution images that U-net cannot handle
due to limited GPU memory using a seamless patch-
wise segmentation. A weighted loss map is utilized
to train the model and a vote mechanism is used to
assemble the patches.

– Extensive studies on the effects of a variety of data
augmentation methods for nuclei segmentation are
provided.

– We introduce four evaluation criteria for more accurate
nuclei segmentation performance evaluation: missing
detection rate, false detection rate, under-segmentation
rate, and over-segmentation rate. They are designed to
help the pathologist obtain more in-depth understanding
of the performance of automatic segmentation methods
and choose the right one for their specific application.

2 Related work

Nuclei segmentation methods can be largely divided into
two categories: unsupervised or supervised approaches.
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Among unsupervised methods, the most popular method
to detect nuclei is intensity thresholding such as Otsu’s
method [22]. Another popular approach for nuclei detection
is clustering including K-mean clustering [4], graph cut–
based methods [27], etc. Furthermore, a few filtering-based
methods have been proposed that utilize the features of
the nuclei, such as Laplacian-of-Gaussian (LoG) filters [1]
and fast radial symmetry transformation [32]. The above
unsupervised methods have one common weakness: they
are only effective for one or a few specific types of nuclei
or images, since the appearances of nuclei are so diverse
that one can hardly develop a single model suitable for all
these different images. In recent years, supervised learning-
based approaches are becoming more and more attractive
including multilayer neural networks [17], stacked sparse
autoencoder [36], and spatially constrained convolutional
neural networks (CNNs) [29]. In these methods, each pixel
of the image is usually classified into one of two categories:
nuclei or background. After the nuclei area or the nucleus
seed is predicted by the nuclei detection stage, the next step
would be obtaining the contours of all nuclei. If the nuclei
area is predicted in the nuclei detection stage, this could be
achieved by methods such as bottleneck detection [14] and
ellipse fitting [9, 30]. If the seed of a nucleus is generated,
its contour could be obtained by using marker-controlled
watershed [24, 32] or region growing [35].

Deep learning–based methods are becoming increasingly
popular in image segmentation due to their dominating
performance in many tasks of computer vision such
as object classification, object detection, and image
segmentation. Since 2014, numerous convolutional neural
network–based image segmentation methods have been
proposed. Long et al. proposed the fully convolutional
neural network (FCN) [15] for semantic segmentation.

Compared with prior models, it is demonstrated that
the FCN algorithm is much more efficient and accurate.
Converting fully connected layers into convolutional neural
networks makes it possible to predict the heatmap of the
objects in the image that needs to be segmented, which
unifies the detection and segmentation steps in traditional
approaches. The skip architecture of FCN as first introduced
in residual networks [7] helps boost its performance by
fusing different levels of semantic information.

A major progress in biomedical segmentation was made
by U-net [26], an FCN-based network architecture proposed
in 2015, which won the Grand Challenge for Computer-
Automated Detection of Caries in Bitewing Radiography at
ISBI 2015. Naylor [20] employs FCN to discriminate nuclei
from the background and then applies the watershed method
to split the nuclei. However, the resulting boundaries are
not accurate. Xing [35] proposed a sophisticated shape
deformation method to generate each nucleus’s boundary.
Kumar [12] designed a CNN3 model based on a CNN
network to detect the nuclei from the image and a region
growing method to obtain the contours. But both of these
have high running time complexity.

3Method

3.1 Overview

Our nuclei segmentation method adopts an end-to-end deep
learning framework. As shown in Fig. 2, the procedures
to segment nuclei from H&E stain normalized images are
as follows. First, the image is processed by H&E stain
normalization. In the training phase, we randomly extract
thousands of patches (samples) from training images.

Fig. 2 The overview of our
method
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During the training, each minibatch is processed by data
augmentation before it is fed into the deep neural network to
train the nucleus-boundary model. During the testing phase,
We extract overlapped patches from test images based on
sliding windows. The prediction result of these overlapped
patches yielded by the nucleus-boundary detector shows
inside nuclei area and the boundaries. At last, the area
of each nucleus is obtained via a simple, fast, and
parameterless post-processing procedure.

3.2 Data preprocessing

H&E stain is the most widely used stain protocol in medical
diagnosis. Typically, the nuclei of cells are stained to
blue by hematoxylin while the cytoplasm is colored to
pink by eosin. However, in practice, the colors of H&E-
stained images could vary a lot as shown in Fig. 1 due
to variation in the H&E reagents, the staining process, the
scanner, and the specialist who performs the staining. A
few H&E stain normalization methods [8, 16, 31] have
been proposed to eliminate the negative interference caused
by color variation. We tried two of them [16, 31] to
normalize the raw H&E-stained images. However, we did
not find any considerable difference between these two
normalization methods in terms of prediction performance
of our segmentation algorithm. In particular, the result
shown in the experiment Section 4 was generated based
on the images normalized by the method proposed in [31].
Given a target image, this method is able to convert a source
image’s color into the target image’s color space based
on sparse non-negative matrix factorization (SNMF) [31].
Compared with the nonnegative matrix factorization (NMF)
[13], a technique that has been used for stain separation [25],
SNMF introduces L1 sparseness regularization to preserve
the biological structure. We chose one well-stained H&E
image as the target and convert other images into its color
space. The hyperparameter λ, which controls the trade-off

between sparseness and reconstruction accuracy, is set to 0.1
according to [12].

Intuitively, it would be much easier to distinguish the
foreground (nuclei) from the background (cytoplasm) in a
pure hematoxylin-channel grayscale image compared with
a RGB image. A large number of nuclei segmentation
methods [3, 24, 34] employ some deconvolution algorithms
to extract the H-channel from H&E-stained images for
better segmentation performance. However, based on our
experiments, we noticed that our deep fully convolutional
neural network works better in extracting the nuclei from
raw RGB images than from H-channel grayscale images. A
visual comparison between H-channel image and original
RGB image is shown in Fig. 3. The reason would be
that the H-channel misses some information that might be
helpful for distinguishing nuclei from the cytoplasm. Given
well-labeled training images, our deep neural networks can
then learn the optimal way to extract the features that
discriminate samples of different categories. Based on the
above analysis, we skipped the step of H-channel extraction
and directly took the RGB color images as the input to our
deep neural networks.

3.3 Nucleus-boundarymodel

Traditional supervised nuclei segmentation methods usually
apply a binary classifier to segment the nuclei areas by
classifying all pixels into nuclei or background type. These
methods usually predict the category of the central pixel
given a small patch. To segment the whole image, it needs
to extract all the sliding windows (patches) with a stride
of 1 pixel and predict the central pixel category for each
of these patches. A major limitation of this procedure is
its high computational complexity. Given an image of size
1000 × 1000, this method needs to process one million
sliding windows in order to segment it. To make it worse, a
typical whole-slide histopathology image may have billions

Fig. 3 A comparison between
H-channel and RGB images. a
An original histopathology
image; b corresponding
H-channel image
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of pixels, making it impossible to process it in an acceptable
time using this strategy. Instead, our method is based on
a fully convolutional network (FCN) framework, which
allows predicting the category of all the pixels of an image
with only one pass. The input of the network is one image;
the output is the estimated class map.

The task of nuclei segmentation can be roughly divided
into two stages: the first stage is extracting the foreground
(nuclei); the second stage is segmenting the connected
foreground area into separated nuclei and finding out
the boundary of each nucleus. Our method intends to
merge these two steps by extracting the nuclei and their
boundaries at the same time. So, it is named ”nuclei-
boundary (NB) model.” As shown in Fig. 4, the output of the
NB model has three channels, and each has the same height
and width with the input image. Its values represent the
probabilities of each pixel being background , boundary,
or inside class, respectively. The manual annotation for
our segmentation problem is the boundary of each nucleus.
A pixel belonging to the boundary class means that it is
on or inside an annotated boundary and within 2 pixels
from the boundary. Pixels of the inside class are those that
are inside the annotated boundary but are not boundary

pixels. Correspondingly, the output can be regarded as an
RGB image and the estimated maps of the background ,
boundaries, and nuclei are represented by red, green,
and blue, respectively, as shown in Fig. 4. To generate the
ternary mask for training, we apply a morphology operator
to each nucleus to obtain the inside pixels, and then
subtract inside pixels from the nucleus to get boundary

pixels.

3.3.1 The architecture of our NB network

Figure 4 shows the network architecture of our algorithm,
which consists of a couple of encoding and decoding layers.
The encoding layers are used to extract different levels of
contextual feature maps. The decoding layers are designed
to combine these feature maps produced by the encoding
layers to generate the desired segmentation maps. Due to the
memory limitation of our GPU, the size of the input layer
is set to 128× 128 in our experiments. The weight of each
convolutional layer is initialized by glorot uniform [6] and
bias is initialized to 0. The glorot uniform is defined as:

W ∼ U

[
−√

6√
nj + nj+1

,

√
6√

nj + nj+1

]
(1)

where W means the initialized weight; nj means the size of
the convolutional layer j .

The scaled exponential linear units (SELUs) [18] activa-
tion function is used in all convolutional layers. SELUs is
designed to make the forward neural network (FNN) have
self-normalizing capability [11]. The FNN using SELUs is
shown to be able to outperform the ones using explicit nor-
malization methods, such as batch normalization, layer nor-
malization, and weight normalization. Hence, our network
does not have any normalization layers.

The padding property of each convolutional layer is the
“same” in order to ensure it keeps the same size with its
previous layer. The size of all convolutional filters is 3 × 3.
Each convolutional layer is followed by a dropout layer with
0.2 drop rate. The network is trained by Adam optimizer

Fig. 4 The structure of our network. The size of each layer is shown in height × width × channels. The height and width of each layer are not
fixed, which are determined by the size of input images. Here, we assume the input image is of size 128 × 128
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[10]. This stochastic optimization method is able to compute
adaptive learning rate for each parameter. It automatically
controls the learning rate along the training, so it is not
necessary to manually set the momentum and decay.

3.3.2 Data augmentation

Deep learning models often have millions of parameters
so that it needs a large-scale sample dataset to avoid the
overfitting problem. In fact, the datasets of our nuclei
segmentation task often contain only tens of images.
Moreover, labeling an 1000 × 1000 image which contains
hundreds of nuclei usually costs a specialist at least 5 h.
Hence, it is impossible to manually label sufficient nuclei
boundaries accurately for training deep learning models.
Data augmentation is an essential approach to overcome
the overfitting problem caused by a lack of samples. The
training samples, i.e., the patches, are randomly extracted
from the H&E-stained images in the training datasets.
Five augmentation techniques are used together in our

method including random elastic transformation, rescale,
affine transformation, shift, flip, and rotate. Each training
sample (one patch extracted from a whole image) and the
corresponding target are processed by the data augmentation
procedure. Given a training sample, which is a RGB image I

with its corresponding ground truth Igt , we transform I to I
′

and Igt to I
′
gt . I

′
and I

′
gt are the input and target of the neural

network. The rescaling factors are set as a random number
between 0.5 and 1.5. We employ Simard’s method [28] to do
elastic transforming. Two hyperparameters α and σ need to
be manually set to control how dramatic the original image
is transformed. In our experiment, α is set to a random
number between 100 and 200, σ is set to 12.

Besides transforming the input sample, it is necessary
to do the same transformation on targets to maintain
consistency. The one-hot encoding target consists of only
binary values. However, the transformed target has some
float-point numbers caused by bilinear interpolation we
used for data augmentation. They need to be binarized by
the following rules:

Fig. 5 Example of data
augmentation: a one patch
extracted from a normalized
image; b corresponding ground
truth of (a). c A training sample
generated by data augmentation
procedure based on patch (a). d
The corresponding ground truth
of (c)
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Let the value of one pixel be (ti , tb, to), where ti , tb,
and to represent the labels for inside, boundary, and
background , respectively.

1. If tb > 0.5, tb = 1, else tb = 0
2. If ti > 0 and tb == 0, ti = 1, else ti = 0
3. If ti == 1 or tb == 1, to = 0, else to = 1

An example of data augmentation is illustrated in Fig. 5.

3.3.3 Weighted loss

The U-net [26] model tends to predict the pixels with full
context in the input image, which leads to generation of a
smaller segmentation map than the input image. The border
area of the input image is not predicted because of a lack
of enough context information. This strategy can solve the
problem that the prediction of the border area is not accurate
to some extent. One issue of this is that this U-net defines a
border area whose size is immutable without modifying the
network structure. However, in practice, the border area size
could vary in different histopathology images and it mainly
depends on the size of the nuclei. Another limitation is that
we have to do some cropping operation in neural network
training to make the size of layers match each other, which
might lose useful surrounding information.

As a trade-off of these issues, we designed a weighted
loss and a scheme for patch extraction and assembling to
allow the neural network to predict a segmentation map of
equal size without concerning the lack of context issue in
the border area.

The model is trained by minimizing the categorical
softmax cross-entropy loss between predictions and targets,
which is described in Eq. 2:

L =
∑

i

∑
j

Wi,j log(pt(i,j)(i, j)) (2)

where t (i, j) denotes the true label of the pixel at (i, j)

position; pt(i,j)(i, j) is the output of soft-max activation
layer which indicates the probability of the pixel at (i, j)

being t (i, j). W is the proposed weight map, which is
defined as:

Wi,j = α
De

i,j

(Dc
i,j + De

i,j )

α = h · w∑h
i=1

∑w
j=1

De
i,j

Dc
i,j +De

i,j

(3)

where Wi,j is the weight of position i, j ; De
i,j is the distance

from border; Dc
i,j denotes the distance from center. h and w

are the height and width of the map, respectively (Fig. 6).

Fig. 6 The weighted loss map generated by Eq. 3

3.3.4 Extra-large image segmentation using overlapped
patch extraction and assembling

Current medical image segmentation algorithms based
on U-net and its derivatives have an unsolved problem
for segmenting extra-large high-resolution histopathology
images: due to the limited memory of the GPU, it is possible
to feed the whole-slide image into the deep neural network.
It has to be cut into patches and perform patch-wise training
and prediction. However, there is no reported solution to
deal with this issue.

With close examination, we found the main issue of
U-net algorithm on patch-based segmentation is that the
prediction at the border area is not accurate as demonstrated
in Fig. 12. Here, we propose an overlapped patch extraction
and assembling method. The patches are extracted by
sliding window with a stride. For assembling, a vote
mechanism is applied to predict each pixel using:

P(i, j) =
∑

kWk(i,j)p(k(i, j))∑
kWk(i,j)

where P(i, j) is the final prediction of the pixel at position
(i, j) in an image. k(i, j) means the position of it in the kth
patch.

3.3.5 Post-processing

From Fig. 7, we can see that the raw prediction results
already show clear inside nucleus areas and boundaries.
Due to this reliable prediction results, we no longer need the
complex region-growing algorithms [12, 35] and splitting
algorithms [34] to extract the final segmented areas.
These methods usually strongly rely on manual parameter
tuning to get good performance and are computationally
demanding. Instead, we use a parameter-free postprocessing
procedure that runs in a negligibly short time. Since our NB
model detects both inside and boundary classes, all we
need is the inside class map. Then, the inside class map
is transformed to a binary map using a constant threshold
0.5. In this way, each connected component in the binary
image indicates the inside area of one nucleus. At the end,
in order to recover the shape, based on the way inside



2034 Med Biol Eng Comput (2019) 57:2027–2043

Fig. 7 a Examples of original histopathology images; b corresponding images after color normalization. c Raw segmentation results by our
algorithm. d Final segmentation result

class is generated (3.3), we can simply dilate each connected
component by a radius 3 of disk structuring element.

4 Experiment

4.1 Evaluation criteria

Two levels of criteria are usually used to measure the
performance of nuclei segmentation methods: one is object-
level criteria, another is pixel-level criteria. The most
common object-level criteria for object detection tasks
include precision, recall, and F1score. Precision is
defined as:

precision = T P

T P + FP

recall is defined as:

recall = T P

FN + T P

F1score considers both of the precision and recall, as
shown in following equation.

F1 = 2 · precision · recall

precision + recall

where the T P is true positive, FP means false positive, and
FN means false negative. Given a manually labeled ground
truth nucleus Ti , if there is one nucleus Pj in automatic
segmentation result that matches Ti , Pj can be counted as
one T P .

F1 score is the harmonic average of precision and
recall and its value is in the range of [0,1].

We noticed that FN can be caused by two different
types of errors: one is miss-detection (nuclei is predicted as
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Table 1 Quantitative comparison results of segmentation performance on MOD dataset

Methods Precision Recall F1 Dice’s coefficient MDR FDR USR OSR

CNN3 [12] - - 0.827 0.762 - - - -

NB model 1 (our method) 0.813 0.914 0.854 0.812 0.09 0.09 0.09 0.01

NB model 2 0.861 0.856 0.846 0.808 0.05 0.13 0.08 0.03

NB model 3 0.880 0.864 0.854 0.818 0.07 0.11 0.05 0.03

NB model 4 0.812 0.925 0.861 0.805 0.09 0.07 0.09 0.01

NB model 5 0.814 0.910 0.846 0.803 0.10 0.08 0.10 0.01

NB model * 0.845 0.892 0.850 0.81 0.06 0.11 0.02 0.08

cytoplasm); another is under-segmentation (multiple ground
truth nuclei are detected as one nucleus, hence only one
of these nuclei ground truth nucleus has corresponding
detected nucleus.). Similarly, FP consists two types of
errors: one is false detection (cytoplasm is detected as
nuclei); another is over-segmentation (one ground-truth
nucleus is segmented into several nuclei; each of them is a

part of the ground truth nucleus and at most only one among
them can be considered as the corresponding detected
nucleus). Let us think about this situation: one segmentation
method is weak on discriminating the nuclei and cytoplasm
while another one is weak on splitting the nuclei area.
But they may have similar precision and recall, even
F1score. Apparently, precision, recall, and F1score,

Fig. 8 The comparison between our method and CNN3 [12]: a raw images; b ground truth; c CNN3 results; d our results
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Fig. 9 Cropped portions of two
images. a precision = 0.76,
recall = 0.83, OSR = 0.05, USR
= 0.15, MDR = 0.02, FDR =
0.20; b precision = 0.78, recall =
0.83, OSR = 0.13, USR = 0.05,
MDR = 0.12, FDR = 0.10

and their combination, fail to differentiate the performance
of these two segmentation methods. To handle this issue,
we introduce four new criteria to evaluate automatic nuclei
segmentation methods: missing detection rate (MDR), false
detection rate (FDR), under-segmentation rate (USR), over-
segmentation rate (OSR), as shown in Eq. 4.

MDR = MD

FN + T P

FDR = FD

T P + FP

USR = US

P

OSR = OS

S
(4)

where MD is the number of missing detections; FD

indicates the number of false detections; US means the
number of nuclei which are not detected caused by under-
segmentation. P is the number of ground truth nuclei in
the region of T P , which can be defined as FN + T P −
MD. OS means the number of false positives caused by
over-segmentation and S means the number of segmented
nuclei in the region of T P ’s corresponding ground truth
nuclei, which can be defined as FP + T P + FD. The
combination of MDR and FDR measures the capacity

of discriminating the nuclei and cytoplasm while the
combination of USR and OSR measures the performance
of handling overlapped nuclei area. On the other hand,
recall value is negatively correlated with MDR and USR

while precision is negatively correlated with FDR and
OSR. These four criteria are able to help pathologists select
proper automatic segmentation methods for specific tasks.

The pixel-level criteria are used to measure the accuracy
of segmentation algorithms in predicting the shape and size
of the detected nuclei. The most essential one is Dice’s
coefficient, which is defined as:

D(X, Y ) = 2
|X ∩ Y |

|X| + |Y | (5)

where X indicates a manual segmentation and Y means
its corresponding automatic segmentation. That is, a
manual segmentation is considered as a FP if there is
no corresponding automatic segmentation with a Dice
coefficient of at least 0.2.

4.1.1 Datasets

We evaluate the performance of our method on three public
available nuclei segmentation datasets. One is a multiple-
organ H&E-stained image dataset [12] (MOD). It consists
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Fig. 10 Nuclei segmentation result over the BCD dataset. a Two breast cancer image samples. b Automatic segmentation result of [32]. c Result
of our method
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Table 2 Quantitative comparison of segmentation performance on the BCD dataset

Dataset Method Precision Recall F1 DC

BCD Veta’s method [32] 0.863 0.886 0.874 0.88

TV-MRF-BP [23] 0.801 0.823 0.811 0.84

NB model 0.942 0.915 0.923 0.862

BNS FCN [15] 0.823 0.752 0.763 -

DeconvNet [21] 0.864 0.773 0.805 -

Ensemble [20] 0.741 0.9 0.802 -

NB model 0.920 0.7835 0.84 0.83

of 30 images which were captured from 7 organs: the breast,
liver, kidney, prostate, bladder, colon, and stomach. The
resolution of each image is 1000×1000. In total, about
21,000 nuclei boundaries are manually annotated. These 30
images are split into two subsets: the training set with 16
images composed of 4 from the breast, 4 from the liver, 4
from the kidney, and 4 from the prostate; and the test set
with 14 images composed of 2 images from each organ.

The second dataset is the breast cancer histopathology
image dataset (BCD). It contains two subsets: subset A and
subset B. Subset A includes 21 images and subset B has 18
images. In [32], Subset A is used to tune the parameters.
In a similar way, we utilize subset A as the training set
and subset B as the test set. Since one image may contain
thousands of nuclei, it is impractical to manually label all
the training images. We randomly select five images from
subset A and crop a 1000 × 1000 subimage from each of
them to build the training set. It is manually annotated under
the supervision of a specialist.

The third one is also a breast cancer image dataset (BNS)
[20]. It is composed of 33 H&E-stained images of size 512
× 512 from 7 triple negative breast cancer patients. There
are a total of 2754 manually annotated nuclei.

4.2 Experiment result

Figure 7 shows how our method segments the nuclei step
by step. The color variety is well controlled by the color
normalization procedure. The prediction result shows clear
nuclei areas and boundaries. In the final segmentation result
and ground truth image, each nucleus is represented by a
different color.

First, we test our method on the MOD dataset. Unfortu-
nately, the dataset publicly provided online does not explic-
itly divide the whole dataset into the training set and test
set. We do not know which image belongs to the training
set exactly as introduced in their paper [12]. To make a fair
comparison, we randomly select 16 images from the breast,

liver, kidney, and prostate. Then, we combine the remain-
ing 8 images of these four types and the 6 images from
the bladder, colon, and stomach to build the test images.
A total of 12,000 patches are randomly extracted from 12
training images to train our model. To eliminate the bias
caused by random selection, 5 different training sets and
the corresponding test sets are randomly generated. Then,
the model is trained and tested on the 5 pairs of training
set and test set separately. All of the models are trained for
300 epoch in 7.5 h. For testing, the stride of overlapped
patch extraction is set to 64. The quantitative comparison
is listed in Table 1, which demonstrates that our method
outperforms the state-of-the-art method CNN3 as reported
in [12] in terms of both F1 score and Dice’s coefficient.
Moreover, it shows that the under-segmentation error is
much more significant than over-segmentation error and it
achieves a balance between the false detection error and
missing detection error. Figure 8 shows a visual compari-
son between our method and [12]. As shown in the sample
image, our segmentation result has fewer false negatives and
higher accuracy in terms of nuclei boundaries than [12]. Our
method is not only more accurate but also much faster. It
takes about 5 s to predict a 1000 × 1000 image by one
Nvidia Titan X GPU and the time used for post-processing
is less than 0.1 s. Given the same hardware environment and
test images, [12] takes about 4 min to predict one image
and 80 s to do the post-processing. Additionally, a 10-folder
cross-validation is performed to validate our method. The
result is shown in Table 1 NB model*.

To show the benefit of our proposed evaluation metrics
for nuclei segmentation, we compared two images with
similar precision and recall, but different segmentation
quality. As shown in Fig. 9, these two images have similar
precision and recall. From our proposed criteria, we can
find that the segmentation error on the first image is mainly
caused by under-segmentation and false detections while
that it is mainly caused by over-segmentation, missing
detection and false detection in the second image.
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Fig. 11 a Shows how the training loss changes during training. b
Indicates the validation loss

Second, we test our method on the BCD dataset. The
manually labeled training set consists of five 1000 ×
1000 images. Instead of training the models from random
initialization, we use the training data to fine-tune the
network model trained on theMOD dataset. Thus, the model
would adjust to a new dataset with much shorter time by
training on a limited training set for a small number of
epochs. In this experiment, only 2000 patches are extracted
to fine-tune the pretrained model. It takes about 10 s to
train one epoch and the training is terminated after 70
epochs. The visual comparison between our algorithm and
algorithm in [32] can be seen in Fig. 10.

At last, we follow the same strategy in [20] to validate our
method. The strategy is called leave-one-patient-out cross-
validation. That is, every time we train the model on 6
patients and use the rest for validation. Table 2 shows that
our method outperforms the state-of-the-art breast cancer
nuclei segmentation method by a large margin in terms of
precision, recall, and F1 score.

4.3 Discussion

4.3.1 Data augmentation for fully convolutional networks

Data augmentation is a widely used technique to handle
the overfitting issue caused by limited training samples. In
image segmentation tasks, one can generate more images
from one image using image transformation methods. The
most common methods include rotation, flipping, shifting,
and rescaling. Elastic deformation transform, a higher
level transformation method, is also employed in some
image segmentation works. Ronneberger et al. [26] claim
that elastic deformation is the key method to do data
augmentation for a segmentation network with very limited
annotated images.

However, to the best of our knowledge, there is no
systematic study of the effectiveness of these image
transformation methods for nuclei segmentation using a
fully convolutional network. We compare different training
processes using rotation, flipping, shifting, rescaling, and
elastic deformation transform to augment the training
data. To make fair comparisons, we let the training set
and validation set have similar appearances by splitting
each whole image into two sub-images and placing one
in the training set and another one in the validation
set. We randomly extract 6000 patches from the training
set to train our neural networks and 6000 patches from
the validation set for validation. The setting of these
transformation methods is same with those reported in
Section 3.3.2. The comparison is shown in Fig. 11: “no”
means do not apply data augmentation; “combination”
means data augmentation is performed by combining elastic
deformation, flip, rotate, shift, and rescale. It is very clear
that without data augmentation, the network has severe
overfitting issue, and validation loss starts to increase
rapidly from epoch 5. Unexpectedly, rotating rather than
elastic deformation has achieved the best performance
in performance improvement. But only rotating operation
still cannot prevent the overfitting. One has to combine
all of these transform methods together to do data
augumentation to get good performance as done in this
paper.
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Fig. 12 a An H&E-stained
image. b The raw segmentation
results of our method. c The
prediction result without
applying weight map and
overlapped patch extraction and
assembling. d The prediction
results using overlapped patch
extraction and assembling but
without weight map

4.3.2 Nuclei segmentation on extra-large images

To evaluate the effectiveness of the proposed weight
map and overlapped patch extraction and assembling
method for extra-large image segmentation, we compared
the segmentation results with and without the proposed
method in Fig. 12. We can see that the raw segmentation
results without using those two techniques contain obvious
seams between the patches. It also demonstrates that the
predictions in the border area are not accurate. As shown in
Fig. 12d, if we employ the overlapped patch extraction and
assembling but without the weight map (which means all the
pixels in a patch have the same weight), the segmentation

Table 3 Quantitative comparison of prediction performance on whole
images

Cross entropy of assembled image

Uniform loss 0.85

Overlapped 0.59

Overlapped + weight map 0.52

result still shows noticeable seams. Figure 12b and d have
the same stride, which is 64. Table 3 shows the quantitative
comparison of prediction performance on whole MOD test
images.

4.3.3 NBmodel versus the mixed nucleus model +
boundary model

An alternative way to detect nuclei and their boundaries
is training two binary classifiers to detect inside and
boundary separately and then merge the detections
together. We apply the same method with our NB model
to train the nucleus model and boundary model except
that the three-class classification is replaced by binary
classification. Figure 13 depicts why the NB model
outperforms the mixed nucleus model + boundary model.
The NB model is able to learn the latent relationships
between inside, boundary, and background . That is,
there should be no gaps between inside and boundary

classes and inside should not cross the boundary class.
From the samples shown in Fig. 13, we can easily find
out that NB model predicts the inside class and boundary

classes more precisely.
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Fig. 13 The comparison of NB
model against the mixed nucleus
model and boundary model.
First column shows the
histopathology images. Second
column shows estimated nuclei
and boundaries using our NB
model. Third column shows the
estimated result generated by
the mixed nucleus model and
boundary model. Fourth column
represents the ground truth

5 Conclusion

In this paper, we have presented a state-of-the-art supervised
fully convolutional neural network–based method for nuclei
segmentation in histopathology images. First, the images
are normalized into the same color space. To handle the
extra-large image issue, one whole image is split into
overlapping patches for succeeding processing. Next, we
propose a novel nucleus-boundary model to detect nuclei
and boundaries on each patch. Then, the predictions of all
the patches are seamlessly reassembled to build the raw
prediction result of the whole image. At the end, we apply a
fast and non-parameter post-processing to generate the final
nuclei segmentation results. The nucleus-boundary model is
trained on a very limited number of images and has been
tested on the images that may have different appearances.
Comparison with the state-of-the-art algorithm shows that
our proposed method is accurate, robust, and fast. It is
also found that our idea of simultaneous nucleus-boundary
identification model can be applied to other biomedical
image segmentation tasks such as gland segmentation and
bacteria segmentation.
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